Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- checkpoints/Qwen2.5-14B/babylm_hop_control_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors +3 -0
- checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f +3 -0
- checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors +3 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/added_tokens.json +24 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/config.json +29 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/tokenizer_config.json +207 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/trainer_state.json +3613 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/zero_to_fp32.py +604 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/4d870a72c656404ee7524163ba996bf55050fff252dfe639a90715a9e2c47dba.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/68127c9bc4fab170f7aaf63d5c7ac9e182afd10b74a1c6bb8025afefc11447cb.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7045cf78c68178b626546982d12b6e9c8e289f1bf1e65c42225ed13e07847180.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7250708a789da850ff40a4a5be335971dfa0d2bd7cba2e9905916dab06744d75.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7c8139ab9a4e680ff0e9741c678e26c43788abf0.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/83bba6e26639fb152bd0077977cf6ea8312b42a9.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/c2754167c1cbaf94b9af9c7eb646a2286a596f9ded5e2e3c4c5e6a4464352c9e.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/cbbb3133034e192527e5321b4c679154e4819ab8.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e015e2bc9a26b4e46d77913d8c667608ae7e48aa1eca04af5786c2408f4bc0fa.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e7efa1adc8257218813dcb494bb2a3d5775fa268735ab39e5b8119e233c21462.lock +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/adapter_config.json +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/7c8139ab9a4e680ff0e9741c678e26c43788abf0 +586 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/83bba6e26639fb152bd0077977cf6ea8312b42a9 +27 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/cbbb3133034e192527e5321b4c679154e4819ab8 +7 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/refs/main +1 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/config.json +27 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/generation_config.json +7 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors.index.json +586 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/added_tokens.json +24 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/config.json +29 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/generation_config.json +6 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/latest +1 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/merges.txt +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/model.safetensors.index.json +586 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/special_tokens_map.json +31 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/tokenizer_config.json +207 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/trainer_state.json +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/vocab.json +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/zero_to_fp32.py +604 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/added_tokens.json +24 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/config.json +29 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/generation_config.json +6 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/latest +1 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/merges.txt +0 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/model.safetensors.index.json +586 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/special_tokens_map.json +31 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/tokenizer_config.json +207 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/trainer_state.json +3613 -0
- checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/vocab.json +0 -0
.gitattributes
CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
36 |
checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-1934/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f filter=lfs diff=lfs merge=lfs -text
|
|
|
|
36 |
checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-1934/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f filter=lfs diff=lfs merge=lfs -text
|
39 |
+
checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f filter=lfs diff=lfs merge=lfs -text
|
checkpoints/Qwen2.5-14B/babylm_hop_control_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f
|
3 |
+
size 1698724408
|
checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f
|
3 |
+
size 1698724408
|
checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f
|
3 |
+
size 1698724408
|
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-14B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 13824,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 48,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 40,
|
17 |
+
"num_hidden_layers": 48,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.45.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,3613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.5167958656330749,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0010335917312661498,
|
13 |
+
"grad_norm": 0.0,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.6607,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0020671834625322996,
|
20 |
+
"grad_norm": 0.0,
|
21 |
+
"learning_rate": 0.0,
|
22 |
+
"loss": 1.6461,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0031007751937984496,
|
27 |
+
"grad_norm": 0.0,
|
28 |
+
"learning_rate": 0.0,
|
29 |
+
"loss": 1.6883,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.004134366925064599,
|
34 |
+
"grad_norm": 0.0,
|
35 |
+
"learning_rate": 0.0,
|
36 |
+
"loss": 1.6281,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00516795865633075,
|
41 |
+
"grad_norm": 0.0,
|
42 |
+
"learning_rate": 0.0,
|
43 |
+
"loss": 1.6642,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.006201550387596899,
|
48 |
+
"grad_norm": 0.0,
|
49 |
+
"learning_rate": 0.0,
|
50 |
+
"loss": 1.6784,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.007235142118863049,
|
55 |
+
"grad_norm": 0.0,
|
56 |
+
"learning_rate": 0.0,
|
57 |
+
"loss": 1.6831,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.008268733850129198,
|
62 |
+
"grad_norm": 0.0,
|
63 |
+
"learning_rate": 0.0,
|
64 |
+
"loss": 1.6472,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.009302325581395349,
|
69 |
+
"grad_norm": 0.0,
|
70 |
+
"learning_rate": 0.0,
|
71 |
+
"loss": 1.6772,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0103359173126615,
|
76 |
+
"grad_norm": 0.0,
|
77 |
+
"learning_rate": 0.0,
|
78 |
+
"loss": 1.6972,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.011369509043927648,
|
83 |
+
"grad_norm": 0.0,
|
84 |
+
"learning_rate": 0.0,
|
85 |
+
"loss": 1.6912,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.012403100775193798,
|
90 |
+
"grad_norm": 0.0,
|
91 |
+
"learning_rate": 0.0,
|
92 |
+
"loss": 1.667,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.013436692506459949,
|
97 |
+
"grad_norm": 0.0,
|
98 |
+
"learning_rate": 0.0,
|
99 |
+
"loss": 1.6719,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.014470284237726097,
|
104 |
+
"grad_norm": 0.0,
|
105 |
+
"learning_rate": 0.0,
|
106 |
+
"loss": 1.6269,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.015503875968992248,
|
111 |
+
"grad_norm": 0.0,
|
112 |
+
"learning_rate": 0.0,
|
113 |
+
"loss": 1.6598,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.016537467700258397,
|
118 |
+
"grad_norm": 0.0,
|
119 |
+
"learning_rate": 0.0,
|
120 |
+
"loss": 1.6819,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.01757105943152455,
|
125 |
+
"grad_norm": 2.897101640701294,
|
126 |
+
"learning_rate": 2.5773195876288662e-08,
|
127 |
+
"loss": 1.6717,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.018604651162790697,
|
132 |
+
"grad_norm": 3.3035874366760254,
|
133 |
+
"learning_rate": 5.1546391752577325e-08,
|
134 |
+
"loss": 1.7092,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.019638242894056846,
|
139 |
+
"grad_norm": 2.7663118839263916,
|
140 |
+
"learning_rate": 7.731958762886598e-08,
|
141 |
+
"loss": 1.6714,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.020671834625323,
|
146 |
+
"grad_norm": 2.696624279022217,
|
147 |
+
"learning_rate": 1.0309278350515465e-07,
|
148 |
+
"loss": 1.6648,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.021705426356589147,
|
153 |
+
"grad_norm": 2.572075366973877,
|
154 |
+
"learning_rate": 1.288659793814433e-07,
|
155 |
+
"loss": 1.649,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.022739018087855296,
|
160 |
+
"grad_norm": 3.8518550395965576,
|
161 |
+
"learning_rate": 1.5463917525773197e-07,
|
162 |
+
"loss": 1.6555,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.023772609819121448,
|
167 |
+
"grad_norm": 2.9744110107421875,
|
168 |
+
"learning_rate": 1.804123711340206e-07,
|
169 |
+
"loss": 1.6683,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.024806201550387597,
|
174 |
+
"grad_norm": 3.381155014038086,
|
175 |
+
"learning_rate": 2.061855670103093e-07,
|
176 |
+
"loss": 1.6864,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.025839793281653745,
|
181 |
+
"grad_norm": 3.5349085330963135,
|
182 |
+
"learning_rate": 2.3195876288659797e-07,
|
183 |
+
"loss": 1.6787,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.026873385012919897,
|
188 |
+
"grad_norm": 2.8829333782196045,
|
189 |
+
"learning_rate": 2.577319587628866e-07,
|
190 |
+
"loss": 1.6425,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.027906976744186046,
|
195 |
+
"grad_norm": 2.7831168174743652,
|
196 |
+
"learning_rate": 2.8350515463917527e-07,
|
197 |
+
"loss": 1.6556,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.028940568475452195,
|
202 |
+
"grad_norm": 3.226625919342041,
|
203 |
+
"learning_rate": 3.0927835051546394e-07,
|
204 |
+
"loss": 1.6755,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.029974160206718347,
|
209 |
+
"grad_norm": 2.7015786170959473,
|
210 |
+
"learning_rate": 3.350515463917526e-07,
|
211 |
+
"loss": 1.6677,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.031007751937984496,
|
216 |
+
"grad_norm": 2.572233200073242,
|
217 |
+
"learning_rate": 3.608247422680412e-07,
|
218 |
+
"loss": 1.6925,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03204134366925065,
|
223 |
+
"grad_norm": 2.339751958847046,
|
224 |
+
"learning_rate": 3.8659793814432993e-07,
|
225 |
+
"loss": 1.6202,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.03307493540051679,
|
230 |
+
"grad_norm": 2.538344621658325,
|
231 |
+
"learning_rate": 4.123711340206186e-07,
|
232 |
+
"loss": 1.634,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.034108527131782945,
|
237 |
+
"grad_norm": 1.9859461784362793,
|
238 |
+
"learning_rate": 4.381443298969072e-07,
|
239 |
+
"loss": 1.6472,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.0351421188630491,
|
244 |
+
"grad_norm": 2.0745434761047363,
|
245 |
+
"learning_rate": 4.6391752577319593e-07,
|
246 |
+
"loss": 1.662,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.03617571059431524,
|
251 |
+
"grad_norm": 1.5810471773147583,
|
252 |
+
"learning_rate": 4.896907216494846e-07,
|
253 |
+
"loss": 1.6466,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.037209302325581395,
|
258 |
+
"grad_norm": 1.4383913278579712,
|
259 |
+
"learning_rate": 5.154639175257732e-07,
|
260 |
+
"loss": 1.6553,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.03824289405684755,
|
265 |
+
"grad_norm": 2.5648560523986816,
|
266 |
+
"learning_rate": 5.412371134020619e-07,
|
267 |
+
"loss": 1.638,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.03927648578811369,
|
272 |
+
"grad_norm": 1.772307276725769,
|
273 |
+
"learning_rate": 5.670103092783505e-07,
|
274 |
+
"loss": 1.5873,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.040310077519379844,
|
279 |
+
"grad_norm": 1.5337371826171875,
|
280 |
+
"learning_rate": 5.927835051546392e-07,
|
281 |
+
"loss": 1.6429,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.041343669250646,
|
286 |
+
"grad_norm": 1.5859408378601074,
|
287 |
+
"learning_rate": 6.185567010309279e-07,
|
288 |
+
"loss": 1.6351,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.04237726098191214,
|
293 |
+
"grad_norm": 1.5069128274917603,
|
294 |
+
"learning_rate": 6.443298969072165e-07,
|
295 |
+
"loss": 1.6293,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.043410852713178294,
|
300 |
+
"grad_norm": 1.5274145603179932,
|
301 |
+
"learning_rate": 6.701030927835052e-07,
|
302 |
+
"loss": 1.6553,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.044444444444444446,
|
307 |
+
"grad_norm": 2.2933266162872314,
|
308 |
+
"learning_rate": 6.958762886597939e-07,
|
309 |
+
"loss": 1.5855,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.04547803617571059,
|
314 |
+
"grad_norm": 2.9122445583343506,
|
315 |
+
"learning_rate": 7.216494845360824e-07,
|
316 |
+
"loss": 1.6064,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.046511627906976744,
|
321 |
+
"grad_norm": 1.6369024515151978,
|
322 |
+
"learning_rate": 7.474226804123711e-07,
|
323 |
+
"loss": 1.5924,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.047545219638242896,
|
328 |
+
"grad_norm": 1.8904677629470825,
|
329 |
+
"learning_rate": 7.731958762886599e-07,
|
330 |
+
"loss": 1.5818,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.04857881136950904,
|
335 |
+
"grad_norm": 2.2924325466156006,
|
336 |
+
"learning_rate": 7.989690721649485e-07,
|
337 |
+
"loss": 1.5867,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.04961240310077519,
|
342 |
+
"grad_norm": 3.223383665084839,
|
343 |
+
"learning_rate": 8.247422680412372e-07,
|
344 |
+
"loss": 1.5756,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.050645994832041345,
|
349 |
+
"grad_norm": 1.4551427364349365,
|
350 |
+
"learning_rate": 8.505154639175259e-07,
|
351 |
+
"loss": 1.589,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.05167958656330749,
|
356 |
+
"grad_norm": 1.8233811855316162,
|
357 |
+
"learning_rate": 8.762886597938144e-07,
|
358 |
+
"loss": 1.5486,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.05167958656330749,
|
363 |
+
"eval_loss": 1.570243239402771,
|
364 |
+
"eval_runtime": 53.2671,
|
365 |
+
"eval_samples_per_second": 18.773,
|
366 |
+
"eval_steps_per_second": 0.601,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.05271317829457364,
|
371 |
+
"grad_norm": 2.7552506923675537,
|
372 |
+
"learning_rate": 9.020618556701031e-07,
|
373 |
+
"loss": 1.5484,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.053746770025839795,
|
378 |
+
"grad_norm": 1.6123155355453491,
|
379 |
+
"learning_rate": 9.278350515463919e-07,
|
380 |
+
"loss": 1.5412,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.05478036175710594,
|
385 |
+
"grad_norm": 1.4314796924591064,
|
386 |
+
"learning_rate": 9.536082474226805e-07,
|
387 |
+
"loss": 1.5393,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.05581395348837209,
|
392 |
+
"grad_norm": 1.6784818172454834,
|
393 |
+
"learning_rate": 9.793814432989692e-07,
|
394 |
+
"loss": 1.5458,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.056847545219638244,
|
399 |
+
"grad_norm": 1.7028733491897583,
|
400 |
+
"learning_rate": 1.005154639175258e-06,
|
401 |
+
"loss": 1.4995,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.05788113695090439,
|
406 |
+
"grad_norm": 1.6766446828842163,
|
407 |
+
"learning_rate": 1.0309278350515464e-06,
|
408 |
+
"loss": 1.505,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.05891472868217054,
|
413 |
+
"grad_norm": 1.7980971336364746,
|
414 |
+
"learning_rate": 1.0567010309278351e-06,
|
415 |
+
"loss": 1.4519,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.059948320413436694,
|
420 |
+
"grad_norm": 1.8206804990768433,
|
421 |
+
"learning_rate": 1.0824742268041239e-06,
|
422 |
+
"loss": 1.4577,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.06098191214470284,
|
427 |
+
"grad_norm": 1.6603621244430542,
|
428 |
+
"learning_rate": 1.1082474226804124e-06,
|
429 |
+
"loss": 1.4541,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.06201550387596899,
|
434 |
+
"grad_norm": 1.7833083868026733,
|
435 |
+
"learning_rate": 1.134020618556701e-06,
|
436 |
+
