File size: 9,203 Bytes
a0db2f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Efficient Inference on a Single GPU
In addition to this guide, relevant information can be found as well in [the guide for training on a single GPU](perf_train_gpu_one) and [the guide for inference on CPUs](perf_infer_cpu).
## Better Transformer: PyTorch-native transformer fastpath
PyTorch-native [`nn.MultiHeadAttention`](https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/) attention fastpath, called BetterTransformer, can be used with Transformers through the integration in the [🤗 Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview).
PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).
After installing the [`optimum`](https://github.com/huggingface/optimum) package, to use Better Transformer during inference, the relevant internal modules are replaced by calling [`~PreTrainedModel.to_bettertransformer`]:
```python
model = model.to_bettertransformer()
```
The method [`~PreTrainedModel.reverse_bettertransformer`] allows to go back to the original modeling, which should be used before saving the model in order to use the canonical transformers modeling:
```python
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```
As of PyTorch 2.0, the attention fastpath is supported for both encoders and decoders. The list of supported architectures can be found [here](https://huggingface.co/docs/optimum/bettertransformer/overview#supported-models).
## `bitsandbytes` integration for FP4 mixed-precision inference
You can install `bitsandbytes` and benefit from easy model compression on GPUs. Using FP4 quantization you can expect to reduce up to 8x the model size compared to its native full precision version. Check out below how to get started.
<Tip>
Note that this feature can also be used in a multi GPU setup.
</Tip>
### Requirements
- Latest `bitsandbytes` library
`pip install bitsandbytes>=0.39.0`
- Install latest `accelerate` from source
`pip install git+https://github.com/huggingface/accelerate.git`
- Install latest `transformers` from source
`pip install git+https://github.com/huggingface/transformers.git`
### Running FP4 models - single GPU setup - Quickstart
You can quickly run a FP4 model on a single GPU by running the following code:
```py
from transformers import AutoModelForCausalLM
model_name = "bigscience/bloom-2b5"
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
```
Note that `device_map` is optional but setting `device_map = 'auto'` is prefered for inference as it will dispatch efficiently the model on the available ressources.
### Running FP4 models - multi GPU setup
The way to load your mixed 4-bit model in multiple GPUs is as follows (same command as single GPU setup):
```py
model_name = "bigscience/bloom-2b5"
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
```
But you can control the GPU RAM you want to allocate on each GPU using `accelerate`. Use the `max_memory` argument as follows:
```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
model_4bit = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```
In this example, the first GPU will use 600MB of memory and the second 1GB.
### Advanced usage
For more advanced usage of this method, please have a look at the [quantization](main_classes/quantization) documentation page.
## `bitsandbytes` integration for Int8 mixed-precision matrix decomposition
<Tip>
Note that this feature can also be used in a multi GPU setup.
</Tip>
From the paper [`LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale`](https://arxiv.org/abs/2208.07339), we support Hugging Face integration for all models in the Hub with a few lines of code.
The method reduces `nn.Linear` size by 2 for `float16` and `bfloat16` weights and by 4 for `float32` weights, with close to no impact to the quality by operating on the outliers in half-precision.

Int8 mixed-precision matrix decomposition works by separating a matrix multiplication into two streams: (1) a systematic feature outlier stream matrix multiplied in fp16 (0.01%), (2) a regular stream of int8 matrix multiplication (99.9%). With this method, int8 inference with no predictive degradation is possible for very large models.
For more details regarding the method, check out the [paper](https://arxiv.org/abs/2208.07339) or our [blogpost about the integration](https://huggingface.co/blog/hf-bitsandbytes-integration).

Note, that you would require a GPU to run mixed-8bit models as the kernels have been compiled for GPUs only. Make sure that you have enough GPU memory to store the quarter (or half if your model weights are in half precision) of the model before using this feature.
Below are some notes to help you use this module, or follow the demos on [Google colab](#colab-demos).
### Requirements
- If you have `bitsandbytes<0.37.0`, make sure you run on NVIDIA GPUs that support 8-bit tensor cores (Turing, Ampere or newer architectures - e.g. T4, RTX20s RTX30s, A40-A100). For `bitsandbytes>=0.37.0`, all GPUs should be supported.
- Install the correct version of `bitsandbytes` by running:
`pip install bitsandbytes>=0.31.5`
- Install `accelerate`
`pip install accelerate>=0.12.0`
### Running mixed-Int8 models - single GPU setup
After installing the required libraries, the way to load your mixed 8-bit model is as follows:
```py
from transformers import AutoModelForCausalLM
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```
For text generation, we recommend:
* using the model's `generate()` method instead of the `pipeline()` function. Although inference is possible with the `pipeline()` function, it is not optimized for mixed-8bit models, and will be slower than using the `generate()` method. Moreover, some sampling strategies are like nucleaus sampling are not supported by the `pipeline()` function for mixed-8bit models.
* placing all inputs on the same device as the model.
Here is a simple example:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
prompt = "Hello, my llama is cute"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```
### Running mixed-int8 models - multi GPU setup
The way to load your mixed 8-bit model in multiple GPUs is as follows (same command as single GPU setup):
```py
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```
But you can control the GPU RAM you want to allocate on each GPU using `accelerate`. Use the `max_memory` argument as follows:
```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```
In this example, the first GPU will use 1GB of memory and the second 2GB.
### Colab demos
With this method you can infer on models that were not possible to infer on a Google Colab before.
Check out the demo for running T5-11b (42GB in fp32)! Using 8-bit quantization on Google Colab:
[](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing)
Or this demo for BLOOM-3B:
[](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing)
|