--- base_model: facebook/wav2vec2-xls-r-300m language: - uk license: "apache-2.0" tags: - automatic-speech-recognition datasets: - mozilla-foundation/common_voice_10_0 metrics: - wer model-index: - name: w2v-xls-r-uk results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_10_0 type: common_voice_10_0 config: uk split: test args: uk metrics: - name: WER type: wer value: 20.24 - name: CER type: cer value: 3.64 --- 🚨🚨🚨 **ATTENTION!** 🚨🚨🚨 **Use an updated model**: https://huggingface.co/Yehor/w2v-bert-uk-v2.1 --- ## Community - Discord: https://bit.ly/discord-uds - Speech Recognition: https://t.me/speech_recognition_uk - Speech Synthesis: https://t.me/speech_synthesis_uk See other Ukrainian models: https://github.com/egorsmkv/speech-recognition-uk ## Evaluation results Metrics (float16) using `evaluate` library with `batch_size=1`: - WER: 0.2024 metric, 20.24% - CER: 0.0364 metric, 3.64% - Accuracy on words: 79.76% - Accuracy on chars: 96.36% - Inference time: 63.4848 seconds - Audio duration: 16665.5212 seconds - RTF: 0.0038 ## Cite this work ``` @misc {smoliakov_2025, author = { {Smoliakov} }, title = { w2v-xls-r-uk (Revision 55b6dc0) }, year = 2025, url = { https://huggingface.co/Yehor/w2v-xls-r-uk }, doi = { 10.57967/hf/4556 }, publisher = { Hugging Face } } ```