"loss": 1.4556,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.06304909560723514,
|
441 |
+
"grad_norm": 1.9101687669754028,
|
442 |
+
"learning_rate": 1.1597938144329898e-06,
|
443 |
+
"loss": 1.4173,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.0640826873385013,
|
448 |
+
"grad_norm": 1.8884676694869995,
|
449 |
+
"learning_rate": 1.1855670103092783e-06,
|
450 |
+
"loss": 1.4172,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.06511627906976744,
|
455 |
+
"grad_norm": 1.963536262512207,
|
456 |
+
"learning_rate": 1.211340206185567e-06,
|
457 |
+
"loss": 1.4207,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.06614987080103359,
|
462 |
+
"grad_norm": 2.2165422439575195,
|
463 |
+
"learning_rate": 1.2371134020618557e-06,
|
464 |
+
"loss": 1.4136,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.06718346253229975,
|
469 |
+
"grad_norm": 1.333492398262024,
|
470 |
+
"learning_rate": 1.2628865979381445e-06,
|
471 |
+
"loss": 1.4001,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.06821705426356589,
|
476 |
+
"grad_norm": 1.4832924604415894,
|
477 |
+
"learning_rate": 1.288659793814433e-06,
|
478 |
+
"loss": 1.3924,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.06925064599483204,
|
483 |
+
"grad_norm": 1.7485769987106323,
|
484 |
+
"learning_rate": 1.314432989690722e-06,
|
485 |
+
"loss": 1.3667,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.0702842377260982,
|
490 |
+
"grad_norm": 1.5255411863327026,
|
491 |
+
"learning_rate": 1.3402061855670104e-06,
|
492 |
+
"loss": 1.3803,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.07131782945736434,
|
497 |
+
"grad_norm": 1.6617186069488525,
|
498 |
+
"learning_rate": 1.365979381443299e-06,
|
499 |
+
"loss": 1.3814,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.07235142118863049,
|
504 |
+
"grad_norm": 1.7209995985031128,
|
505 |
+
"learning_rate": 1.3917525773195878e-06,
|
506 |
+
"loss": 1.4081,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.07338501291989664,
|
511 |
+
"grad_norm": 1.6906920671463013,
|
512 |
+
"learning_rate": 1.4175257731958764e-06,
|
513 |
+
"loss": 1.3755,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.07441860465116279,
|
518 |
+
"grad_norm": 1.5806481838226318,
|
519 |
+
"learning_rate": 1.4432989690721649e-06,
|
520 |
+
"loss": 1.3394,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.07545219638242893,
|
525 |
+
"grad_norm": 1.6998566389083862,
|
526 |
+
"learning_rate": 1.4690721649484538e-06,
|
527 |
+
"loss": 1.3773,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.0764857881136951,
|
532 |
+
"grad_norm": 1.4243597984313965,
|
533 |
+
"learning_rate": 1.4948453608247423e-06,
|
534 |
+
"loss": 1.3232,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.07751937984496124,
|
539 |
+
"grad_norm": 1.4643871784210205,
|
540 |
+
"learning_rate": 1.520618556701031e-06,
|
541 |
+
"loss": 1.312,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.07855297157622738,
|
546 |
+
"grad_norm": 1.566022515296936,
|
547 |
+
"learning_rate": 1.5463917525773197e-06,
|
548 |
+
"loss": 1.3744,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.07958656330749354,
|
553 |
+
"grad_norm": 1.6502660512924194,
|
554 |
+
"learning_rate": 1.5721649484536082e-06,
|
555 |
+
"loss": 1.2804,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.08062015503875969,
|
560 |
+
"grad_norm": 1.4917631149291992,
|
561 |
+
"learning_rate": 1.597938144329897e-06,
|
562 |
+
"loss": 1.3368,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.08165374677002583,
|
567 |
+
"grad_norm": 1.1608281135559082,
|
568 |
+
"learning_rate": 1.6237113402061857e-06,
|
569 |
+
"loss": 1.3036,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.082687338501292,
|
574 |
+
"grad_norm": 1.4414565563201904,
|
575 |
+
"learning_rate": 1.6494845360824744e-06,
|
576 |
+
"loss": 1.3084,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.08372093023255814,
|
581 |
+
"grad_norm": 1.8089519739151,
|
582 |
+
"learning_rate": 1.675257731958763e-06,
|
583 |
+
"loss": 1.3362,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.08475452196382428,
|
588 |
+
"grad_norm": 1.835245966911316,
|
589 |
+
"learning_rate": 1.7010309278350518e-06,
|
590 |
+
"loss": 1.2728,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.08578811369509044,
|
595 |
+
"grad_norm": 1.3364133834838867,
|
596 |
+
"learning_rate": 1.7268041237113403e-06,
|
597 |
+
"loss": 1.2804,
|
598 |
+
"step": 83
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.08682170542635659,
|
602 |
+
"grad_norm": 1.287848711013794,
|
603 |
+
"learning_rate": 1.7525773195876288e-06,
|
604 |
+
"loss": 1.3104,
|
605 |
+
"step": 84
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.08785529715762273,
|
609 |
+
"grad_norm": 1.3792903423309326,
|
610 |
+
"learning_rate": 1.7783505154639178e-06,
|
611 |
+
"loss": 1.2808,
|
612 |
+
"step": 85
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.08888888888888889,
|
616 |
+
"grad_norm": 1.4002866744995117,
|
617 |
+
"learning_rate": 1.8041237113402063e-06,
|
618 |
+
"loss": 1.2652,
|
619 |
+
"step": 86
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.08992248062015504,
|
623 |
+
"grad_norm": 1.423072099685669,
|
624 |
+
"learning_rate": 1.8298969072164948e-06,
|
625 |
+
"loss": 1.3136,
|
626 |
+
"step": 87
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.09095607235142118,
|
630 |
+
"grad_norm": 1.472794771194458,
|
631 |
+
"learning_rate": 1.8556701030927837e-06,
|
632 |
+
"loss": 1.3067,
|
633 |
+
"step": 88
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.09198966408268734,
|
637 |
+
"grad_norm": 1.3818236589431763,
|
638 |
+
"learning_rate": 1.8814432989690722e-06,
|
639 |
+
"loss": 1.2773,
|
640 |
+
"step": 89
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.09302325581395349,
|
644 |
+
"grad_norm": 1.799110770225525,
|
645 |
+
"learning_rate": 1.907216494845361e-06,
|
646 |
+
"loss": 1.2654,
|
647 |
+
"step": 90
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.09405684754521963,
|
651 |
+
"grad_norm": 1.6194965839385986,
|
652 |
+
"learning_rate": 1.9329896907216497e-06,
|
653 |
+
"loss": 1.2556,
|
654 |
+
"step": 91
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.09509043927648579,
|
658 |
+
"grad_norm": 1.6596431732177734,
|
659 |
+
"learning_rate": 1.9587628865979384e-06,
|
660 |
+
"loss": 1.2817,
|
661 |
+
"step": 92
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.09612403100775194,
|
665 |
+
"grad_norm": 1.6827796697616577,
|
666 |
+
"learning_rate": 1.9845360824742267e-06,
|
667 |
+
"loss": 1.2633,
|
668 |
+
"step": 93
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.09715762273901808,
|
672 |
+
"grad_norm": 1.3558834791183472,
|
673 |
+
"learning_rate": 2.010309278350516e-06,
|
674 |
+
"loss": 1.3066,
|
675 |
+
"step": 94
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.09819121447028424,
|
679 |
+
"grad_norm": 1.5518406629562378,
|
680 |
+
"learning_rate": 2.036082474226804e-06,
|
681 |
+
"loss": 1.2849,
|
682 |
+
"step": 95
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.09922480620155039,
|
686 |
+
"grad_norm": 1.3061556816101074,
|
687 |
+
"learning_rate": 2.061855670103093e-06,
|
688 |
+
"loss": 1.2521,
|
689 |
+
"step": 96
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.10025839793281653,
|
693 |
+
"grad_norm": 1.401341438293457,
|
694 |
+
"learning_rate": 2.0876288659793816e-06,
|
695 |
+
"loss": 1.2901,
|
696 |
+
"step": 97
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.10129198966408269,
|
700 |
+
"grad_norm": 1.5926023721694946,
|
701 |
+
"learning_rate": 2.1134020618556703e-06,
|
702 |
+
"loss": 1.2446,
|
703 |
+
"step": 98
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.10232558139534884,
|
707 |
+
"grad_norm": 1.6969091892242432,
|
708 |
+
"learning_rate": 2.139175257731959e-06,
|
709 |
+
"loss": 1.2243,
|
710 |
+
"step": 99
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.10335917312661498,
|
714 |
+
"grad_norm": 1.4960438013076782,
|
715 |
+
"learning_rate": 2.1649484536082477e-06,
|
716 |
+
"loss": 1.2166,
|
717 |
+
"step": 100
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.10335917312661498,
|
721 |
+
"eval_loss": 1.3024815320968628,
|
722 |
+
"eval_runtime": 52.9952,
|
723 |
+
"eval_samples_per_second": 18.87,
|
724 |
+
"eval_steps_per_second": 0.604,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.10439276485788114,
|
729 |
+
"grad_norm": 1.7148933410644531,
|
730 |
+
"learning_rate": 2.1907216494845364e-06,
|
731 |
+
"loss": 1.2683,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.10542635658914729,
|
736 |
+
"grad_norm": 1.396099328994751,
|
737 |
+
"learning_rate": 2.2164948453608247e-06,
|
738 |
+
"loss": 1.1986,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.10645994832041343,
|
743 |
+
"grad_norm": 1.407954216003418,
|
744 |
+
"learning_rate": 2.242268041237114e-06,
|
745 |
+
"loss": 1.2169,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.10749354005167959,
|
750 |
+
"grad_norm": 1.4110890626907349,
|
751 |
+
"learning_rate": 2.268041237113402e-06,
|
752 |
+
"loss": 1.222,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.10852713178294573,
|
757 |
+
"grad_norm": 1.755106806755066,
|
758 |
+
"learning_rate": 2.293814432989691e-06,
|
759 |
+
"loss": 1.2718,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.10956072351421188,
|
764 |
+
"grad_norm": 1.5914361476898193,
|
765 |
+
"learning_rate": 2.3195876288659796e-06,
|
766 |
+
"loss": 1.2251,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.11059431524547804,
|
771 |
+
"grad_norm": 1.3746757507324219,
|
772 |
+
"learning_rate": 2.3453608247422683e-06,
|
773 |
+
"loss": 1.2494,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.11162790697674418,
|
778 |
+
"grad_norm": 1.1640757322311401,
|
779 |
+
"learning_rate": 2.3711340206185566e-06,
|
780 |
+
"loss": 1.222,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.11266149870801033,
|
785 |
+
"grad_norm": 1.5546257495880127,
|
786 |
+
"learning_rate": 2.3969072164948458e-06,
|
787 |
+
"loss": 1.2793,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.11369509043927649,
|
792 |
+
"grad_norm": 1.4767199754714966,
|
793 |
+
"learning_rate": 2.422680412371134e-06,
|
794 |
+
"loss": 1.1982,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.11472868217054263,
|
799 |
+
"grad_norm": 1.5099663734436035,
|
800 |
+
"learning_rate": 2.4484536082474228e-06,
|
801 |
+
"loss": 1.1992,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.11576227390180878,
|
806 |
+
"grad_norm": 1.418818473815918,
|
807 |
+
"learning_rate": 2.4742268041237115e-06,
|
808 |
+
"loss": 1.2055,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.11679586563307494,
|
813 |
+
"grad_norm": 1.59600830078125,
|
814 |
+
"learning_rate": 2.5e-06,
|
815 |
+
"loss": 1.2178,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.11782945736434108,
|
820 |
+
"grad_norm": 1.8103954792022705,
|
821 |
+
"learning_rate": 2.525773195876289e-06,
|
822 |
+
"loss": 1.2114,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.11886304909560723,
|
827 |
+
"grad_norm": 1.437061071395874,
|
828 |
+
"learning_rate": 2.5515463917525772e-06,
|
829 |
+
"loss": 1.2342,
|
830 |
+
"step": 115
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.11989664082687339,
|
834 |
+
"grad_norm": 1.6615889072418213,
|
835 |
+
"learning_rate": 2.577319587628866e-06,
|
836 |
+
"loss": 1.1291,
|
837 |
+
"step": 116
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.12093023255813953,
|
841 |
+
"grad_norm": 1.2814154624938965,
|
842 |
+
"learning_rate": 2.603092783505155e-06,
|
843 |
+
"loss": 1.1814,
|
844 |
+
"step": 117
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.12196382428940568,
|
848 |
+
"grad_norm": 1.5893689393997192,
|
849 |
+
"learning_rate": 2.628865979381444e-06,
|
850 |
+
"loss": 1.1617,
|
851 |
+
"step": 118
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.12299741602067184,
|
855 |
+
"grad_norm": 1.7495357990264893,
|
856 |
+
"learning_rate": 2.654639175257732e-06,
|
857 |
+
"loss": 1.1541,
|
858 |
+
"step": 119
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.12403100775193798,
|
862 |
+
"grad_norm": 1.8175143003463745,
|
863 |
+
"learning_rate": 2.680412371134021e-06,
|
864 |
+
"loss": 1.224,
|
865 |
+
"step": 120
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.12506459948320414,
|
869 |
+
"grad_norm": 1.4747029542922974,
|
870 |
+
"learning_rate": 2.7061855670103095e-06,
|
871 |
+
"loss": 1.2225,
|
872 |
+
"step": 121
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.12609819121447027,
|
876 |
+
"grad_norm": 1.5060474872589111,
|
877 |
+
"learning_rate": 2.731958762886598e-06,
|
878 |
+
"loss": 1.171,
|
879 |
+
"step": 122
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.12713178294573643,
|
883 |
+
"grad_norm": 1.3734132051467896,
|
884 |
+
"learning_rate": 2.757731958762887e-06,
|
885 |
+
"loss": 1.1808,
|
886 |
+
"step": 123
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.1281653746770026,
|
890 |
+
"grad_norm": 1.4248719215393066,
|
891 |
+
"learning_rate": 2.7835051546391757e-06,
|
892 |
+
"loss": 1.1876,
|
893 |
+
"step": 124
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.12919896640826872,
|
897 |
+
"grad_norm": 1.8982905149459839,
|
898 |
+
"learning_rate": 2.809278350515464e-06,
|
899 |
+
"loss": 1.1586,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.13023255813953488,
|
904 |
+
"grad_norm": 1.4861031770706177,
|
905 |
+
"learning_rate": 2.8350515463917527e-06,
|
906 |
+
"loss": 1.1824,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.13126614987080104,
|
911 |
+
"grad_norm": 1.9570235013961792,
|
912 |
+
"learning_rate": 2.8608247422680414e-06,
|
913 |
+
"loss": 1.1745,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.13229974160206717,
|
918 |
+
"grad_norm": 1.6210845708847046,
|
919 |
+
"learning_rate": 2.8865979381443297e-06,
|
920 |
+
"loss": 1.1904,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.13333333333333333,
|
925 |
+
"grad_norm": 1.4611804485321045,
|
926 |
+
"learning_rate": 2.912371134020619e-06,
|
927 |
+
"loss": 1.204,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.1343669250645995,
|
932 |
+
"grad_norm": 1.3150776624679565,
|
933 |
+
"learning_rate": 2.9381443298969076e-06,
|
934 |
+
"loss": 1.2002,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.13540051679586562,
|
939 |
+
"grad_norm": 1.3323931694030762,
|
940 |
+
"learning_rate": 2.9639175257731963e-06,
|
941 |
+
"loss": 1.1806,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.13643410852713178,
|
946 |
+
"grad_norm": 1.5320898294448853,
|
947 |
+
"learning_rate": 2.9896907216494846e-06,
|
948 |
+
"loss": 1.1181,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.13746770025839794,
|
953 |
+
"grad_norm": 1.431869626045227,
|
954 |
+
"learning_rate": 3.0154639175257733e-06,
|
955 |
+
"loss": 1.1735,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.13850129198966407,
|
960 |
+
"grad_norm": 1.5655189752578735,
|
961 |
+
"learning_rate": 3.041237113402062e-06,
|
962 |
+
"loss": 1.1151,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.13953488372093023,
|
967 |
+
"grad_norm": 1.8801727294921875,
|
968 |
+
"learning_rate": 3.067010309278351e-06,
|
969 |
+
"loss": 1.2014,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.1405684754521964,
|
974 |
+
"grad_norm": 1.401580572128296,
|
975 |
+
"learning_rate": 3.0927835051546395e-06,
|
976 |
+
"loss": 1.1697,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.14160206718346252,
|
981 |
+
"grad_norm": 1.3812285661697388,
|
982 |
+
"learning_rate": 3.118556701030928e-06,
|
983 |
+
"loss": 1.1642,
|
984 |
+
"step": 137
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.14263565891472868,
|
988 |
+
"grad_norm": 1.432713270187378,
|
989 |
+
"learning_rate": 3.1443298969072165e-06,
|
990 |
+
"loss": 1.1816,
|
991 |
+
"step": 138
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.14366925064599484,
|
995 |
+
"grad_norm": 1.2863351106643677,
|
996 |
+
"learning_rate": 3.170103092783505e-06,
|
997 |
+
"loss": 1.1337,
|
998 |
+
"step": 139
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.14470284237726097,
|
1002 |
+
"grad_norm": 1.4150452613830566,
|
1003 |
+
"learning_rate": 3.195876288659794e-06,
|
1004 |
+
"loss": 1.1339,
|
1005 |
+
"step": 140
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.14573643410852713,
|
1009 |
+
"grad_norm": 1.4986978769302368,
|
1010 |
+
"learning_rate": 3.221649484536083e-06,
|
1011 |
+
"loss": 1.1486,
