Upload 2 files
Browse files- .gitattributes +1 -0
- libbitsandbytes_cuda116.dll +3 -0
- main.py +412 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
libbitsandbytes_cuda116.dll filter=lfs diff=lfs merge=lfs -text
|
libbitsandbytes_cuda116.dll
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88f7bd2916ca3effc43f88492f1e1b9088d13cb5be3b4a3a4aede6aa3bf8d412
|
| 3 |
+
size 4724224
|
main.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
extract factors the build is dependent on:
|
| 3 |
+
[X] compute capability
|
| 4 |
+
[ ] TODO: Q - What if we have multiple GPUs of different makes?
|
| 5 |
+
- CUDA version
|
| 6 |
+
- Software:
|
| 7 |
+
- CPU-only: only CPU quantization functions (no optimizer, no matrix multipl)
|
| 8 |
+
- CuBLAS-LT: full-build 8-bit optimizer
|
| 9 |
+
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
|
| 10 |
+
|
| 11 |
+
evaluation:
|
| 12 |
+
- if paths faulty, return meaningful error
|
| 13 |
+
- else:
|
| 14 |
+
- determine CUDA version
|
| 15 |
+
- determine capabilities
|
| 16 |
+
- based on that set the default path
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import ctypes as ct
|
| 20 |
+
import os
|
| 21 |
+
import errno
|
| 22 |
+
import torch
|
| 23 |
+
from warnings import warn
|
| 24 |
+
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
from typing import Set, Union
|
| 27 |
+
from .env_vars import get_potentially_lib_path_containing_env_vars
|
| 28 |
+
|
| 29 |
+
CUDA_RUNTIME_LIB: str = "libcudart.so"
|
| 30 |
+
|
| 31 |
+
class CUDASetup:
|
| 32 |
+
_instance = None
|
| 33 |
+
|
| 34 |
+
def __init__(self):
|
| 35 |
+
raise RuntimeError("Call get_instance() instead")
|
| 36 |
+
|
| 37 |
+
def generate_instructions(self):
|
| 38 |
+
if self.cuda is None:
|
| 39 |
+
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.')
|
| 40 |
+
self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.')
|
| 41 |
+
self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:')
|
| 42 |
+
self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null')
|
| 43 |
+
self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a')
|
| 44 |
+
self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc')
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
if self.cudart_path is None:
|
| 48 |
+
self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.')
|
| 49 |
+
self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable')
|
| 50 |
+
self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null')
|
| 51 |
+
self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a')
|
| 52 |
+
self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc')
|
| 53 |
+
self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.')
|
| 54 |
+
self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh')
|
| 55 |
+
self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.')
|
| 56 |
+
self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local')
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
make_cmd = f'CUDA_VERSION={self.cuda_version_string}'
|
| 60 |
+
if len(self.cuda_version_string) < 3:
|
| 61 |
+
make_cmd += ' make cuda92'
|
| 62 |
+
elif self.cuda_version_string == '110':
|
| 63 |
+
make_cmd += ' make cuda110'
|
| 64 |
+
elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0:
|
| 65 |
+
make_cmd += ' make cuda11x'
|
| 66 |
+
elif self.cuda_version_string == '100':
|
| 67 |
+
self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.')
|
| 68 |
+
self.add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10.0 versions are uninstalled and removed from $LD_LIBRARY_PATH variables.')
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
has_cublaslt = is_cublasLt_compatible(self.cc)
|
| 73 |
+
if not has_cublaslt:
|
| 74 |
+
make_cmd += '_nomatmul'
|
| 75 |
+
|
| 76 |
+
self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:')
|
| 77 |
+
self.add_log_entry('git clone [email protected]:TimDettmers/bitsandbytes.git')
|
| 78 |
+
self.add_log_entry('cd bitsandbytes')
|
| 79 |
+
self.add_log_entry(make_cmd)
|
| 80 |
+
self.add_log_entry('python setup.py install')
|
| 81 |
+
|
| 82 |
+
def initialize(self):
|
| 83 |
+
if not getattr(self, 'initialized', False):
|
| 84 |
+
self.has_printed = False
|
| 85 |
+
self.lib = None
|
| 86 |
+
self.initialized = False
|
| 87 |
+
|
| 88 |
+
def run_cuda_setup(self):
|
| 89 |
+
self.initialized = True
|
| 90 |
+
self.cuda_setup_log = []
|
| 91 |
+
|
| 92 |
+
binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup()
|
| 93 |
+
self.cudart_path = cudart_path
|
| 94 |
+
self.cuda = cuda
|
| 95 |
+
self.cc = cc
|
| 96 |
+
self.cuda_version_string = cuda_version_string
|
| 97 |
+
|
| 98 |
+
package_dir = Path(__file__).parent.parent
|
| 99 |
+
binary_path = package_dir / binary_name
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
if not binary_path.exists():
|
| 103 |
+
self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?")
