File size: 4,106 Bytes
1867b21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import argparse
import json
import tqdm
import cv2
import os
import numpy as np
from pycocotools import mask as mask_utils
import random
from PIL import Image
EVALMODE = "test"
def blend_mask(input_img, binary_mask, alpha=0.5, color="g"):
if input_img.ndim == 2:
return input_img
mask_image = np.zeros(input_img.shape, np.uint8)
if color == "r":
mask_image[:, :, 0] = 255
if color == "g":
mask_image[:, :, 1] = 255
if color == "b":
mask_image[:, :, 2] = 255
if color == "o":
mask_image[:, :, 0] = 255
mask_image[:, :, 1] = 165
mask_image[:, :, 2] = 0
if color == "c":
mask_image[:, :, 0] = 0
mask_image[:, :, 1] = 255
mask_image[:, :, 2] = 255
if color == "p":
mask_image[:, :, 0] = 128
mask_image[:, :, 1] = 0
mask_image[:, :, 2] = 128
if color == "l":
mask_image[:, :, 0] = 128
mask_image[:, :, 1] = 128
mask_image[:, :, 2] = 0
if color == "m":
mask_image[:, :, 0] = 128
mask_image[:, :, 1] = 128
mask_image[:, :, 2] = 128
if color == "q":
mask_image[:, :, 0] = 165
mask_image[:, :, 1] = 80
mask_image[:, :, 2] = 30
mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2)
blend_image = input_img[:, :, :].copy()
pos_idx = binary_mask > 0
for ind in range(input_img.ndim):
ch_img1 = input_img[:, :, ind]
ch_img2 = mask_image[:, :, ind]
ch_img3 = blend_image[:, :, ind]
ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx]
blend_image[:, :, ind] = ch_img3
return blend_image
def upsample_mask(mask, frame):
H, W = frame.shape[:2]
mH, mW = mask.shape[:2]
if W > H:
ratio = mW / W
h = H * ratio
diff = int((mH - h) // 2)
if diff == 0:
mask = mask
else:
mask = mask[diff:-diff]
else:
ratio = mH / H
w = W * ratio
diff = int((mW - w) // 2)
if diff == 0:
mask = mask
else:
mask = mask[:, diff:-diff]
mask = cv2.resize(mask, (W, H))
return mask
def downsample(mask, frame):
H, W = frame.shape[:2]
mH, mW = mask.shape[:2]
mask = cv2.resize(mask, (W, H))
return mask
#datapath /datasegswap
#inference_path /inference_xmem_ego_last/coco
#output /vis_piano
#--show_gt要加上
if __name__ == "__main__":
color = ['g', 'r', 'b', 'o', 'c', 'p', 'l', 'm', 'q']
frame = cv2.imread(
"/home/yuqian_fu/Projects/sam2/teacup/JPEGImages/000345.png"
)
mask = Image.open("/home/yuqian_fu/Projects/sam2/results/3.png")
mask = np.array(mask)
# 检查有几个物体
# idx = np.unique(mask)
# idx = idx[idx != 0]
# print(idx)
out_path = "/home/yuqian_fu/Projects/sam2/predicted_mask"
unique_instances = np.unique(mask)
unique_instances = unique_instances[unique_instances != 0]
vis_mode = "fuse" #split
if vis_mode == "fuse":
for i,instance_value in enumerate(unique_instances):
binary_mask = (mask == instance_value).astype(np.uint8)
binary_mask = cv2.resize(binary_mask, (frame.shape[1], frame.shape[0]))
try:
binary_mask = upsample_mask(binary_mask, frame)
frame = blend_mask(frame, binary_mask, color=color[i])
except:
breakpoint()
cv2.imwrite(
f"{out_path}/new.jpg",
frame,
)
elif vis_mode == "split":
for i,instance_value in enumerate(unique_instances):
binary_mask = (mask == instance_value).astype(np.uint8)
binary_mask = cv2.resize(binary_mask, (frame.shape[1], frame.shape[0]))
binary_mask = upsample_mask(binary_mask, frame)
out = blend_mask(frame, binary_mask, color=color[0])
cv2.imwrite(
f"{out_path}/obj_{i}.jpg",
out,
)
else:
print("error") |