|
1012 |
+
"step": 141
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.1467700258397933,
|
1016 |
+
"grad_norm": 1.4928971529006958,
|
1017 |
+
"learning_rate": 3.2474226804123714e-06,
|
1018 |
+
"loss": 1.1505,
|
1019 |
+
"step": 142
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.14780361757105942,
|
1023 |
+
"grad_norm": 1.3250510692596436,
|
1024 |
+
"learning_rate": 3.27319587628866e-06,
|
1025 |
+
"loss": 1.1501,
|
1026 |
+
"step": 143
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.14883720930232558,
|
1030 |
+
"grad_norm": 1.3843717575073242,
|
1031 |
+
"learning_rate": 3.298969072164949e-06,
|
1032 |
+
"loss": 1.1425,
|
1033 |
+
"step": 144
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.14987080103359174,
|
1037 |
+
"grad_norm": 1.45151948928833,
|
1038 |
+
"learning_rate": 3.324742268041237e-06,
|
1039 |
+
"loss": 1.1412,
|
1040 |
+
"step": 145
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.15090439276485787,
|
1044 |
+
"grad_norm": 1.7031517028808594,
|
1045 |
+
"learning_rate": 3.350515463917526e-06,
|
1046 |
+
"loss": 1.1214,
|
1047 |
+
"step": 146
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.15193798449612403,
|
1051 |
+
"grad_norm": 1.735508918762207,
|
1052 |
+
"learning_rate": 3.376288659793815e-06,
|
1053 |
+
"loss": 1.1426,
|
1054 |
+
"step": 147
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.1529715762273902,
|
1058 |
+
"grad_norm": 1.4877556562423706,
|
1059 |
+
"learning_rate": 3.4020618556701037e-06,
|
1060 |
+
"loss": 1.1403,
|
1061 |
+
"step": 148
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.15400516795865632,
|
1065 |
+
"grad_norm": 1.4761852025985718,
|
1066 |
+
"learning_rate": 3.427835051546392e-06,
|
1067 |
+
"loss": 1.1189,
|
1068 |
+
"step": 149
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.15503875968992248,
|
1072 |
+
"grad_norm": 1.918549656867981,
|
1073 |
+
"learning_rate": 3.4536082474226807e-06,
|
1074 |
+
"loss": 1.177,
|
1075 |
+
"step": 150
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.15503875968992248,
|
1079 |
+
"eval_loss": 1.2169522047042847,
|
1080 |
+
"eval_runtime": 52.6165,
|
1081 |
+
"eval_samples_per_second": 19.005,
|
1082 |
+
"eval_steps_per_second": 0.608,
|
1083 |
+
"step": 150
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.15607235142118864,
|
1087 |
+
"grad_norm": 1.6830838918685913,
|
1088 |
+
"learning_rate": 3.4793814432989694e-06,
|
1089 |
+
"loss": 1.1684,
|
1090 |
+
"step": 151
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.15710594315245477,
|
1094 |
+
"grad_norm": 1.520039677619934,
|
1095 |
+
"learning_rate": 3.5051546391752577e-06,
|
1096 |
+
"loss": 1.1557,
|
1097 |
+
"step": 152
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.15813953488372093,
|
1101 |
+
"grad_norm": 1.2740050554275513,
|
1102 |
+
"learning_rate": 3.530927835051547e-06,
|
1103 |
+
"loss": 1.1757,
|
1104 |
+
"step": 153
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.1591731266149871,
|
1108 |
+
"grad_norm": 1.6267930269241333,
|
1109 |
+
"learning_rate": 3.5567010309278356e-06,
|
1110 |
+
"loss": 1.1605,
|
1111 |
+
"step": 154
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.16020671834625322,
|
1115 |
+
"grad_norm": 1.392866611480713,
|
1116 |
+
"learning_rate": 3.582474226804124e-06,
|
1117 |
+
"loss": 1.1445,
|
1118 |
+
"step": 155
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.16124031007751938,
|
1122 |
+
"grad_norm": 1.5399266481399536,
|
1123 |
+
"learning_rate": 3.6082474226804126e-06,
|
1124 |
+
"loss": 1.1668,
|
1125 |
+
"step": 156
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.16227390180878554,
|
1129 |
+
"grad_norm": 1.5233243703842163,
|
1130 |
+
"learning_rate": 3.6340206185567013e-06,
|
1131 |
+
"loss": 1.1807,
|
1132 |
+
"step": 157
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.16330749354005167,
|
1136 |
+
"grad_norm": 1.4621553421020508,
|
1137 |
+
"learning_rate": 3.6597938144329896e-06,
|
1138 |
+
"loss": 1.1701,
|
1139 |
+
"step": 158
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.16434108527131783,
|
1143 |
+
"grad_norm": 1.4321812391281128,
|
1144 |
+
"learning_rate": 3.6855670103092787e-06,
|
1145 |
+
"loss": 1.1656,
|
1146 |
+
"step": 159
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.165374677002584,
|
1150 |
+
"grad_norm": 1.6212997436523438,
|
1151 |
+
"learning_rate": 3.7113402061855674e-06,
|
1152 |
+
"loss": 1.1508,
|
1153 |
+
"step": 160
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.16640826873385012,
|
1157 |
+
"grad_norm": 1.622518539428711,
|
1158 |
+
"learning_rate": 3.737113402061856e-06,
|
1159 |
+
"loss": 1.0932,
|
1160 |
+
"step": 161
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.16744186046511628,
|
1164 |
+
"grad_norm": 1.5313091278076172,
|
1165 |
+
"learning_rate": 3.7628865979381445e-06,
|
1166 |
+
"loss": 1.129,
|
1167 |
+
"step": 162
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.16847545219638244,
|
1171 |
+
"grad_norm": 1.4660190343856812,
|
1172 |
+
"learning_rate": 3.788659793814433e-06,
|
1173 |
+
"loss": 1.1718,
|
1174 |
+
"step": 163
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.16950904392764857,
|
1178 |
+
"grad_norm": 1.6606028079986572,
|
1179 |
+
"learning_rate": 3.814432989690722e-06,
|
1180 |
+
"loss": 1.141,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.17054263565891473,
|
1185 |
+
"grad_norm": 1.7094327211380005,
|
1186 |
+
"learning_rate": 3.840206185567011e-06,
|
1187 |
+
"loss": 1.0917,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.17157622739018089,
|
1192 |
+
"grad_norm": 1.4654054641723633,
|
1193 |
+
"learning_rate": 3.865979381443299e-06,
|
1194 |
+
"loss": 1.1037,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.17260981912144702,
|
1199 |
+
"grad_norm": 1.3869339227676392,
|
1200 |
+
"learning_rate": 3.891752577319588e-06,
|
1201 |
+
"loss": 1.1842,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.17364341085271318,
|
1206 |
+
"grad_norm": 1.8342238664627075,
|
1207 |
+
"learning_rate": 3.917525773195877e-06,
|
1208 |
+
"loss": 1.1069,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.17467700258397933,
|
1213 |
+
"grad_norm": 2.0523226261138916,
|
1214 |
+
"learning_rate": 3.9432989690721655e-06,
|
1215 |
+
"loss": 1.1172,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.17571059431524547,
|
1220 |
+
"grad_norm": 1.6128238439559937,
|
1221 |
+
"learning_rate": 3.969072164948453e-06,
|
1222 |
+
"loss": 1.0522,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.17674418604651163,
|
1227 |
+
"grad_norm": 1.5203567743301392,
|
1228 |
+
"learning_rate": 3.994845360824743e-06,
|
1229 |
+
"loss": 1.1296,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.17777777777777778,
|
1234 |
+
"grad_norm": 1.6611700057983398,
|
1235 |
+
"learning_rate": 4.020618556701032e-06,
|
1236 |
+
"loss": 1.1274,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.17881136950904392,
|
1241 |
+
"grad_norm": 1.6911481618881226,
|
1242 |
+
"learning_rate": 4.04639175257732e-06,
|
1243 |
+
"loss": 1.0755,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.17984496124031008,
|
1248 |
+
"grad_norm": 1.5666862726211548,
|
1249 |
+
"learning_rate": 4.072164948453608e-06,
|
1250 |
+
"loss": 1.1181,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.18087855297157623,
|
1255 |
+
"grad_norm": 1.5833418369293213,
|
1256 |
+
"learning_rate": 4.097938144329897e-06,
|
1257 |
+
"loss": 1.0879,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.18191214470284237,
|
1262 |
+
"grad_norm": 1.508384346961975,
|
1263 |
+
"learning_rate": 4.123711340206186e-06,
|
1264 |
+
"loss": 1.0751,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.18294573643410852,
|
1269 |
+
"grad_norm": 1.361509919166565,
|
1270 |
+
"learning_rate": 4.149484536082475e-06,
|
1271 |
+
"loss": 1.101,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.18397932816537468,
|
1276 |
+
"grad_norm": 1.4818835258483887,
|
1277 |
+
"learning_rate": 4.175257731958763e-06,
|
1278 |
+
"loss": 1.1135,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.18501291989664082,
|
1283 |
+
"grad_norm": 1.272712230682373,
|
1284 |
+
"learning_rate": 4.201030927835052e-06,
|
1285 |
+
"loss": 1.0984,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.18604651162790697,
|
1290 |
+
"grad_norm": 1.3766447305679321,
|
1291 |
+
"learning_rate": 4.2268041237113405e-06,
|
1292 |
+
"loss": 1.1007,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.18708010335917313,
|
1297 |
+
"grad_norm": 1.6823517084121704,
|
1298 |
+
"learning_rate": 4.252577319587629e-06,
|
1299 |
+
"loss": 1.1079,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.18811369509043926,
|
1304 |
+
"grad_norm": 1.7081917524337769,
|
1305 |
+
"learning_rate": 4.278350515463918e-06,
|
1306 |
+
"loss": 1.0972,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.18914728682170542,
|
1311 |
+
"grad_norm": 1.577996850013733,
|
1312 |
+
"learning_rate": 4.304123711340207e-06,
|
1313 |
+
"loss": 1.0842,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.19018087855297158,
|
1318 |
+
"grad_norm": 1.3267565965652466,
|
1319 |
+
"learning_rate": 4.329896907216495e-06,
|
1320 |
+
"loss": 1.1278,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.19121447028423771,
|
1325 |
+
"grad_norm": 1.3708866834640503,
|
1326 |
+
"learning_rate": 4.355670103092784e-06,
|
1327 |
+
"loss": 1.0795,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.19224806201550387,
|
1332 |
+
"grad_norm": 1.3076270818710327,
|
1333 |
+
"learning_rate": 4.381443298969073e-06,
|
1334 |
+
"loss": 1.1115,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.19328165374677003,
|
1339 |
+
"grad_norm": 1.4459667205810547,
|
1340 |
+
"learning_rate": 4.407216494845361e-06,
|
1341 |
+
"loss": 1.1004,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.19431524547803616,
|
1346 |
+
"grad_norm": 1.6593430042266846,
|
1347 |
+
"learning_rate": 4.4329896907216494e-06,
|
1348 |
+
"loss": 1.0942,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.19534883720930232,
|
1353 |
+
"grad_norm": 1.6031999588012695,
|
1354 |
+
"learning_rate": 4.458762886597939e-06,
|
1355 |
+
"loss": 1.0726,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.19638242894056848,
|
1360 |
+
"grad_norm": 1.75920569896698,
|
1361 |
+
"learning_rate": 4.484536082474228e-06,
|
1362 |
+
"loss": 1.0954,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.1974160206718346,
|
1367 |
+
"grad_norm": 1.6617308855056763,
|
1368 |
+
"learning_rate": 4.510309278350516e-06,
|
1369 |
+
"loss": 1.1088,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.19844961240310077,
|
1374 |
+
"grad_norm": 1.6344022750854492,
|
1375 |
+
"learning_rate": 4.536082474226804e-06,
|
1376 |
+
"loss": 1.102,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.19948320413436693,
|
1381 |
+
"grad_norm": 1.6076260805130005,
|
1382 |
+
"learning_rate": 4.561855670103093e-06,
|
1383 |
+
"loss": 1.1217,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.20051679586563306,
|
1388 |
+
"grad_norm": 1.5833053588867188,
|
1389 |
+
"learning_rate": 4.587628865979382e-06,
|
1390 |
+
"loss": 1.0837,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.20155038759689922,
|
1395 |
+
"grad_norm": 1.3770850896835327,
|
1396 |
+
"learning_rate": 4.6134020618556705e-06,
|
1397 |
+
"loss": 1.0462,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.20258397932816538,
|
1402 |
+
"grad_norm": 1.7390103340148926,
|
1403 |
+
"learning_rate": 4.639175257731959e-06,
|
1404 |
+
"loss": 1.0829,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 0.2036175710594315,
|
1409 |
+
"grad_norm": 1.3181084394454956,
|
1410 |
+
"learning_rate": 4.664948453608248e-06,
|
1411 |
+
"loss": 1.1128,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.20465116279069767,
|
1416 |
+
"grad_norm": 1.3936176300048828,
|
1417 |
+
"learning_rate": 4.690721649484537e-06,
|
1418 |
+
"loss": 1.1017,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.20568475452196383,
|
1423 |
+
"grad_norm": 1.4980775117874146,
|
1424 |
+
"learning_rate": 4.716494845360825e-06,
|
1425 |
+
"loss": 1.1231,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.20671834625322996,
|
1430 |
+
"grad_norm": 1.5333365201950073,
|
1431 |
+
"learning_rate": 4.742268041237113e-06,
|
1432 |
+
"loss": 1.0665,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.20671834625322996,
|
1437 |
+
"eval_loss": 1.1757628917694092,
|
1438 |
+
"eval_runtime": 52.2634,
|
1439 |
+
"eval_samples_per_second": 19.134,
|
1440 |
+
"eval_steps_per_second": 0.612,
|
1441 |
+
"step": 200
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 0.20775193798449612,
|
1445 |
+
"grad_norm": 1.483267903327942,
|
1446 |
+
"learning_rate": 4.768041237113403e-06,
|
1447 |
+
"loss": 1.0646,
|
1448 |
+
"step": 201
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.20878552971576228,
|
1452 |
+
"grad_norm": 1.396013617515564,
|
1453 |
+
"learning_rate": 4.7938144329896915e-06,
|
1454 |
+
"loss": 1.0782,
|
1455 |
+
"step": 202
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.2098191214470284,
|
1459 |
+
"grad_norm": 1.5999109745025635,
|
1460 |
+
"learning_rate": 4.81958762886598e-06,
|
1461 |
+
"loss": 1.0694,
|
1462 |
+
"step": 203
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"epoch": 0.21085271317829457,
|
1466 |
+
"grad_norm": 1.274971842765808,
|
1467 |
+
"learning_rate": 4.845360824742268e-06,
|
1468 |
+
"loss": 1.076,
|
1469 |
+
"step": 204
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 0.21188630490956073,
|
1473 |
+
"grad_norm": 1.6435425281524658,
|
1474 |
+
"learning_rate": 4.871134020618557e-06,
|
1475 |
+
"loss": 1.0432,
|
1476 |
+
"step": 205
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 0.21291989664082686,
|
1480 |
+
"grad_norm": 1.6180301904678345,
|
1481 |
+
"learning_rate": 4.8969072164948455e-06,
|
1482 |
+
"loss": 1.0912,
|
1483 |
+
"step": 206
|
1484 |
+
},
|
1485 |
+
{
|
1486 |
+
"epoch": 0.21395348837209302,
|
1487 |
+
"grad_norm": 1.2818275690078735,
|
1488 |
+
"learning_rate": 4.922680412371135e-06,
|
1489 |
+
"loss": 1.0355,
|
1490 |
+
"step": 207
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.21498708010335918,
|
1494 |
+
"grad_norm": 1.4507101774215698,
|
1495 |
+
"learning_rate": 4.948453608247423e-06,
|
1496 |
+
"loss": 1.0734,
|
1497 |
+
"step": 208
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.2160206718346253,
|
1501 |
+
"grad_norm": 1.4751473665237427,
|
1502 |
+
"learning_rate": 4.974226804123712e-06,
|
1503 |
+
"loss": 1.0045,
|
1504 |
+
"step": 209
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"epoch": 0.21705426356589147,
|
1508 |
+
"grad_norm": 1.3976224660873413,
|
1509 |
+
"learning_rate": 5e-06,
|
1510 |
+
"loss": 1.0913,
|
1511 |
+
"step": 210
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 0.21808785529715763,
|
1515 |
+
"grad_norm": 1.6017869710922241,
|
1516 |
+
"learning_rate": 4.9971264367816096e-06,
|
1517 |
+
"loss": 1.0493,
|
1518 |
+
"step": 211
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 0.21912144702842376,
|
1522 |
+
"grad_norm": 1.6266984939575195,
|
1523 |
+
"learning_rate": 4.994252873563219e-06,
|
1524 |
+
"loss": 1.0737,
|
1525 |
+
"step": 212
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 0.22015503875968992,
|
1529 |
+
"grad_norm": 1.6909797191619873,
|
1530 |
+
"learning_rate": 4.991379310344828e-06,
|
1531 |
+
"loss": 1.0571,
|
1532 |
+
"step": 213
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.22118863049095608,
|
1536 |
+
"grad_norm": 1.7753292322158813,
|
1537 |
+
"learning_rate": 4.988505747126437e-06,
|
1538 |
+
"loss": 1.0213,
|
1539 |
+
"step": 214
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.2222222222222222,
|
1543 |
+
"grad_norm": 1.4531023502349854,
|
1544 |
+
"learning_rate": 4.985632183908046e-06,
|
1545 |
+
"loss": 1.1229,
|
1546 |
+
"step": 215
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 0.22325581395348837,
|
1550 |
+
"grad_norm": 1.3566429615020752,
|
1551 |
+
"learning_rate": 4.982758620689655e-06,
|
1552 |
+
"loss": 1.0591,
|
1553 |
+
"step": 216
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 0.22428940568475453,
|
1557 |
+
"grad_norm": 1.3583022356033325,
|
1558 |
+
"learning_rate": 4.9798850574712644e-06,
|
1559 |
+
"loss": 1.0407,
|
1560 |
+
"step": 217
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 0.22532299741602066,
|
1564 |
+
"grad_norm": 1.7409709692001343,
|
1565 |
+
"learning_rate": 4.977011494252874e-06,
|
1566 |
+
"loss": 1.069,
|
1567 |