|
| 104 |
+
legacy_binary_name = "libbitsandbytes_cpu.so"
|
| 105 |
+
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
|
| 106 |
+
binary_path = package_dir / legacy_binary_name
|
| 107 |
+
if not binary_path.exists() or torch.cuda.is_available():
|
| 108 |
+
self.add_log_entry('')
|
| 109 |
+
self.add_log_entry('='*48 + 'ERROR' + '='*37)
|
| 110 |
+
self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
|
| 111 |
+
self.add_log_entry('1. CUDA driver not installed')
|
| 112 |
+
self.add_log_entry('2. CUDA not installed')
|
| 113 |
+
self.add_log_entry('3. You have multiple conflicting CUDA libraries')
|
| 114 |
+
self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
|
| 115 |
+
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
|
| 116 |
+
self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.')
|
| 117 |
+
self.add_log_entry('='*80)
|
| 118 |
+
self.add_log_entry('')
|
| 119 |
+
self.generate_instructions()
|
| 120 |
+
self.print_log_stack()
|
| 121 |
+
raise Exception('CUDA SETUP: Setup Failed!')
|
| 122 |
+
self.lib = ct.cdll.LoadLibrary(str(binary_path))
|
| 123 |
+
else:
|
| 124 |
+
self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...")
|
| 125 |
+
self.lib = ct.cdll.LoadLibrary(str(binary_path))
|
| 126 |
+
except Exception as ex:
|
| 127 |
+
self.add_log_entry(str(ex))
|
| 128 |
+
self.print_log_stack()
|
| 129 |
+
|
| 130 |
+
def add_log_entry(self, msg, is_warning=False):
|
| 131 |
+
self.cuda_setup_log.append((msg, is_warning))
|
| 132 |
+
|
| 133 |
+
def print_log_stack(self):
|
| 134 |
+
for msg, is_warning in self.cuda_setup_log:
|
| 135 |
+
if is_warning:
|
| 136 |
+
warn(msg)
|
| 137 |
+
else:
|
| 138 |
+
print(msg)
|
| 139 |
+
|
| 140 |
+
@classmethod
|
| 141 |
+
def get_instance(cls):
|
| 142 |
+
if cls._instance is None:
|
| 143 |
+
cls._instance = cls.__new__(cls)
|
| 144 |
+
cls._instance.initialize()
|
| 145 |
+
return cls._instance
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def is_cublasLt_compatible(cc):
|
| 149 |
+
has_cublaslt = False
|
| 150 |
+
if cc is not None:
|
| 151 |
+
cc_major, cc_minor = cc.split('.')
|
| 152 |
+
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
|
| 153 |
+
CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
|
| 154 |
+
else:
|
| 155 |
+
has_cublaslt = True
|
| 156 |
+
return has_cublaslt
|
| 157 |
+
|
| 158 |
+
def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
|
| 159 |
+
return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]:
|
| 163 |
+
existent_directories: Set[Path] = set()
|
| 164 |
+
for path in candidate_paths:
|
| 165 |
+
try:
|
| 166 |
+
if path.exists():
|
| 167 |
+
existent_directories.add(path)
|
| 168 |
+
except OSError as exc:
|
| 169 |
+
if exc.errno != errno.ENAMETOOLONG:
|
| 170 |
+
raise exc
|
| 171 |
+
|
| 172 |
+
non_existent_directories: Set[Path] = candidate_paths - existent_directories
|
| 173 |
+
if non_existent_directories:
|
| 174 |
+
CUDASetup.get_instance().add_log_entry("WARNING: The following directories listed in your path were found to "
|
| 175 |
+
f"be non-existent: {non_existent_directories}", is_warning=True)
|
| 176 |
+
|
| 177 |
+
return existent_directories
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
|
| 181 |
+
return {
|
| 182 |
+
path / CUDA_RUNTIME_LIB
|
| 183 |
+
for path in candidate_paths
|
| 184 |
+
if (path / CUDA_RUNTIME_LIB).is_file()
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
|
| 189 |
+
"""
|
| 190 |
+
Searches a given environmental var for the CUDA runtime library,
|
| 191 |
+
i.e. `libcudart.so`.
|
| 192 |
+
"""
|
| 193 |
+
return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
|
| 197 |
+
return get_cuda_runtime_lib_paths(
|
| 198 |
+
resolve_paths_list(paths_list_candidate)
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
|
| 203 |
+
if len(results_paths) > 1:
|
| 204 |
+
warning_msg = (
|
| 205 |
+
f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
|
| 206 |
+
"We'll flip a coin and try one of these, in order to fail forward.\n"
|
| 207 |
+
"Either way, this might cause trouble in the future:\n"
|
| 208 |
+
"If you get `CUDA error: invalid device function` errors, the above "
|
| 209 |
+
"might be the cause and the solution is to make sure only one "
|
| 210 |
+
f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.")