+
"step": 218
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 0.22635658914728682,
|
1571 |
+
"grad_norm": 1.4994089603424072,
|
1572 |
+
"learning_rate": 4.9741379310344836e-06,
|
1573 |
+
"loss": 1.1153,
|
1574 |
+
"step": 219
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.22739018087855298,
|
1578 |
+
"grad_norm": 1.6274763345718384,
|
1579 |
+
"learning_rate": 4.971264367816092e-06,
|
1580 |
+
"loss": 1.0447,
|
1581 |
+
"step": 220
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.2284237726098191,
|
1585 |
+
"grad_norm": 1.4050188064575195,
|
1586 |
+
"learning_rate": 4.968390804597701e-06,
|
1587 |
+
"loss": 1.0514,
|
1588 |
+
"step": 221
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"epoch": 0.22945736434108527,
|
1592 |
+
"grad_norm": 1.9114052057266235,
|
1593 |
+
"learning_rate": 4.965517241379311e-06,
|
1594 |
+
"loss": 1.0414,
|
1595 |
+
"step": 222
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"epoch": 0.23049095607235143,
|
1599 |
+
"grad_norm": 1.6414310932159424,
|
1600 |
+
"learning_rate": 4.96264367816092e-06,
|
1601 |
+
"loss": 1.1029,
|
1602 |
+
"step": 223
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.23152454780361756,
|
1606 |
+
"grad_norm": 1.844107985496521,
|
1607 |
+
"learning_rate": 4.959770114942529e-06,
|
1608 |
+
"loss": 1.0542,
|
1609 |
+
"step": 224
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 0.23255813953488372,
|
1613 |
+
"grad_norm": 1.539076566696167,
|
1614 |
+
"learning_rate": 4.9568965517241384e-06,
|
1615 |
+
"loss": 1.0478,
|
1616 |
+
"step": 225
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.23359173126614988,
|
1620 |
+
"grad_norm": 1.5214966535568237,
|
1621 |
+
"learning_rate": 4.9540229885057476e-06,
|
1622 |
+
"loss": 1.1052,
|
1623 |
+
"step": 226
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.234625322997416,
|
1627 |
+
"grad_norm": 1.9107270240783691,
|
1628 |
+
"learning_rate": 4.951149425287357e-06,
|
1629 |
+
"loss": 1.0664,
|
1630 |
+
"step": 227
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 0.23565891472868217,
|
1634 |
+
"grad_norm": 1.4986716508865356,
|
1635 |
+
"learning_rate": 4.948275862068966e-06,
|
1636 |
+
"loss": 1.0916,
|
1637 |
+
"step": 228
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 0.23669250645994833,
|
1641 |
+
"grad_norm": 1.4086743593215942,
|
1642 |
+
"learning_rate": 4.945402298850575e-06,
|
1643 |
+
"loss": 1.0774,
|
1644 |
+
"step": 229
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 0.23772609819121446,
|
1648 |
+
"grad_norm": 1.5430121421813965,
|
1649 |
+
"learning_rate": 4.942528735632184e-06,
|
1650 |
+
"loss": 1.0335,
|
1651 |
+
"step": 230
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 0.23875968992248062,
|
1655 |
+
"grad_norm": 1.9142231941223145,
|
1656 |
+
"learning_rate": 4.939655172413793e-06,
|
1657 |
+
"loss": 1.049,
|
1658 |
+
"step": 231
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.23979328165374678,
|
1662 |
+
"grad_norm": 1.5004005432128906,
|
1663 |
+
"learning_rate": 4.936781609195403e-06,
|
1664 |
+
"loss": 1.0741,
|
1665 |
+
"step": 232
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.2408268733850129,
|
1669 |
+
"grad_norm": 1.4257315397262573,
|
1670 |
+
"learning_rate": 4.933908045977012e-06,
|
1671 |
+
"loss": 0.9975,
|
1672 |
+
"step": 233
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 0.24186046511627907,
|
1676 |
+
"grad_norm": 1.5501189231872559,
|
1677 |
+
"learning_rate": 4.931034482758621e-06,
|
1678 |
+
"loss": 1.033,
|
1679 |
+
"step": 234
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 0.24289405684754523,
|
1683 |
+
"grad_norm": 1.5867544412612915,
|
1684 |
+
"learning_rate": 4.92816091954023e-06,
|
1685 |
+
"loss": 1.0641,
|
1686 |
+
"step": 235
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 0.24392764857881136,
|
1690 |
+
"grad_norm": 1.9389463663101196,
|
1691 |
+
"learning_rate": 4.92528735632184e-06,
|
1692 |
+
"loss": 0.9939,
|
1693 |
+
"step": 236
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"epoch": 0.24496124031007752,
|
1697 |
+
"grad_norm": 1.5214310884475708,
|
1698 |
+
"learning_rate": 4.922413793103449e-06,
|
1699 |
+
"loss": 1.0662,
|
1700 |
+
"step": 237
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.24599483204134368,
|
1704 |
+
"grad_norm": 1.4389026165008545,
|
1705 |
+
"learning_rate": 4.919540229885058e-06,
|
1706 |
+
"loss": 1.044,
|
1707 |
+
"step": 238
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.2470284237726098,
|
1711 |
+
"grad_norm": 1.362501621246338,
|
1712 |
+
"learning_rate": 4.9166666666666665e-06,
|
1713 |
+
"loss": 1.0372,
|
1714 |
+
"step": 239
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 0.24806201550387597,
|
1718 |
+
"grad_norm": 1.5556910037994385,
|
1719 |
+
"learning_rate": 4.9137931034482765e-06,
|
1720 |
+
"loss": 1.0786,
|
1721 |
+
"step": 240
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 0.24909560723514212,
|
1725 |
+
"grad_norm": 1.384539246559143,
|
1726 |
+
"learning_rate": 4.910919540229886e-06,
|
1727 |
+
"loss": 1.06,
|
1728 |
+
"step": 241
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 0.2501291989664083,
|
1732 |
+
"grad_norm": 1.4042245149612427,
|
1733 |
+
"learning_rate": 4.908045977011495e-06,
|
1734 |
+
"loss": 1.0838,
|
1735 |
+
"step": 242
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 0.25116279069767444,
|
1739 |
+
"grad_norm": 1.3736196756362915,
|
1740 |
+
"learning_rate": 4.905172413793104e-06,
|
1741 |
+
"loss": 1.066,
|
1742 |
+
"step": 243
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.25219638242894055,
|
1746 |
+
"grad_norm": 1.4238249063491821,
|
1747 |
+
"learning_rate": 4.902298850574713e-06,
|
1748 |
+
"loss": 1.045,
|
1749 |
+
"step": 244
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.2532299741602067,
|
1753 |
+
"grad_norm": 1.3547841310501099,
|
1754 |
+
"learning_rate": 4.899425287356322e-06,
|
1755 |
+
"loss": 1.0253,
|
1756 |
+
"step": 245
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 0.25426356589147286,
|
1760 |
+
"grad_norm": 1.4367036819458008,
|
1761 |
+
"learning_rate": 4.896551724137931e-06,
|
1762 |
+
"loss": 1.0363,
|
1763 |
+
"step": 246
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 0.255297157622739,
|
1767 |
+
"grad_norm": 1.4458998441696167,
|
1768 |
+
"learning_rate": 4.8936781609195405e-06,
|
1769 |
+
"loss": 1.0069,
|
1770 |
+
"step": 247
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 0.2563307493540052,
|
1774 |
+
"grad_norm": 1.5451279878616333,
|
1775 |
+
"learning_rate": 4.89080459770115e-06,
|
1776 |
+
"loss": 1.0119,
|
1777 |
+
"step": 248
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 0.25736434108527134,
|
1781 |
+
"grad_norm": 1.3011225461959839,
|
1782 |
+
"learning_rate": 4.887931034482759e-06,
|
1783 |
+
"loss": 1.064,
|
1784 |
+
"step": 249
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.25839793281653745,
|
1788 |
+
"grad_norm": 1.2902860641479492,
|
1789 |
+
"learning_rate": 4.885057471264369e-06,
|
1790 |
+
"loss": 1.0082,
|
1791 |
+
"step": 250
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.25839793281653745,
|
1795 |
+
"eval_loss": 1.1425906419754028,
|
1796 |
+
"eval_runtime": 52.1487,
|
1797 |
+
"eval_samples_per_second": 19.176,
|
1798 |
+
"eval_steps_per_second": 0.614,
|
1799 |
+
"step": 250
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 0.2594315245478036,
|
1803 |
+
"grad_norm": 1.3218801021575928,
|
1804 |
+
"learning_rate": 4.882183908045978e-06,
|
1805 |
+
"loss": 1.0107,
|
1806 |
+
"step": 251
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.26046511627906976,
|
1810 |
+
"grad_norm": 1.5538569688796997,
|
1811 |
+
"learning_rate": 4.879310344827586e-06,
|
1812 |
+
"loss": 1.0203,
|
1813 |
+
"step": 252
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 0.2614987080103359,
|
1817 |
+
"grad_norm": 1.4206135272979736,
|
1818 |
+
"learning_rate": 4.876436781609195e-06,
|
1819 |
+
"loss": 1.1056,
|
1820 |
+
"step": 253
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.2625322997416021,
|
1824 |
+
"grad_norm": 1.5996060371398926,
|
1825 |
+
"learning_rate": 4.873563218390805e-06,
|
1826 |
+
"loss": 1.0236,
|
1827 |
+
"step": 254
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.26356589147286824,
|
1831 |
+
"grad_norm": 1.5735429525375366,
|
1832 |
+
"learning_rate": 4.8706896551724145e-06,
|
1833 |
+
"loss": 1.0763,
|
1834 |
+
"step": 255
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 0.26459948320413434,
|
1838 |
+
"grad_norm": 1.3383245468139648,
|
1839 |
+
"learning_rate": 4.867816091954024e-06,
|
1840 |
+
"loss": 1.0463,
|
1841 |
+
"step": 256
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 0.2656330749354005,
|
1845 |
+
"grad_norm": 1.752362847328186,
|
1846 |
+
"learning_rate": 4.864942528735633e-06,
|
1847 |
+
"loss": 1.0451,
|
1848 |
+
"step": 257
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 0.26666666666666666,
|
1852 |
+
"grad_norm": 1.4010084867477417,
|
1853 |
+
"learning_rate": 4.862068965517242e-06,
|
1854 |
+
"loss": 1.043,
|
1855 |
+
"step": 258
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 0.2677002583979328,
|
1859 |
+
"grad_norm": 1.4108176231384277,
|
1860 |
+
"learning_rate": 4.859195402298851e-06,
|
1861 |
+
"loss": 1.0534,
|
1862 |
+
"step": 259
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.268733850129199,
|
1866 |
+
"grad_norm": 1.5272636413574219,
|
1867 |
+
"learning_rate": 4.85632183908046e-06,
|
1868 |
+
"loss": 1.0264,
|
1869 |
+
"step": 260
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.26976744186046514,
|
1873 |
+
"grad_norm": 1.2899655103683472,
|
1874 |
+
"learning_rate": 4.853448275862069e-06,
|
1875 |
+
"loss": 1.0403,
|
1876 |
+
"step": 261
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 0.27080103359173124,
|
1880 |
+
"grad_norm": 1.5390360355377197,
|
1881 |
+
"learning_rate": 4.8505747126436785e-06,
|
1882 |
+
"loss": 1.0281,
|
1883 |
+
"step": 262
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 0.2718346253229974,
|
1887 |
+
"grad_norm": 1.4357856512069702,
|
1888 |
+
"learning_rate": 4.847701149425288e-06,
|
1889 |
+
"loss": 1.0423,
|
1890 |
+
"step": 263
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 0.27286821705426356,
|
1894 |
+
"grad_norm": 1.2563819885253906,
|
1895 |
+
"learning_rate": 4.844827586206897e-06,
|
1896 |
+
"loss": 1.0487,
|
1897 |
+
"step": 264
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 0.2739018087855297,
|
1901 |
+
"grad_norm": 1.605078935623169,
|
1902 |
+
"learning_rate": 4.841954022988506e-06,
|
1903 |
+
"loss": 1.0626,
|
1904 |
+
"step": 265
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.2749354005167959,
|
1908 |
+
"grad_norm": 1.4388753175735474,
|
1909 |
+
"learning_rate": 4.839080459770115e-06,
|
1910 |
+
"loss": 1.0494,
|
1911 |
+
"step": 266
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.27596899224806204,
|
1915 |
+
"grad_norm": 1.735318660736084,
|
1916 |
+
"learning_rate": 4.836206896551724e-06,
|
1917 |
+
"loss": 1.0359,
|
1918 |
+
"step": 267
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 0.27700258397932814,
|
1922 |
+
"grad_norm": 1.7299683094024658,
|
1923 |
+
"learning_rate": 4.833333333333333e-06,
|
1924 |
+
"loss": 1.005,
|
1925 |
+
"step": 268
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 0.2780361757105943,
|
1929 |
+
"grad_norm": 1.3382335901260376,
|
1930 |
+
"learning_rate": 4.830459770114943e-06,
|
1931 |
+
"loss": 1.0523,
|
1932 |
+
"step": 269
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 0.27906976744186046,
|
1936 |
+
"grad_norm": 1.3449649810791016,
|
1937 |
+
"learning_rate": 4.8275862068965525e-06,
|
1938 |
+
"loss": 1.042,
|
1939 |
+
"step": 270
|
1940 |
+
},
|
1941 |
+
{
|
1942 |
+
"epoch": 0.2801033591731266,
|
1943 |
+
"grad_norm": 1.615478277206421,
|
1944 |
+
"learning_rate": 4.824712643678161e-06,
|
1945 |
+
"loss": 1.042,
|
1946 |
+
"step": 271
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.2811369509043928,
|
1950 |
+
"grad_norm": 1.556579351425171,
|
1951 |
+
"learning_rate": 4.82183908045977e-06,
|
1952 |
+
"loss": 0.9972,
|
1953 |
+
"step": 272
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.28217054263565894,
|
1957 |
+
"grad_norm": 1.4196879863739014,
|
1958 |
+
"learning_rate": 4.81896551724138e-06,
|
1959 |
+
"loss": 1.0311,
|
1960 |
+
"step": 273
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 0.28320413436692504,
|
1964 |
+
"grad_norm": 1.2686911821365356,
|
1965 |
+
"learning_rate": 4.816091954022989e-06,
|
1966 |
+
"loss": 1.0503,
|
1967 |
+
"step": 274
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 0.2842377260981912,
|
1971 |
+
"grad_norm": 1.1563490629196167,
|
1972 |
+
"learning_rate": 4.813218390804598e-06,
|
1973 |
+
"loss": 1.0183,
|
1974 |
+
"step": 275
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 0.28527131782945736,
|
1978 |
+
"grad_norm": 1.4043651819229126,
|
1979 |
+
"learning_rate": 4.810344827586207e-06,
|
1980 |
+
"loss": 1.0437,
|
1981 |
+
"step": 276
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 0.2863049095607235,
|
1985 |
+
"grad_norm": 1.4565726518630981,
|
1986 |
+
"learning_rate": 4.8074712643678165e-06,
|
1987 |
+
"loss": 1.0212,
|
1988 |
+
"step": 277
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.2873385012919897,
|
1992 |
+
"grad_norm": 1.4200972318649292,
|
1993 |
+
"learning_rate": 4.804597701149426e-06,
|
1994 |
+
"loss": 1.0355,
|
1995 |
+
"step": 278
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.28837209302325584,
|
1999 |
+
"grad_norm": 1.403757095336914,
|
2000 |
+
"learning_rate": 4.801724137931035e-06,
|
2001 |
+
"loss": 1.0271,
|
2002 |
+
"step": 279
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 0.28940568475452194,
|
2006 |
+
"grad_norm": 1.2572818994522095,
|
2007 |
+
"learning_rate": 4.798850574712644e-06,
|
2008 |
+
"loss": 1.0319,
|
2009 |
+
"step": 280
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 0.2904392764857881,
|
2013 |
+
"grad_norm": 1.3813985586166382,
|
2014 |
+
"learning_rate": 4.795977011494253e-06,
|
2015 |
+
"loss": 1.0502,
|
2016 |
+
"step": 281
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 0.29147286821705426,
|
2020 |
+
"grad_norm": 1.8169054985046387,
|
2021 |
+
"learning_rate": 4.793103448275862e-06,
|
2022 |
+
"loss": 1.0395,
|
2023 |
+
"step": 282
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 0.2925064599483204,
|
2027 |
+
"grad_norm": 1.2015506029129028,
|
2028 |
+
"learning_rate": 4.790229885057472e-06,
|
2029 |
+
"loss": 1.0498,
|
2030 |
+
"step": 283
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.2935400516795866,
|
2034 |
+
"grad_norm": 1.4416213035583496,
|
2035 |
+
"learning_rate": 4.7873563218390805e-06,
|
2036 |
+
"loss": 0.9921,
|
2037 |
+
"step": 284
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.29457364341085274,
|
2041 |
+
"grad_norm": 1.3626724481582642,
|
2042 |
+
"learning_rate": 4.78448275862069e-06,
|
2043 |
+
"loss": 1.0185,
|
2044 |
+
"step": 285
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 0.29560723514211884,
|
2048 |
+
"grad_norm": 1.3624345064163208,
|
2049 |
+
"learning_rate": 4.781609195402299e-06,
|
2050 |
+
"loss": 1.0376,
|
2051 |
+
"step": 286
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 0.296640826873385,
|
2055 |
+
"grad_norm": 1.5711549520492554,
|
2056 |
+
"learning_rate": 4.778735632183909e-06,
|
2057 |
+
"loss": 1.0078,
|
2058 |
+
"step": 287
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 0.29767441860465116,
|
2062 |
+
"grad_norm": 1.721814513206482,
|
2063 |
+
"learning_rate": 4.775862068965518e-06,
|
2064 |
+
"loss": 1.0828,
|
2065 |
+
"step": 288
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"epoch": 0.2987080103359173,
|
2069 |
+
"grad_norm": 1.5979557037353516,
|
2070 |
+
"learning_rate": 4.772988505747127e-06,
|
2071 |
+
"loss": 1.0135,
|
2072 |
+
"step": 289
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.2997416020671835,
|
2076 |
+
"grad_norm": 1.3976504802703857,
|
2077 |
+
"learning_rate": 4.770114942528735e-06,
|
2078 |
+
"loss": 1.0213,
|
2079 |
+
"step": 290
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.30077519379844964,
|
2083 |
+
"grad_norm": 1.361649513244629,
|
2084 |
+
"learning_rate": 4.767241379310345e-06,
|
2085 |
+
"loss": 1.0308,
|
2086 |
+
"step": 291
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 0.30180878552971574,
|
2090 |
+
"grad_norm": 1.3206751346588135,
|
2091 |
+
"learning_rate": 4.7643678160919545e-06,
|
2092 |
+
"loss": 0.9987,
|
2093 |
+
"step": 292
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 0.3028423772609819,
|
2097 |
+
"grad_norm": 1.720141053199768,
|
2098 |
+
"learning_rate": 4.761494252873564e-06,
|
2099 |
+
"loss": 1.0413,
|
2100 |
+
"step": 293
|
2101 |
+
},
|
2102 |
+
{
|
2103 |
+
"epoch": 0.30387596899224806,
|
2104 |
+
"grad_norm": 1.5092377662658691,
|
2105 |
+
"learning_rate": 4.758620689655173e-06,
|
2106 |
+
"loss": 0.9938,
|
2107 |
+
"step": 294
|
2108 |
+
},
|
2109 |
+
{
|
2110 |
+
"epoch": 0.3049095607235142,
|
2111 |
+
"grad_norm": 1.4403694868087769,
|
2112 |
+
"learning_rate": 4.755747126436782e-06,
|
2113 |
+
"loss": 1.0379,
|
2114 |
+
"step": 295
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.3059431524547804,
|
2118 |
+
"grad_norm": 1.3464564085006714,
|
2119 |
+
"learning_rate": 4.752873563218391e-06,
|
2120 |
+
"loss": 1.0645,
|
2121 |
+
"step": 296
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.30697674418604654,
|
2125 |
+
"grad_norm": 1.3892803192138672,
|
2126 |
+
"learning_rate": 4.75e-06,
|
2127 |
+
"loss": 0.9331,
|
2128 |
+
"step": 297
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"epoch": 0.30801033591731264,
|
2132 |
+
"grad_norm": 1.650929570198059,
|
2133 |
+
"learning_rate": 4.747126436781609e-06,
|
2134 |
+
"loss": 1.0249,
|
2135 |
+
"step": 298
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"epoch": 0.3090439276485788,
|
2139 |
+
"grad_norm": 1.3314130306243896,
|
2140 |
+
"learning_rate": 4.7442528735632186e-06,
|
2141 |
+
"loss": 1.0332,
|
2142 |
+
"step": 299
|
2143 |
+
},
|
2144 |
+
{
|
2145 |
+
"epoch": 0.31007751937984496,
|
2146 |
+
"grad_norm": 1.6108005046844482,
|
2147 |
+
"learning_rate": 4.741379310344828e-06,
|
2148 |
+
"loss": 1.0138,
|
2149 |
+
"step": 300
|
2150 |
+
},
|
2151 |
+
{
|
2152 |
+
"epoch": 0.31007751937984496,
|
2153 |
+
"eval_loss": 1.1177282333374023,
|
2154 |
+
"eval_runtime": 52.0926,
|
2155 |
+
"eval_samples_per_second": 19.197,
|
2156 |
+
"eval_steps_per_second": 0.614,
|
2157 |
+
"step": 300
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.3111111111111111,
|
2161 |
+
"grad_norm": 1.2376863956451416,
|
2162 |
+
"learning_rate": 4.738505747126438e-06,
|
2163 |
+
"loss": 1.0149,
|
2164 |
+
"step": 301
|
2165 |
+
},
|
2166 |
+
{
|
2167 |
+
"epoch": 0.3121447028423773,
|
2168 |
+
"grad_norm": 1.3628637790679932,
|
2169 |
+
"learning_rate": 4.735632183908047e-06,
|
2170 |
+
"loss": 1.0157,
|
2171 |
+
"step": 302
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"epoch": 0.31317829457364343,
|
2175 |
+
"grad_norm": 1.2822990417480469,
|
2176 |
+
"learning_rate": 4.732758620689655e-06,
|
2177 |
+
"loss": 1.0286,
|
2178 |
+
"step": 303
|
2179 |
+
},
|
2180 |
+
{
|
2181 |
+
"epoch": 0.31421188630490954,
|
2182 |
+
"grad_norm": 1.2702423334121704,
|
2183 |
+
"learning_rate": 4.729885057471264e-06,
|
2184 |
+
"loss": 1.0365,
|
2185 |
+
"step": 304
|
2186 |
+
},
|
2187 |
+
{
|
2188 |
+
"epoch": 0.3152454780361757,
|
2189 |
+
"grad_norm": 1.2091736793518066,
|
2190 |
+
"learning_rate": 4.727011494252874e-06,
|
2191 |
+
"loss": 0.995,
|
2192 |
+
"step": 305
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.31627906976744186,
|
2196 |
+
"grad_norm": 1.223698377609253,
|
2197 |
+
"learning_rate": 4.724137931034483e-06,
|
2198 |
+
"loss": 1.016,
|
2199 |
+
"step": 306
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.317312661498708,
|
2203 |
+
"grad_norm": 1.7964216470718384,
|
2204 |
+
"learning_rate": 4.7212643678160926e-06,
|
2205 |
+
"loss": 1.0564,
|
2206 |
+
"step": 307
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"epoch": 0.3183462532299742,
|
2210 |
+
"grad_norm": 1.693984866142273,
|
2211 |
+
"learning_rate": 4.718390804597702e-06,
|
2212 |
+
"loss": 1.0381,
|
2213 |
+
"step": 308
|
2214 |
+
},
|
2215 |
+
{
|
2216 |
+
"epoch": 0.31937984496124033,
|
2217 |
+
"grad_norm": 1.3786847591400146,
|
2218 |
+
"learning_rate": 4.715517241379311e-06,
|
2219 |
+
"loss": 1.0385,
|
2220 |
+
"step": 309
|
2221 |
+
},
|
2222 |
+
{
|
2223 |
+
"epoch": 0.32041343669250644,
|
2224 |
+
"grad_norm": 1.5243544578552246,
|
2225 |
+
"learning_rate": 4.71264367816092e-06,
|
2226 |
+
"loss": 1.0313,
|
2227 |
+
"step": 310
|
2228 |
+
},
|
2229 |
+
{
|
2230 |
+
"epoch": 0.3214470284237726,
|
2231 |
+
"grad_norm": 1.2947908639907837,
|
2232 |
+
"learning_rate": 4.709770114942529e-06,
|
2233 |
+
"loss": 1.0126,
|
2234 |
+
"step": 311
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.32248062015503876,
|
2238 |
+
"grad_norm": 1.5751510858535767,
|
2239 |
+
"learning_rate": 4.706896551724138e-06,
|
2240 |
+
"loss": 1.0268,
|
2241 |
+
"step": 312
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.3235142118863049,
|
2245 |
+
"grad_norm": 1.335180401802063,
|
2246 |
+
"learning_rate": 4.7040229885057474e-06,
|
2247 |
+
"loss": 1.0474,
|
2248 |
+
"step": 313
|
2249 |
+
},
|
2250 |
+
{
|
2251 |
+
"epoch": 0.3245478036175711,
|
2252 |
+
"grad_norm": 1.4872468709945679,
|
2253 |
+
"learning_rate": 4.7011494252873566e-06,
|
2254 |
+
"loss": 1.0709,
|
2255 |
+
"step": 314
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 0.32558139534883723,
|
2259 |
+
"grad_norm": 1.5406771898269653,
|
2260 |
+
"learning_rate": 4.698275862068966e-06,
|
2261 |
+
"loss": 1.032,
|
2262 |
+
"step": 315
|
2263 |
+
},
|
2264 |
+
{
|
2265 |
+
"epoch": 0.32661498708010334,
|
2266 |
+
"grad_norm": 1.2771215438842773,
|
2267 |
+
"learning_rate": 4.695402298850575e-06,
|
2268 |
+
"loss": 1.0122,
|
2269 |
+
"step": 316
|
2270 |
+
},
|
2271 |
+
{
|
2272 |
+
"epoch": 0.3276485788113695,
|
2273 |
+
"grad_norm": 1.4511051177978516,
|
2274 |
+
"learning_rate": 4.692528735632184e-06,
|
2275 |
+
"loss": 1.0457,
|
2276 |
+
"step": 317
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.32868217054263565,
|
2280 |
+
"grad_norm": 1.2866500616073608,
|
2281 |
+
"learning_rate": 4.689655172413793e-06,
|
2282 |
+
"loss": 1.0154,
|
2283 |
+
"step": 318
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.3297157622739018,
|
2287 |
+
"grad_norm": 1.3319385051727295,
|
2288 |
+
"learning_rate": 4.686781609195402e-06,
|
2289 |
+
"loss": 1.0351,
|
2290 |
+
"step": 319
|
2291 |
+
},
|
2292 |
+
{
|
2293 |
+
"epoch": 0.330749354005168,
|
2294 |
+
"grad_norm": 1.499594807624817,
|
2295 |
+
"learning_rate": 4.683908045977012e-06,
|
2296 |
+
"loss": 0.9905,
|
2297 |
+
"step": 320
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 0.33178294573643413,
|
2301 |
+
"grad_norm": 1.4195674657821655,
|
2302 |
+
"learning_rate": 4.6810344827586214e-06,
|
2303 |
+
"loss": 0.9723,
|
2304 |
+
"step": 321
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 0.33281653746770024,
|
2308 |
+
"grad_norm": 1.398489236831665,
|
2309 |
+
"learning_rate": 4.67816091954023e-06,
|
2310 |
+
"loss": 0.9869,
|
2311 |
+
"step": 322
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 0.3338501291989664,
|
2315 |
+
"grad_norm": 1.5325692892074585,
|
2316 |
+
"learning_rate": 4.675287356321839e-06,
|
2317 |
+
"loss": 0.9852,
|
2318 |
+
"step": 323
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.33488372093023255,
|
2322 |
+
"grad_norm": 1.5350309610366821,
|
2323 |
+
"learning_rate": 4.672413793103449e-06,
|
2324 |
+
"loss": 1.044,
|
2325 |
+
"step": 324
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.3359173126614987,
|
2329 |
+
"grad_norm": 1.534777045249939,
|
2330 |
+
"learning_rate": 4.669540229885058e-06,
|
2331 |
+
"loss": 0.9982,
|
2332 |
+
"step": 325
|
2333 |
+
},
|
2334 |
+
{
|
2335 |
+
"epoch": 0.33695090439276487,
|
2336 |
+
"grad_norm": 1.7731380462646484,
|
2337 |
+
"learning_rate": 4.666666666666667e-06,
|
2338 |
+
"loss": 1.0407,
|
2339 |
+
"step": 326
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 0.33798449612403103,
|
2343 |
+
"grad_norm": 1.6210086345672607,
|
2344 |
+
"learning_rate": 4.663793103448276e-06,
|
2345 |
+
"loss": 0.9839,
|
2346 |
+
"step": 327
|
2347 |
+
},
|
2348 |
+
{
|
2349 |
+
"epoch": 0.33901808785529713,
|
2350 |
+
"grad_norm": 1.139635682106018,
|
2351 |
+
"learning_rate": 4.6609195402298855e-06,
|
2352 |
+
"loss": 0.9218,
|
2353 |
+
"step": 328
|
2354 |
+
},
|
2355 |
+
{
|
2356 |
+
"epoch": 0.3400516795865633,
|
2357 |
+
"grad_norm": 1.3825052976608276,
|
2358 |
+
"learning_rate": 4.658045977011495e-06,
|
2359 |
+
"loss": 0.9853,
|
2360 |
+
"step": 329
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.34108527131782945,
|
2364 |
+
"grad_norm": 1.6630350351333618,
|
2365 |
+
"learning_rate": 4.655172413793104e-06,
|
2366 |
+
"loss": 1.0007,
|
2367 |
+
"step": 330
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.3421188630490956,
|
2371 |
+
"grad_norm": 1.585688591003418,
|
2372 |
+
"learning_rate": 4.652298850574713e-06,
|
2373 |
+
"loss": 1.0594,
|
2374 |
+
"step": 331
|
2375 |
+
},
|
2376 |
+
{
|
2377 |
+
"epoch": 0.34315245478036177,
|
2378 |
+
"grad_norm": 1.8591464757919312,
|
2379 |
+
"learning_rate": 4.649425287356322e-06,
|
2380 |
+
"loss": 1.0056,
|
2381 |
+
"step": 332
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 0.34418604651162793,
|
2385 |
+
"grad_norm": 1.5832587480545044,
|
2386 |
+
"learning_rate": 4.646551724137931e-06,
|
2387 |
+
"loss": 0.9986,
|
2388 |
+
"step": 333
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"epoch": 0.34521963824289403,
|
2392 |
+
"grad_norm": 1.7467713356018066,
|
2393 |
+
"learning_rate": 4.643678160919541e-06,
|
2394 |
+
"loss": 0.9925,
|
2395 |
+
"step": 334
|
2396 |
+
},
|
2397 |
+
{
|
2398 |
+
"epoch": 0.3462532299741602,
|
2399 |
+
"grad_norm": 1.3366422653198242,
|
2400 |
+
"learning_rate": 4.6408045977011495e-06,
|
2401 |
+
"loss": 1.0477,
|
2402 |
+
"step": 335
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 0.34728682170542635,
|
2406 |
+
"grad_norm": 1.473027229309082,
|
2407 |
+
"learning_rate": 4.637931034482759e-06,
|
2408 |
+
"loss": 0.9695,
|
2409 |
+
"step": 336
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.3483204134366925,
|
2413 |
+
"grad_norm": 1.5177369117736816,
|
2414 |
+
"learning_rate": 4.635057471264368e-06,
|
2415 |
+
"loss": 1.0238,
|
2416 |
+
"step": 337
|
2417 |
+
},
|
2418 |
+
{
|
2419 |
+
"epoch": 0.34935400516795867,
|
2420 |
+
"grad_norm": 1.9143269062042236,
|
2421 |
+
"learning_rate": 4.632183908045978e-06,
|
2422 |
+
"loss": 1.0595,
|
2423 |
+
"step": 338
|
2424 |
+
},
|
2425 |
+
{
|
2426 |
+
"epoch": 0.35038759689922483,
|
2427 |
+
"grad_norm": 1.4199109077453613,
|
2428 |
+
"learning_rate": 4.629310344827587e-06,
|
2429 |
+
"loss": 1.02,
|
2430 |
+
"step": 339
|
2431 |
+
},
|
2432 |
+
{
|
2433 |
+
"epoch": 0.35142118863049093,
|
2434 |
+
"grad_norm": 1.3345683813095093,
|
2435 |
+
"learning_rate": 4.626436781609196e-06,
|
2436 |
+
"loss": 0.9948,
|
2437 |
+
"step": 340
|
2438 |
+
},
|
2439 |
+
{
|
2440 |
+
"epoch": 0.3524547803617571,
|
2441 |
+
"grad_norm": 1.3201162815093994,
|
2442 |
+
"learning_rate": 4.623563218390805e-06,
|
2443 |
+
"loss": 0.9978,
|
2444 |
+
"step": 341
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 0.35348837209302325,
|
2448 |
+
"grad_norm": 1.7195253372192383,
|
2449 |
+
"learning_rate": 4.620689655172414e-06,
|
2450 |
+
"loss": 0.9977,
|
2451 |
+
"step": 342
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 0.3545219638242894,
|
2455 |
+
"grad_norm": 1.3972502946853638,
|
2456 |
+
"learning_rate": 4.6178160919540235e-06,
|
2457 |
+
"loss": 1.0299,
|
2458 |
+
"step": 343
|
2459 |
+
},
|
2460 |
+
{
|
2461 |
+
"epoch": 0.35555555555555557,
|
2462 |
+
"grad_norm": 1.4695457220077515,
|
2463 |
+
"learning_rate": 4.614942528735633e-06,
|
2464 |
+
"loss": 1.0164,
|
2465 |
+
"step": 344
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 0.35658914728682173,
|
2469 |
+
"grad_norm": 1.5302752256393433,
|
2470 |
+
"learning_rate": 4.612068965517242e-06,
|
2471 |
+
"loss": 1.0209,
|
2472 |
+
"step": 345
|
2473 |
+
},
|
2474 |
+
{
|
2475 |
+
"epoch": 0.35762273901808783,
|
2476 |
+
"grad_norm": 1.2683886289596558,
|
2477 |
+
"learning_rate": 4.609195402298851e-06,
|
2478 |
+
"loss": 0.9828,
|
2479 |
+
"step": 346
|
2480 |
+
},
|
2481 |
+
{
|
2482 |
+
"epoch": 0.358656330749354,
|
2483 |
+
"grad_norm": 1.2424372434616089,
|
2484 |
+
"learning_rate": 4.60632183908046e-06,
|
2485 |
+
"loss": 0.9937,
|
2486 |
+
"step": 347
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 0.35968992248062015,
|
2490 |
+
"grad_norm": 1.2774847745895386,
|
2491 |
+
"learning_rate": 4.603448275862069e-06,
|
2492 |
+
"loss": 1.0385,
|
2493 |
+
"step": 348
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 0.3607235142118863,
|
2497 |
+
"grad_norm": 1.1979737281799316,
|
2498 |
+
"learning_rate": 4.600574712643678e-06,
|
2499 |
+
"loss": 0.9658,
|
2500 |
+
"step": 349
|
2501 |
+
},
|
2502 |
+
{
|
2503 |
+
"epoch": 0.36175710594315247,
|
2504 |
+
"grad_norm": 1.6517276763916016,
|
2505 |
+
"learning_rate": 4.5977011494252875e-06,
|
2506 |
+
"loss": 0.9967,
|
2507 |
+
"step": 350
|
2508 |
+
},
|
2509 |
+
{
|
2510 |
+
"epoch": 0.36175710594315247,
|
2511 |
+
"eval_loss": 1.1045842170715332,
|
2512 |
+
"eval_runtime": 52.4997,
|
2513 |
+
"eval_samples_per_second": 19.048,
|
2514 |
+
"eval_steps_per_second": 0.61,
|
2515 |
+
"step": 350
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.3627906976744186,
|
2519 |
+
"grad_norm": 1.2296693325042725,
|
2520 |
+
"learning_rate": 4.594827586206897e-06,
|
2521 |
+
"loss": 0.9675,
|
2522 |
+
"step": 351
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.36382428940568473,
|
2526 |
+
"grad_norm": 1.367437720298767,
|
2527 |
+
"learning_rate": 4.591954022988507e-06,
|
2528 |
+
"loss": 1.0251,
|
2529 |
+
"step": 352
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.3648578811369509,
|
2533 |
+
"grad_norm": 1.3952935934066772,
|
2534 |
+
"learning_rate": 4.589080459770116e-06,
|
2535 |
+
"loss": 1.0408,
|
2536 |
+
"step": 353
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.36589147286821705,
|
2540 |
+
"grad_norm": 1.287678837776184,
|
2541 |
+
"learning_rate": 4.586206896551724e-06,
|
2542 |
+
"loss": 0.9839,
|
2543 |
+
"step": 354
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.3669250645994832,
|
2547 |
+
"grad_norm": 1.599214792251587,
|
2548 |
+
"learning_rate": 4.583333333333333e-06,
|
2549 |
+
"loss": 1.0125,
|
2550 |
+
"step": 355
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.36795865633074937,
|
2554 |
+
"grad_norm": 1.6125950813293457,
|
2555 |
+
"learning_rate": 4.580459770114943e-06,
|
2556 |
+
"loss": 1.0108,
|
2557 |
+
"step": 356
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.3689922480620155,
|
2561 |
+
"grad_norm": 1.167265772819519,
|
2562 |
+
"learning_rate": 4.577586206896552e-06,
|
2563 |
+
"loss": 0.9809,
|
2564 |
+
"step": 357
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.37002583979328163,
|
2568 |
+
"grad_norm": 1.3578706979751587,
|
2569 |
+
"learning_rate": 4.5747126436781615e-06,
|
2570 |
+
"loss": 1.0054,
|
2571 |
+
"step": 358
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.3710594315245478,
|
2575 |
+
"grad_norm": 1.5812793970108032,
|
2576 |
+
"learning_rate": 4.571839080459771e-06,
|
2577 |
+
"loss": 0.9962,
|
2578 |
+
"step": 359
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.37209302325581395,
|
2582 |
+
"grad_norm": 1.6925969123840332,
|
2583 |
+
"learning_rate": 4.56896551724138e-06,
|
2584 |
+
"loss": 1.0039,
|
2585 |
+
"step": 360
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.3731266149870801,
|
2589 |
+
"grad_norm": 1.5617161989212036,
|
2590 |
+
"learning_rate": 4.566091954022989e-06,
|
2591 |
+
"loss": 1.0123,
|
2592 |
+
"step": 361
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.37416020671834627,
|
2596 |
+
"grad_norm": 1.2854423522949219,
|
2597 |
+
"learning_rate": 4.563218390804598e-06,
|
2598 |
+
"loss": 1.0074,
|
2599 |
+
"step": 362
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.3751937984496124,
|
2603 |
+
"grad_norm": 1.5997135639190674,
|
2604 |
+
"learning_rate": 4.560344827586207e-06,
|
2605 |
+
"loss": 0.9894,
|
2606 |
+
"step": 363
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.37622739018087853,
|
2610 |
+
"grad_norm": 1.5839483737945557,
|
2611 |
+
"learning_rate": 4.557471264367816e-06,
|
2612 |
+
"loss": 1.0093,
|
2613 |
+
"step": 364
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.3772609819121447,
|
2617 |
+
"grad_norm": 1.3355575799942017,
|
2618 |
+
"learning_rate": 4.5545977011494255e-06,
|
2619 |
+
"loss": 1.0131,
|
2620 |
+
"step": 365
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.37829457364341085,
|
2624 |
+