|
| 211 |
+
CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
|
| 215 |
+
"""
|
| 216 |
+
Searches for a cuda installations, in the following order of priority:
|
| 217 |
+
1. active conda env
|
| 218 |
+
2. LD_LIBRARY_PATH
|
| 219 |
+
3. any other env vars, while ignoring those that
|
| 220 |
+
- are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`)
|
| 221 |
+
- don't contain the path separator `/`
|
| 222 |
+
|
| 223 |
+
If multiple libraries are found in part 3, we optimistically try one,
|
| 224 |
+
while giving a warning message.
|
| 225 |
+
"""
|
| 226 |
+
candidate_env_vars = get_potentially_lib_path_containing_env_vars()
|
| 227 |
+
|
| 228 |
+
if "CONDA_PREFIX" in candidate_env_vars:
|
| 229 |
+
conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib"
|
| 230 |
+
|
| 231 |
+
conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path))
|
| 232 |
+
warn_in_case_of_duplicates(conda_cuda_libs)
|
| 233 |
+
|
| 234 |
+
if conda_cuda_libs:
|
| 235 |
+
return next(iter(conda_cuda_libs))
|
| 236 |
+
|
| 237 |
+
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
|
| 238 |
+
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
|
| 239 |
+
|
| 240 |
+
if "LD_LIBRARY_PATH" in candidate_env_vars:
|
| 241 |
+
lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"])
|
| 242 |
+
|
| 243 |
+
if lib_ld_cuda_libs:
|
| 244 |
+
return next(iter(lib_ld_cuda_libs))
|
| 245 |
+
warn_in_case_of_duplicates(lib_ld_cuda_libs)
|
| 246 |
+
|
| 247 |
+
CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["LD_LIBRARY_PATH"]} did not contain '
|
| 248 |
+
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True)
|
| 249 |
+
|
| 250 |
+
remaining_candidate_env_vars = {
|
| 251 |
+
env_var: value for env_var, value in candidate_env_vars.items()
|
| 252 |
+
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
cuda_runtime_libs = set()
|
| 256 |
+
for env_var, value in remaining_candidate_env_vars.items():
|
| 257 |
+
cuda_runtime_libs.update(find_cuda_lib_in(value))
|
| 258 |
+
|
| 259 |
+
if len(cuda_runtime_libs) == 0:
|
| 260 |
+
CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...')
|
| 261 |
+
cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64'))
|
| 262 |
+
|
| 263 |
+
warn_in_case_of_duplicates(cuda_runtime_libs)
|
| 264 |
+
|
| 265 |
+
return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def check_cuda_result(cuda, result_val):
|
| 269 |
+
# 3. Check for CUDA errors
|
| 270 |
+
if result_val != 0:
|
| 271 |
+
error_str = ct.c_char_p()
|
| 272 |
+
cuda.cuGetErrorString(result_val, ct.byref(error_str))
|
| 273 |
+
if error_str.value is not None:
|
| 274 |
+
CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}")
|
| 275 |
+
else:
|
| 276 |
+
CUDASetup.get_instance().add_log_entry(f"Unknown CUDA exception! Please check your CUDA install. It might also be that your GPU is too old.")
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
|
| 280 |
+
def get_cuda_version(cuda, cudart_path):
|
| 281 |
+
if cuda is None: return None
|
| 282 |
+
|
| 283 |
+
try:
|
| 284 |
+
cudart = ct.CDLL(cudart_path)
|
| 285 |
+
except OSError:
|
| 286 |
+
CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!')
|
| 287 |
+
return None
|
| 288 |
+
|
| 289 |
+
version = ct.c_int()
|
| 290 |
+
try:
|
| 291 |
+
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version)))
|
| 292 |
+
except AttributeError as e:
|
| 293 |
+
CUDASetup.get_instance().add_log_entry(f'ERROR: {str(e)}')
|
| 294 |
+
CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: libcudart.so path is {cudart_path}')
|
| 295 |
+
CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: Is seems that your cuda installation is not in your path. See https://github.com/TimDettmers/bitsandbytes/issues/85 for more information.')