"grad_norm": 1.3378883600234985,
|
2625 |
+
"learning_rate": 4.551724137931035e-06,
|
2626 |
+
"loss": 1.0251,
|
2627 |
+
"step": 366
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.379328165374677,
|
2631 |
+
"grad_norm": 1.5703293085098267,
|
2632 |
+
"learning_rate": 4.548850574712644e-06,
|
2633 |
+
"loss": 1.0052,
|
2634 |
+
"step": 367
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.38036175710594317,
|
2638 |
+
"grad_norm": 1.6331372261047363,
|
2639 |
+
"learning_rate": 4.545977011494253e-06,
|
2640 |
+
"loss": 1.0063,
|
2641 |
+
"step": 368
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.3813953488372093,
|
2645 |
+
"grad_norm": 1.4740118980407715,
|
2646 |
+
"learning_rate": 4.543103448275862e-06,
|
2647 |
+
"loss": 1.0024,
|
2648 |
+
"step": 369
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.38242894056847543,
|
2652 |
+
"grad_norm": 1.3222692012786865,
|
2653 |
+
"learning_rate": 4.540229885057471e-06,
|
2654 |
+
"loss": 0.982,
|
2655 |
+
"step": 370
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.3834625322997416,
|
2659 |
+
"grad_norm": 1.4858118295669556,
|
2660 |
+
"learning_rate": 4.537356321839081e-06,
|
2661 |
+
"loss": 1.033,
|
2662 |
+
"step": 371
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.38449612403100775,
|
2666 |
+
"grad_norm": 1.201407551765442,
|
2667 |
+
"learning_rate": 4.53448275862069e-06,
|
2668 |
+
"loss": 0.9925,
|
2669 |
+
"step": 372
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.3855297157622739,
|
2673 |
+
"grad_norm": 1.276807427406311,
|
2674 |
+
"learning_rate": 4.5316091954022995e-06,
|
2675 |
+
"loss": 1.0374,
|
2676 |
+
"step": 373
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.38656330749354006,
|
2680 |
+
"grad_norm": 1.306963324546814,
|
2681 |
+
"learning_rate": 4.528735632183908e-06,
|
2682 |
+
"loss": 0.9913,
|
2683 |
+
"step": 374
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.3875968992248062,
|
2687 |
+
"grad_norm": 1.4419054985046387,
|
2688 |
+
"learning_rate": 4.525862068965518e-06,
|
2689 |
+
"loss": 1.0021,
|
2690 |
+
"step": 375
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.3886304909560723,
|
2694 |
+
"grad_norm": 1.1594988107681274,
|
2695 |
+
"learning_rate": 4.522988505747127e-06,
|
2696 |
+
"loss": 0.967,
|
2697 |
+
"step": 376
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.3896640826873385,
|
2701 |
+
"grad_norm": 1.2666174173355103,
|
2702 |
+
"learning_rate": 4.520114942528736e-06,
|
2703 |
+
"loss": 1.0206,
|
2704 |
+
"step": 377
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.39069767441860465,
|
2708 |
+
"grad_norm": 1.4637069702148438,
|
2709 |
+
"learning_rate": 4.517241379310345e-06,
|
2710 |
+
"loss": 1.0182,
|
2711 |
+
"step": 378
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.3917312661498708,
|
2715 |
+
"grad_norm": 1.3480263948440552,
|
2716 |
+
"learning_rate": 4.514367816091954e-06,
|
2717 |
+
"loss": 0.9642,
|
2718 |
+
"step": 379
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.39276485788113696,
|
2722 |
+
"grad_norm": 1.3101832866668701,
|
2723 |
+
"learning_rate": 4.5114942528735635e-06,
|
2724 |
+
"loss": 0.9631,
|
2725 |
+
"step": 380
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.3937984496124031,
|
2729 |
+
"grad_norm": 1.2533233165740967,
|
2730 |
+
"learning_rate": 4.508620689655173e-06,
|
2731 |
+
"loss": 0.9842,
|
2732 |
+
"step": 381
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.3948320413436692,
|
2736 |
+
"grad_norm": 1.2661020755767822,
|
2737 |
+
"learning_rate": 4.505747126436782e-06,
|
2738 |
+
"loss": 0.9842,
|
2739 |
+
"step": 382
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.3958656330749354,
|
2743 |
+
"grad_norm": 1.4904688596725464,
|
2744 |
+
"learning_rate": 4.502873563218391e-06,
|
2745 |
+
"loss": 0.9785,
|
2746 |
+
"step": 383
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.39689922480620154,
|
2750 |
+
"grad_norm": 1.2895351648330688,
|
2751 |
+
"learning_rate": 4.5e-06,
|
2752 |
+
"loss": 0.9755,
|
2753 |
+
"step": 384
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.3979328165374677,
|
2757 |
+
"grad_norm": 1.186653971672058,
|
2758 |
+
"learning_rate": 4.49712643678161e-06,
|
2759 |
+
"loss": 0.9699,
|
2760 |
+
"step": 385
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.39896640826873386,
|
2764 |
+
"grad_norm": 1.6472855806350708,
|
2765 |
+
"learning_rate": 4.494252873563218e-06,
|
2766 |
+
"loss": 0.9963,
|
2767 |
+
"step": 386
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.4,
|
2771 |
+
"grad_norm": 1.535745620727539,
|
2772 |
+
"learning_rate": 4.4913793103448275e-06,
|
2773 |
+
"loss": 0.9925,
|
2774 |
+
"step": 387
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.4010335917312661,
|
2778 |
+
"grad_norm": 1.3963381052017212,
|
2779 |
+
"learning_rate": 4.488505747126437e-06,
|
2780 |
+
"loss": 0.9926,
|
2781 |
+
"step": 388
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.4020671834625323,
|
2785 |
+
"grad_norm": 1.2652450799942017,
|
2786 |
+
"learning_rate": 4.485632183908047e-06,
|
2787 |
+
"loss": 1.0224,
|
2788 |
+
"step": 389
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.40310077519379844,
|
2792 |
+
"grad_norm": 1.329743504524231,
|
2793 |
+
"learning_rate": 4.482758620689656e-06,
|
2794 |
+
"loss": 0.9473,
|
2795 |
+
"step": 390
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.4041343669250646,
|
2799 |
+
"grad_norm": 1.471661925315857,
|
2800 |
+
"learning_rate": 4.479885057471265e-06,
|
2801 |
+
"loss": 0.9788,
|
2802 |
+
"step": 391
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.40516795865633076,
|
2806 |
+
"grad_norm": 1.3997739553451538,
|
2807 |
+
"learning_rate": 4.477011494252874e-06,
|
2808 |
+
"loss": 0.9918,
|
2809 |
+
"step": 392
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.4062015503875969,
|
2813 |
+
"grad_norm": 1.3732025623321533,
|
2814 |
+
"learning_rate": 4.474137931034483e-06,
|
2815 |
+
"loss": 0.9972,
|
2816 |
+
"step": 393
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.407235142118863,
|
2820 |
+
"grad_norm": 1.3872554302215576,
|
2821 |
+
"learning_rate": 4.471264367816092e-06,
|
2822 |
+
"loss": 0.9695,
|
2823 |
+
"step": 394
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.4082687338501292,
|
2827 |
+
"grad_norm": 1.3868608474731445,
|
2828 |
+
"learning_rate": 4.4683908045977016e-06,
|
2829 |
+
"loss": 1.0138,
|
2830 |
+
"step": 395
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.40930232558139534,
|
2834 |
+
"grad_norm": 1.59169602394104,
|
2835 |
+
"learning_rate": 4.465517241379311e-06,
|
2836 |
+
"loss": 1.0182,
|
2837 |
+
"step": 396
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.4103359173126615,
|
2841 |
+
"grad_norm": 1.4743701219558716,
|
2842 |
+
"learning_rate": 4.46264367816092e-06,
|
2843 |
+
"loss": 0.9811,
|
2844 |
+
"step": 397
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.41136950904392766,
|
2848 |
+
"grad_norm": 1.2035115957260132,
|
2849 |
+
"learning_rate": 4.459770114942529e-06,
|
2850 |
+
"loss": 0.9673,
|
2851 |
+
"step": 398
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.4124031007751938,
|
2855 |
+
"grad_norm": 1.3029043674468994,
|
2856 |
+
"learning_rate": 4.456896551724138e-06,
|
2857 |
+
"loss": 0.9564,
|
2858 |
+
"step": 399
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.4134366925064599,
|
2862 |
+
"grad_norm": 1.3427908420562744,
|
2863 |
+
"learning_rate": 4.454022988505747e-06,
|
2864 |
+
"loss": 0.9982,
|
2865 |
+
"step": 400
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.4134366925064599,
|
2869 |
+
"eval_loss": 1.091240644454956,
|
2870 |
+
"eval_runtime": 52.5565,
|
2871 |
+
"eval_samples_per_second": 19.027,
|
2872 |
+
"eval_steps_per_second": 0.609,
|
2873 |
+
"step": 400
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 0.4144702842377261,
|
2877 |
+
"grad_norm": 1.3828445672988892,
|
2878 |
+
"learning_rate": 4.4511494252873564e-06,
|
2879 |
+
"loss": 0.9612,
|
2880 |
+
"step": 401
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 0.41550387596899224,
|
2884 |
+
"grad_norm": 1.3622734546661377,
|
2885 |
+
"learning_rate": 4.4482758620689656e-06,
|
2886 |
+
"loss": 1.0141,
|
2887 |
+
"step": 402
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 0.4165374677002584,
|
2891 |
+
"grad_norm": 1.2798258066177368,
|
2892 |
+
"learning_rate": 4.4454022988505756e-06,
|
2893 |
+
"loss": 0.9491,
|
2894 |
+
"step": 403
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.41757105943152456,
|
2898 |
+
"grad_norm": 1.223121166229248,
|
2899 |
+
"learning_rate": 4.442528735632185e-06,
|
2900 |
+
"loss": 0.9722,
|
2901 |
+
"step": 404
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.4186046511627907,
|
2905 |
+
"grad_norm": 1.2730870246887207,
|
2906 |
+
"learning_rate": 4.439655172413794e-06,
|
2907 |
+
"loss": 0.9465,
|
2908 |
+
"step": 405
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 0.4196382428940568,
|
2912 |
+
"grad_norm": 1.1687973737716675,
|
2913 |
+
"learning_rate": 4.436781609195402e-06,
|
2914 |
+
"loss": 0.9508,
|
2915 |
+
"step": 406
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 0.420671834625323,
|
2919 |
+
"grad_norm": 1.233321189880371,
|
2920 |
+
"learning_rate": 4.433908045977012e-06,
|
2921 |
+
"loss": 0.9406,
|
2922 |
+
"step": 407
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 0.42170542635658914,
|
2926 |
+
"grad_norm": 1.6981616020202637,
|
2927 |
+
"learning_rate": 4.431034482758621e-06,
|
2928 |
+
"loss": 0.9796,
|
2929 |
+
"step": 408
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 0.4227390180878553,
|
2933 |
+
"grad_norm": 2.0248169898986816,
|
2934 |
+
"learning_rate": 4.4281609195402304e-06,
|
2935 |
+
"loss": 1.0083,
|
2936 |
+
"step": 409
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.42377260981912146,
|
2940 |
+
"grad_norm": 1.5073792934417725,
|
2941 |
+
"learning_rate": 4.42528735632184e-06,
|
2942 |
+
"loss": 1.0211,
|
2943 |
+
"step": 410
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.4248062015503876,
|
2947 |
+
"grad_norm": 1.2407021522521973,
|
2948 |
+
"learning_rate": 4.422413793103449e-06,
|
2949 |
+
"loss": 0.965,
|
2950 |
+
"step": 411
|
2951 |
+
},
|
2952 |
+
{
|
2953 |
+
"epoch": 0.4258397932816537,
|
2954 |
+
"grad_norm": 1.5259541273117065,
|
2955 |
+
"learning_rate": 4.419540229885058e-06,
|
2956 |
+
"loss": 0.9618,
|
2957 |
+
"step": 412
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 0.4268733850129199,
|
2961 |
+
"grad_norm": 1.3160191774368286,
|
2962 |
+
"learning_rate": 4.416666666666667e-06,
|
2963 |
+
"loss": 1.0031,
|
2964 |
+
"step": 413
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 0.42790697674418604,
|
2968 |
+
"grad_norm": 1.366034984588623,
|
2969 |
+
"learning_rate": 4.413793103448276e-06,
|
2970 |
+
"loss": 0.9726,
|
2971 |
+
"step": 414
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 0.4289405684754522,
|
2975 |
+
"grad_norm": 1.3648245334625244,
|
2976 |
+
"learning_rate": 4.410919540229885e-06,
|
2977 |
+
"loss": 0.9727,
|
2978 |
+
"step": 415
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.42997416020671836,
|
2982 |
+
"grad_norm": 1.4371240139007568,
|
2983 |
+
"learning_rate": 4.4080459770114944e-06,
|
2984 |
+
"loss": 0.9921,
|
2985 |
+
"step": 416
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.4310077519379845,
|
2989 |
+
"grad_norm": 1.4490691423416138,
|
2990 |
+
"learning_rate": 4.405172413793104e-06,
|
2991 |
+
"loss": 1.0286,
|
2992 |
+
"step": 417
|
2993 |
+
},
|
2994 |
+
{
|
2995 |
+
"epoch": 0.4320413436692506,
|
2996 |
+
"grad_norm": 1.4341950416564941,
|
2997 |
+
"learning_rate": 4.402298850574713e-06,
|
2998 |
+
"loss": 0.9953,
|
2999 |
+
"step": 418
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"epoch": 0.4330749354005168,
|
3003 |
+
"grad_norm": 1.4683347940444946,
|
3004 |
+
"learning_rate": 4.399425287356322e-06,
|
3005 |
+
"loss": 0.9812,
|
3006 |
+
"step": 419
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"epoch": 0.43410852713178294,
|
3010 |
+
"grad_norm": 1.459459662437439,
|
3011 |
+
"learning_rate": 4.396551724137931e-06,
|
3012 |
+
"loss": 0.9855,
|
3013 |
+
"step": 420
|
3014 |
+
},
|
3015 |
+
{
|
3016 |
+
"epoch": 0.4351421188630491,
|
3017 |
+
"grad_norm": 1.3102967739105225,
|
3018 |
+
"learning_rate": 4.39367816091954e-06,
|
3019 |
+
"loss": 1.0135,
|
3020 |
+
"step": 421
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.43617571059431526,
|
3024 |
+
"grad_norm": 1.4162970781326294,
|
3025 |
+
"learning_rate": 4.39080459770115e-06,
|
3026 |
+
"loss": 1.0225,
|
3027 |
+
"step": 422
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.4372093023255814,
|
3031 |
+
"grad_norm": 1.4849135875701904,
|
3032 |
+
"learning_rate": 4.387931034482759e-06,
|
3033 |
+
"loss": 0.9791,
|
3034 |
+
"step": 423
|
3035 |
+
},
|
3036 |
+
{
|
3037 |
+
"epoch": 0.4382428940568475,
|
3038 |
+
"grad_norm": 1.3206710815429688,
|
3039 |
+
"learning_rate": 4.3850574712643685e-06,
|
3040 |
+
"loss": 0.9568,
|
3041 |
+
"step": 424
|
3042 |
+
},
|
3043 |
+
{
|
3044 |
+
"epoch": 0.4392764857881137,
|
3045 |
+
"grad_norm": 1.401818037033081,
|
3046 |
+
"learning_rate": 4.382183908045977e-06,
|
3047 |
+
"loss": 1.0067,
|
3048 |
+
"step": 425
|
3049 |
+
},
|
3050 |
+
{
|
3051 |
+
"epoch": 0.44031007751937984,
|
3052 |
+
"grad_norm": 1.4235022068023682,
|
3053 |
+
"learning_rate": 4.379310344827587e-06,
|
3054 |
+
"loss": 0.9687,
|
3055 |
+
"step": 426
|
3056 |
+
},
|
3057 |
+
{
|
3058 |
+
"epoch": 0.441343669250646,
|
3059 |
+
"grad_norm": 1.413816213607788,
|
3060 |
+
"learning_rate": 4.376436781609196e-06,
|
3061 |
+
"loss": 0.9889,
|
3062 |
+
"step": 427
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.44237726098191216,
|
3066 |
+
"grad_norm": 1.4104002714157104,
|
3067 |
+
"learning_rate": 4.373563218390805e-06,
|
3068 |
+
"loss": 1.0102,
|
3069 |
+
"step": 428
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.4434108527131783,
|
3073 |
+
"grad_norm": 1.1682835817337036,
|
3074 |
+
"learning_rate": 4.370689655172414e-06,
|
3075 |
+
"loss": 0.9593,
|
3076 |
+
"step": 429
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 0.4444444444444444,
|
3080 |
+
"grad_norm": 1.4189906120300293,
|
3081 |
+
"learning_rate": 4.367816091954023e-06,
|
3082 |
+
"loss": 0.9598,
|
3083 |
+
"step": 430
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 0.4454780361757106,
|
3087 |
+
"grad_norm": 1.4035252332687378,
|
3088 |
+
"learning_rate": 4.3649425287356325e-06,
|
3089 |
+
"loss": 0.9726,
|
3090 |
+
"step": 431
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"epoch": 0.44651162790697674,
|
3094 |
+
"grad_norm": 1.3095788955688477,
|
3095 |
+
"learning_rate": 4.362068965517242e-06,
|
3096 |
+
"loss": 0.9867,
|
3097 |
+
"step": 432
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"epoch": 0.4475452196382429,
|
3101 |
+
"grad_norm": 1.5546255111694336,
|
3102 |
+
"learning_rate": 4.359195402298851e-06,
|
3103 |
+
"loss": 0.9851,
|
3104 |
+
"step": 433
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.44857881136950906,
|
3108 |
+
"grad_norm": 1.545753002166748,
|
3109 |
+
"learning_rate": 4.35632183908046e-06,
|
3110 |
+
"loss": 1.002,
|
3111 |
+
"step": 434
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.4496124031007752,
|
3115 |
+
"grad_norm": 1.5164129734039307,
|
3116 |
+
"learning_rate": 4.353448275862069e-06,
|
3117 |
+
"loss": 0.9835,
|
3118 |
+
"step": 435
|
3119 |
+
},
|
3120 |
+
{
|
3121 |
+
"epoch": 0.4506459948320413,
|
3122 |
+
"grad_norm": 1.285075306892395,
|
3123 |
+
"learning_rate": 4.350574712643679e-06,
|
3124 |
+
"loss": 0.991,
|
3125 |
+
"step": 436
|
3126 |
+
},
|
3127 |
+
{
|
3128 |
+
"epoch": 0.4516795865633075,
|
3129 |
+
"grad_norm": 1.2409052848815918,
|
3130 |
+
"learning_rate": 4.347701149425288e-06,
|
3131 |
+
"loss": 0.9413,
|
3132 |
+
"step": 437
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 0.45271317829457364,
|
3136 |
+
"grad_norm": 1.6471928358078003,
|
3137 |
+
"learning_rate": 4.3448275862068965e-06,
|
3138 |
+
"loss": 0.9642,
|
3139 |
+
"step": 438
|
3140 |
+
},
|
3141 |
+
{
|
3142 |
+
"epoch": 0.4537467700258398,
|
3143 |
+
"grad_norm": 1.3383151292800903,
|
3144 |
+
"learning_rate": 4.341954022988506e-06,
|
3145 |
+
"loss": 0.9621,
|
3146 |
+
"step": 439
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.45478036175710596,
|
3150 |
+
"grad_norm": 1.2632237672805786,
|
3151 |
+
"learning_rate": 4.339080459770116e-06,
|
3152 |
+
"loss": 0.9729,
|
3153 |
+
"step": 440
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.4558139534883721,
|
3157 |
+
"grad_norm": 1.1937509775161743,
|
3158 |
+
"learning_rate": 4.336206896551725e-06,
|
3159 |
+
"loss": 0.987,
|
3160 |
+
"step": 441
|
3161 |
+
},
|
3162 |
+
{
|
3163 |
+
"epoch": 0.4568475452196382,
|
3164 |
+
"grad_norm": 1.5322760343551636,
|
3165 |
+
"learning_rate": 4.333333333333334e-06,
|
3166 |
+
"loss": 0.9693,
|
3167 |
+
"step": 442
|
3168 |
+
},
|
3169 |
+
{
|
3170 |
+
"epoch": 0.4578811369509044,
|
3171 |
+
"grad_norm": 1.3935906887054443,
|
3172 |
+
"learning_rate": 4.330459770114943e-06,
|
3173 |
+
"loss": 0.9734,
|
3174 |
+
"step": 443
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 0.45891472868217054,
|
3178 |
+
"grad_norm": 1.305679440498352,
|
3179 |
+
"learning_rate": 4.327586206896552e-06,
|
3180 |
+
"loss": 0.9886,
|
3181 |
+
"step": 444
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 0.4599483204134367,
|
3185 |
+
"grad_norm": 1.2530243396759033,
|
3186 |
+
"learning_rate": 4.324712643678161e-06,
|
3187 |
+
"loss": 1.0004,
|
3188 |
+
"step": 445
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.46098191214470285,
|
3192 |
+
"grad_norm": 1.4160491228103638,
|
3193 |
+
"learning_rate": 4.3218390804597705e-06,
|
3194 |
+
"loss": 0.9865,
|
3195 |
+
"step": 446
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.462015503875969,
|
3199 |
+
"grad_norm": 1.4170372486114502,
|
3200 |
+
"learning_rate": 4.31896551724138e-06,
|
3201 |
+
"loss": 0.9965,
|
3202 |
+
"step": 447
|
3203 |
+
},
|
3204 |
+
{
|
3205 |
+
"epoch": 0.4630490956072351,
|
3206 |
+
"grad_norm": 1.4800901412963867,
|
3207 |
+
"learning_rate": 4.316091954022989e-06,
|
3208 |
+
"loss": 0.9386,
|
3209 |
+
"step": 448
|
3210 |
+
},
|
3211 |
+
{
|
3212 |
+
"epoch": 0.4640826873385013,
|
3213 |
+
"grad_norm": 1.3258070945739746,
|
3214 |
+
"learning_rate": 4.313218390804598e-06,
|
3215 |
+
"loss": 0.9501,
|
3216 |
+
"step": 449
|
3217 |
+
},
|
3218 |
+
{
|
3219 |
+
"epoch": 0.46511627906976744,
|
3220 |
+
"grad_norm": 1.2615549564361572,
|
3221 |
+
"learning_rate": 4.310344827586207e-06,
|
3222 |
+
"loss": 0.9698,
|
3223 |
+
"step": 450
|
3224 |
+
},
|
3225 |
+
{
|
3226 |
+
"epoch": 0.46511627906976744,
|
3227 |
+
"eval_loss": 1.0821963548660278,
|
3228 |
+
"eval_runtime": 52.7658,
|
3229 |
+
"eval_samples_per_second": 18.952,
|
3230 |
+
"eval_steps_per_second": 0.606,
|
3231 |
+
"step": 450
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 0.4661498708010336,
|
3235 |
+
"grad_norm": 1.5667704343795776,
|
3236 |
+
"learning_rate": 4.307471264367816e-06,
|
3237 |
+
"loss": 0.9839,
|
3238 |
+
"step": 451
|
3239 |
+
},
|
3240 |
+
{
|
3241 |
+
"epoch": 0.46718346253229975,
|
3242 |
+
"grad_norm": 1.287380576133728,
|
3243 |
+
"learning_rate": 4.304597701149425e-06,
|
3244 |
+
"loss": 0.9428,
|
3245 |
+
"step": 452
|
3246 |
+
},
|
3247 |
+
{
|
3248 |
+
"epoch": 0.4682170542635659,
|
3249 |
+
"grad_norm": 1.3471415042877197,
|
3250 |
+
"learning_rate": 4.3017241379310345e-06,
|
3251 |
+
"loss": 0.9671,
|
3252 |
+
"step": 453
|
3253 |
+
},
|
3254 |
+
{
|
3255 |
+
"epoch": 0.469250645994832,
|
3256 |
+
"grad_norm": 1.1595243215560913,
|
3257 |
+
"learning_rate": 4.2988505747126445e-06,
|
3258 |
+
"loss": 0.9905,
|
3259 |
+
"step": 454
|
3260 |
+
},
|
3261 |
+
{
|
3262 |
+
"epoch": 0.4702842377260982,
|
3263 |
+
"grad_norm": 1.6918305158615112,
|
3264 |
+
"learning_rate": 4.295977011494254e-06,
|
3265 |
+
"loss": 0.9637,
|
3266 |
+
"step": 455
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 0.47131782945736433,
|
3270 |
+
"grad_norm": 1.4655194282531738,
|
3271 |
+
"learning_rate": 4.293103448275863e-06,
|
3272 |
+
"loss": 0.9627,
|
3273 |
+
"step": 456
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 0.4723514211886305,
|
3277 |
+
"grad_norm": 1.2935839891433716,
|
3278 |
+
"learning_rate": 4.290229885057471e-06,
|
3279 |
+
"loss": 0.9736,
|
3280 |
+
"step": 457
|
3281 |
+
},
|
3282 |
+
{
|
3283 |
+
"epoch": 0.47338501291989665,
|
3284 |
+
"grad_norm": 1.3914062976837158,
|
3285 |
+
"learning_rate": 4.287356321839081e-06,
|
3286 |
+
"loss": 0.9054,
|
3287 |
+
"step": 458
|
3288 |
+
},
|
3289 |
+
{
|
3290 |
+
"epoch": 0.4744186046511628,
|
3291 |
+
"grad_norm": 1.7281622886657715,
|
3292 |
+
"learning_rate": 4.28448275862069e-06,
|
3293 |
+
"loss": 0.9869,
|
3294 |
+
"step": 459
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 0.4754521963824289,
|
3298 |
+
"grad_norm": 1.552720069885254,
|
3299 |
+
"learning_rate": 4.281609195402299e-06,
|
3300 |
+
"loss": 0.9255,
|
3301 |
+
"step": 460
|
3302 |
+
},
|
3303 |
+
{
|
3304 |
+
"epoch": 0.4764857881136951,
|
3305 |
+
"grad_norm": 1.1797876358032227,
|
3306 |
+
"learning_rate": 4.2787356321839085e-06,
|
3307 |
+
"loss": 0.948,
|
3308 |
+
"step": 461
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 0.47751937984496123,
|
3312 |
+
"grad_norm": 1.426317811012268,
|
3313 |
+
"learning_rate": 4.275862068965518e-06,
|
3314 |
+
"loss": 0.9781,
|
3315 |
+
"step": 462
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 0.4785529715762274,
|
3319 |
+
"grad_norm": 1.3194639682769775,
|
3320 |
+
"learning_rate": 4.272988505747127e-06,
|
3321 |
+
"loss": 1.0075,
|
3322 |
+
"step": 463
|
3323 |
+
},
|
3324 |
+
{
|
3325 |
+
"epoch": 0.47958656330749355,
|
3326 |
+
"grad_norm": 1.493377447128296,
|
3327 |
+
"learning_rate": 4.270114942528736e-06,
|
3328 |
+
"loss": 0.9497,
|
3329 |
+
"step": 464
|
3330 |
+
},
|
3331 |
+
{
|
3332 |
+
"epoch": 0.4806201550387597,
|
3333 |
+
"grad_norm": 1.4328482151031494,
|
3334 |
+
"learning_rate": 4.267241379310345e-06,
|
3335 |
+
"loss": 0.9838,
|
3336 |
+
"step": 465
|
3337 |
+
},
|
3338 |
+
{
|
3339 |
+
"epoch": 0.4816537467700258,
|
3340 |
+
"grad_norm": 1.420423984527588,
|
3341 |
+
"learning_rate": 4.264367816091954e-06,
|
3342 |
+
"loss": 0.9939,
|
3343 |
+
"step": 466
|
3344 |
+
},
|
3345 |
+
{
|
3346 |
+
"epoch": 0.482687338501292,
|
3347 |
+
"grad_norm": 1.3972870111465454,
|
3348 |
+
"learning_rate": 4.261494252873563e-06,
|
3349 |
+
"loss": 1.0312,
|
3350 |
+
"step": 467
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 0.48372093023255813,
|
3354 |
+
"grad_norm": 1.2692211866378784,
|
3355 |
+
"learning_rate": 4.2586206896551725e-06,
|
3356 |
+
"loss": 0.9715,
|
3357 |
+
"step": 468
|
3358 |
+
},
|
3359 |
+
{
|
3360 |
+
"epoch": 0.4847545219638243,
|
3361 |
+
"grad_norm": 1.4559839963912964,
|
3362 |
+
"learning_rate": 4.2557471264367825e-06,
|
3363 |
+
"loss": 1.0095,
|
3364 |
+
"step": 469
|
3365 |
+
},
|
3366 |
+
{
|
3367 |
+
"epoch": 0.48578811369509045,
|
3368 |
+
"grad_norm": 1.3825651407241821,
|
3369 |
+
"learning_rate": 4.252873563218391e-06,
|
3370 |
+
"loss": 0.9871,
|
3371 |
+
"step": 470
|
3372 |
+
},
|
3373 |
+
{
|
3374 |
+
"epoch": 0.4868217054263566,
|
3375 |
+
"grad_norm": 1.1747273206710815,
|
3376 |
+
"learning_rate": 4.25e-06,
|
3377 |
+
"loss": 0.9756,
|
3378 |
+
"step": 471
|
3379 |
+
},
|
3380 |
+
{
|
3381 |
+
"epoch": 0.4878552971576227,
|
3382 |
+
"grad_norm": 1.3212231397628784,
|
3383 |
+
"learning_rate": 4.247126436781609e-06,
|
3384 |
+
"loss": 0.9916,
|
3385 |
+
"step": 472
|
3386 |
+
},
|
3387 |
+
{
|
3388 |
+
"epoch": 0.4888888888888889,
|
3389 |
+
"grad_norm": 1.4103412628173828,
|
3390 |
+
"learning_rate": 4.244252873563219e-06,
|
3391 |
+
"loss": 0.9748,
|
3392 |
+
"step": 473
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 0.48992248062015503,
|
3396 |
+
"grad_norm": 1.3848503828048706,
|
3397 |
+
"learning_rate": 4.241379310344828e-06,
|
3398 |
+
"loss": 0.941,
|
3399 |
+
"step": 474
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 0.4909560723514212,
|
3403 |
+
"grad_norm": 1.3593331575393677,
|
3404 |
+
"learning_rate": 4.238505747126437e-06,
|
3405 |
+
"loss": 0.9571,
|
3406 |
+
"step": 475
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 0.49198966408268735,
|
3410 |
+
"grad_norm": 1.3448289632797241,
|
3411 |
+
"learning_rate": 4.235632183908046e-06,
|
3412 |
+
"loss": 0.9889,
|
3413 |
+
"step": 476
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 0.4930232558139535,
|
3417 |
+
"grad_norm": 1.2616806030273438,
|
3418 |
+
"learning_rate": 4.232758620689656e-06,
|
3419 |
+
"loss": 0.9372,
|
3420 |
+
"step": 477
|
3421 |
+
},
|
3422 |
+
{
|
3423 |
+
"epoch": 0.4940568475452196,
|
3424 |
+
"grad_norm": 1.2876821756362915,
|
3425 |
+
"learning_rate": 4.229885057471265e-06,
|
3426 |
+
"loss": 0.9688,
|
3427 |
+
"step": 478
|
3428 |
+
},
|
3429 |
+
{
|
3430 |
+
"epoch": 0.49509043927648577,
|
3431 |
+
"grad_norm": 1.2750991582870483,
|
3432 |
+
"learning_rate": 4.227011494252874e-06,
|
3433 |
+
"loss": 0.9564,
|
3434 |
+
"step": 479
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 0.49612403100775193,
|
3438 |
+
"grad_norm": 1.4402563571929932,
|
3439 |
+
"learning_rate": 4.224137931034483e-06,
|
3440 |
+
"loss": 0.9376,
|
3441 |
+
"step": 480
|
3442 |
+
},
|
3443 |
+
{
|
3444 |
+
"epoch": 0.4971576227390181,
|
3445 |
+
"grad_norm": 1.5290478467941284,
|
3446 |
+
"learning_rate": 4.221264367816092e-06,
|
3447 |
+
"loss": 0.9947,
|
3448 |
+
"step": 481
|
3449 |
+
},
|
3450 |
+
{
|
3451 |
+
"epoch": 0.49819121447028425,
|
3452 |
+
"grad_norm": 1.6395635604858398,
|
3453 |
+
"learning_rate": 4.218390804597701e-06,
|
3454 |
+
"loss": 0.9764,
|
3455 |
+
"step": 482
|
3456 |
+
},
|
3457 |
+
{
|
3458 |
+
"epoch": 0.4992248062015504,
|
3459 |
+
"grad_norm": 1.3985153436660767,
|
3460 |
+
"learning_rate": 4.2155172413793106e-06,
|
3461 |
+
"loss": 0.9296,
|
3462 |
+
"step": 483
|
3463 |
+
},
|
3464 |
+
{
|
3465 |
+
"epoch": 0.5002583979328166,
|
3466 |
+
"grad_norm": 1.1870092153549194,
|
3467 |
+
"learning_rate": 4.21264367816092e-06,
|
3468 |
+
"loss": 0.9223,
|
3469 |
+
"step": 484
|
3470 |
+
},
|
3471 |
+
{
|
3472 |
+
"epoch": 0.5012919896640827,
|
3473 |
+
"grad_norm": 1.3690369129180908,
|
3474 |
+
"learning_rate": 4.209770114942529e-06,
|
3475 |
+
"loss": 0.9249,
|
3476 |
+
"step": 485
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 0.5023255813953489,
|
3480 |
+
"grad_norm": 1.1812691688537598,
|
3481 |
+
"learning_rate": 4.206896551724138e-06,
|
3482 |
+
"loss": 0.9863,
|
3483 |
+
"step": 486
|
3484 |
+
},
|
3485 |
+
{
|
3486 |
+
"epoch": 0.5033591731266149,
|
3487 |
+
"grad_norm": 1.2263563871383667,
|
3488 |
+
"learning_rate": 4.204022988505748e-06,
|
3489 |
+
"loss": 0.9696,
|
3490 |
+
"step": 487
|
3491 |
+
},
|
3492 |
+
{
|
3493 |
+
"epoch": 0.5043927648578811,
|
3494 |
+
"grad_norm": 1.3079935312271118,
|
3495 |
+
"learning_rate": 4.201149425287357e-06,
|
3496 |
+
"loss": 0.9546,
|
3497 |
+
"step": 488
|
3498 |
+
},
|
3499 |
+
{
|
3500 |
+
"epoch": 0.5054263565891473,
|
3501 |
+
"grad_norm": 1.288635015487671,
|
3502 |
+
"learning_rate": 4.1982758620689654e-06,
|
3503 |
+
"loss": 0.9735,
|
3504 |
+
"step": 489
|
3505 |
+
},
|
3506 |
+
{
|
3507 |
+
"epoch": 0.5064599483204134,
|
3508 |
+
"grad_norm": 1.3041417598724365,
|
3509 |
+
"learning_rate": 4.1954022988505746e-06,
|
3510 |
+
"loss": 0.9615,
|
3511 |
+
"step": 490
|
3512 |
+
},
|
3513 |
+
{
|
3514 |
+
"epoch": 0.5074935400516796,
|
3515 |
+
"grad_norm": 1.2297852039337158,
|
3516 |
+
"learning_rate": 4.1925287356321846e-06,
|
3517 |
+
"loss": 1.0156,
|
3518 |
+
"step": 491
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 0.5085271317829457,
|
3522 |
+
"grad_norm": 1.167002558708191,
|
3523 |
+
"learning_rate": 4.189655172413794e-06,
|
3524 |
+
"loss": 0.9535,
|
3525 |
+
"step": 492
|
3526 |
+
},
|
3527 |
+
{
|
3528 |
+
"epoch": 0.5095607235142119,
|
3529 |
+
"grad_norm": 1.1384843587875366,
|
3530 |
+
"learning_rate": 4.186781609195403e-06,
|
3531 |
+
"loss": 0.9567,
|
3532 |
+
"step": 493
|
3533 |
+
},
|
3534 |
+
{
|
3535 |
+
"epoch": 0.510594315245478,
|
3536 |
+
"grad_norm": 1.6105479001998901,
|
3537 |
+
"learning_rate": 4.183908045977012e-06,
|
3538 |
+
"loss": 1.0121,
|
3539 |
+
"step": 494
|
3540 |
+
},
|
3541 |
+
{
|
3542 |
+
"epoch": 0.5116279069767442,
|
3543 |
+
"grad_norm": 1.397196888923645,
|
3544 |
+
"learning_rate": 4.181034482758621e-06,
|
3545 |
+
"loss": 0.953,
|
3546 |
+
"step": 495
|
3547 |
+
},
|
3548 |
+
{
|
3549 |
+
"epoch": 0.5126614987080104,
|
3550 |
+
"grad_norm": 1.5293458700180054,
|
3551 |
+
"learning_rate": 4.17816091954023e-06,
|
3552 |
+
"loss": 0.9612,
|
3553 |
+
"step": 496
|
3554 |
+
},
|
3555 |
+
{
|
3556 |
+
"epoch": 0.5136950904392765,
|
3557 |
+
"grad_norm": 1.6168063879013062,
|
3558 |
+
"learning_rate": 4.1752873563218394e-06,
|
3559 |
+
"loss": 0.9967,
|
3560 |
+
"step": 497
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 0.5147286821705427,
|
3564 |
+
"grad_norm": 1.3672846555709839,
|
3565 |
+
"learning_rate": 4.1724137931034486e-06,
|
3566 |
+
"loss": 0.9388,
|
3567 |
+
"step": 498
|
3568 |
+
},
|
3569 |
+
{
|
3570 |
+
"epoch": 0.5157622739018087,
|
3571 |
+
"grad_norm": 1.4402540922164917,
|
3572 |
+
"learning_rate": 4.169540229885058e-06,
|
3573 |
+
"loss": 0.9299,
|
3574 |
+
"step": 499
|
3575 |
+
},
|
3576 |
+
{
|
3577 |
+
"epoch": 0.5167958656330749,
|
3578 |
+
"grad_norm": 1.5125951766967773,
|
3579 |
+
"learning_rate": 4.166666666666667e-06,
|
3580 |
+
"loss": 0.9761,
|
3581 |
+
"step": 500
|
3582 |
+
},
|
3583 |
+
{
|
3584 |
+
"epoch": 0.5167958656330749,
|
3585 |
+
"eval_loss": 1.0677101612091064,
|
3586 |
+
"eval_runtime": 52.5704,
|
3587 |
+
"eval_samples_per_second": 19.022,
|
3588 |
+
"eval_steps_per_second": 0.609,
|
3589 |
+
"step": 500
|
3590 |
+
}
|
3591 |
+
],
|
3592 |
+
"logging_steps": 1,
|
3593 |
+
"max_steps": 1934,
|
3594 |
+
"num_input_tokens_seen": 0,
|
3595 |
+
"num_train_epochs": 2,
|
3596 |
+
"save_steps": 500,
|
3597 |
+
"stateful_callbacks": {
|
3598 |
+
"TrainerControl": {
|
3599 |
+
"args": {
|
3600 |
+
"should_epoch_stop": false,
|
3601 |
+
"should_evaluate": false,
|
3602 |
+
"should_log": false,
|
3603 |
+
"should_save": true,
|
3604 |
+
"should_training_stop": false
|
3605 |
+
},
|
3606 |
+
"attributes": {}
|
3607 |
+
}
|
3608 |
+
},
|
3609 |
+
"total_flos": 6.87708552822784e+17,
|
3610 |
+
"train_batch_size": 2,
|
3611 |
+
"trial_name": null,
|
3612 |
+
"trial_params": null
|
3613 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/4d870a72c656404ee7524163ba996bf55050fff252dfe639a90715a9e2c47dba.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/68127c9bc4fab170f7aaf63d5c7ac9e182afd10b74a1c6bb8025afefc11447cb.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7045cf78c68178b626546982d12b6e9c8e289f1bf1e65c42225ed13e07847180.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7250708a789da850ff40a4a5be335971dfa0d2bd7cba2e9905916dab06744d75.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7c8139ab9a4e680ff0e9741c678e26c43788abf0.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/83bba6e26639fb152bd0077977cf6ea8312b42a9.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/c2754167c1cbaf94b9af9c7eb646a2286a596f9ded5e2e3c4c5e6a4464352c9e.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/cbbb3133034e192527e5321b4c679154e4819ab8.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e015e2bc9a26b4e46d77913d8c667608ae7e48aa1eca04af5786c2408f4bc0fa.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e7efa1adc8257218813dcb494bb2a3d5775fa268735ab39e5b8119e233c21462.lock
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/adapter_config.json
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors
ADDED
File without changes
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/7c8139ab9a4e680ff0e9741c678e26c43788abf0
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29540067328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00008-of-00008.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00008.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00008-of-00008.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00008-of-00008.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
524 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
525 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
526 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
527 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
528 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
529 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
530 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
531 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
532 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
533 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
534 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