|
| 296 |
+
version = int(version.value)
|
| 297 |
+
major = version//1000
|
| 298 |
+
minor = (version-(major*1000))//10
|
| 299 |
+
|
| 300 |
+
if major < 11:
|
| 301 |
+
CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
|
| 302 |
+
|
| 303 |
+
return f'{major}{minor}'
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def get_cuda_lib_handle():
|
| 307 |
+
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
| 308 |
+
try:
|
| 309 |
+
cuda = ct.CDLL("libcuda.so")
|
| 310 |
+
except OSError:
|
| 311 |
+
CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
|
| 312 |
+
return None
|
| 313 |
+
check_cuda_result(cuda, cuda.cuInit(0))
|
| 314 |
+
|
| 315 |
+
return cuda
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def get_compute_capabilities(cuda):
|
| 319 |
+
"""
|
| 320 |
+
1. find libcuda.so library (GPU driver) (/usr/lib)
|
| 321 |
+
init_device -> init variables -> call function by reference
|
| 322 |
+
2. call extern C function to determine CC
|
| 323 |
+
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
| 324 |
+
3. Check for CUDA errors
|
| 325 |
+
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
|
| 326 |
+
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
| 327 |
+
"""
|
| 328 |
+
|
| 329 |
+
nGpus = ct.c_int()
|
| 330 |
+
cc_major = ct.c_int()
|
| 331 |
+
cc_minor = ct.c_int()
|
| 332 |
+
|
| 333 |
+
device = ct.c_int()
|
| 334 |
+
|
| 335 |
+
check_cuda_result(cuda, cuda.cuDeviceGetCount(ct.byref(nGpus)))
|
| 336 |
+
ccs = []
|
| 337 |
+
for i in range(nGpus.value):
|
| 338 |
+
check_cuda_result(cuda, cuda.cuDeviceGet(ct.byref(device), i))
|
| 339 |
+
ref_major = ct.byref(cc_major)
|
| 340 |
+
ref_minor = ct.byref(cc_minor)
|
| 341 |
+
# 2. call extern C function to determine CC
|
| 342 |
+
check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
|
| 343 |
+
ccs.append(f"{cc_major.value}.{cc_minor.value}")
|
| 344 |
+
|
| 345 |
+
return ccs
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
|
| 349 |
+
def get_compute_capability(cuda):
|
| 350 |
+
"""
|
| 351 |
+
Extracts the highest compute capbility from all available GPUs, as compute
|
| 352 |
+
capabilities are downwards compatible. If no GPUs are detected, it returns
|
| 353 |
+
None.
|
| 354 |
+
"""
|
| 355 |
+
if cuda is None: return None
|
| 356 |
+
|
| 357 |
+
# TODO: handle different compute capabilities; for now, take the max
|
| 358 |
+
ccs = get_compute_capabilities(cuda)
|
| 359 |
+
if ccs: return ccs[-1]
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def evaluate_cuda_setup():
|
| 363 |
+
if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0':
|
| 364 |
+
print('')
|
| 365 |
+
print('='*35 + 'BUG REPORT' + '='*35)
|
| 366 |
+
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
|
| 367 |
+
print('='*80)
|
| 368 |
+
if torch.cuda.is_available(): return 'libbitsandbytes_cuda116.dll', None, None, None, None
|
| 369 |
+
|
| 370 |
+
cuda_setup = CUDASetup.get_instance()
|
| 371 |
+
cudart_path = determine_cuda_runtime_lib_path()
|
| 372 |
+
cuda = get_cuda_lib_handle()
|
| 373 |
+
cc = get_compute_capability(cuda)
|
| 374 |
+
cuda_version_string = get_cuda_version(cuda, cudart_path)
|
| 375 |
+
|
| 376 |
+
failure = False
|
| 377 |
+
if cudart_path is None:
|
| 378 |
+
failure = True
|
| 379 |
+
cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True)
|
| 380 |
+
else:
|
| 381 |
+
cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart_path}")
|
| 382 |
+
|
| 383 |
+
if cc == '' or cc is None:
|
| 384 |
+
failure = True
|
| 385 |
+
cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True)
|
| 386 |
+
else:
|
| 387 |
+
cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
|
| 388 |
+
|
| 389 |
+
if cuda is None:
|
| 390 |
+
failure = True
|
| 391 |
+
else:
|
| 392 |
+
cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
|
| 393 |
+
|
| 394 |
+
# 7.5 is the minimum CC vor cublaslt
|
| 395 |
+
has_cublaslt = is_cublasLt_compatible(cc)
|
| 396 |
+
|
| 397 |
+
# TODO:
|
| 398 |
+
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
| 399 |
+
# (2) Multiple CUDA versions installed
|
| 400 |
+
|
| 401 |
+
# we use ls -l instead of nvcc to determine the cuda version
|
| 402 |
+
# since most installations will have the libcudart.so installed, but not the compiler
|
| 403 |
+
|
| 404 |
+
if failure:
|
| 405 |
+
binary_name = "libbitsandbytes_cpu.so"
|
| 406 |
+
elif has_cublaslt:
|
| 407 |
+
binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so"
|
| 408 |
+
else:
|
| 409 |
+
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
|
| 410 |
+
binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so"
|
| 411 |
+
|
| 412 |
+
return binary_name, cudart_path, cuda, cc, cuda_version_string
|