535 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
536 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
537 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
538 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
539 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
540 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
541 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
542 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
543 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
544 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
545 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
546 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
547 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
548 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
549 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
550 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
551 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
552 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
553 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
554 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
555 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
556 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
557 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
558 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
559 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
560 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
561 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
562 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
563 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
564 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
565 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
566 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
567 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
568 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
569 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
570 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
571 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
572 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
573 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
574 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
575 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
576 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
577 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
578 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
579 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
580 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
581 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
582 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
583 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
584 |
+
"model.norm.weight": "model-00008-of-00008.safetensors"
|
585 |
+
}
|
586 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/83bba6e26639fb152bd0077977cf6ea8312b42a9
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151643,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 13824,
|
12 |
+
"max_position_embeddings": 131072,
|
13 |
+
"max_window_layers": 48,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 40,
|
16 |
+
"num_hidden_layers": 48,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": 131072,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.43.1",
|
24 |
+
"use_cache": true,
|
25 |
+
"use_sliding_window": false,
|
26 |
+
"vocab_size": 152064
|
27 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/cbbb3133034e192527e5321b4c679154e4819ab8
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": false,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.37.0"
|
7 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/refs/main
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
97e1e76335b7017d8f67c08a19d103c0504298c9
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151643,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 13824,
|
12 |
+
"max_position_embeddings": 131072,
|
13 |
+
"max_window_layers": 48,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 40,
|
16 |
+
"num_hidden_layers": 48,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": 131072,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.43.1",
|
24 |
+
"use_cache": true,
|
25 |
+
"use_sliding_window": false,
|
26 |
+
"vocab_size": 152064
|
27 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": false,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.37.0"
|
7 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors.index.json
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29540067328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00008-of-00008.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00008.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00008-of-00008.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00008-of-00008.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
524 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
525 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
526 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
527 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
528 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
529 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
530 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
531 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
532 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
533 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
534 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
535 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
536 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
537 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
538 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
539 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
540 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
541 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
542 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
543 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
544 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
545 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
546 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
547 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
548 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
549 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
550 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
551 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
552 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
553 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
554 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
555 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
556 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
557 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
558 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
559 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
560 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
561 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
562 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
563 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
564 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
565 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
566 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
567 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
568 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
569 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
570 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
571 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
572 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
573 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
|
574 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
|
575 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
|
576 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
577 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
|
578 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
579 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
580 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
|
581 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
582 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
|
583 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
584 |
+
"model.norm.weight": "model-00008-of-00008.safetensors"
|
585 |
+
}
|
586 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-14B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 13824,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 48,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 40,
|
17 |
+
"num_hidden_layers": 48,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.45.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.45.1"
|
6 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1934
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/model.safetensors.index.json
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29540067328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
524 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
525 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
526 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
527 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
528 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
529 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
530 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
531 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
532 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
533 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
534 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
535 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
536 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
537 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
538 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
539 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
540 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
541 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
542 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
543 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
544 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
545 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
546 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
547 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
548 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
549 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
550 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
551 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
552 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
553 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
554 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
555 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
556 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
557 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
558 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
559 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
560 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
561 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
562 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
563 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
564 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
565 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
566 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
567 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
568 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
569 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
570 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
571 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
572 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
573 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
574 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
575 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
576 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
577 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
578 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
579 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
580 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
581 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
582 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
583 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
584 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
585 |
+
}
|
586 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-14B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 13824,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 48,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 40,
|
17 |
+
"num_hidden_layers": 48,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.45.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.45.1"
|
6 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step500
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/model.safetensors.index.json
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29540067328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
524 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
525 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
526 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
527 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
528 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
529 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
530 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
531 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
532 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
533 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
534 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
535 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
536 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
537 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
538 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
539 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
540 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
541 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
542 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
543 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
544 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
545 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
546 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
547 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
548 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
549 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
550 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
551 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
552 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
553 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
554 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
555 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
556 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
557 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
558 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
559 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
560 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
561 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
562 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
563 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
564 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
565 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
566 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
567 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
568 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
569 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
570 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
571 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
572 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
573 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
574 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
575 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
576 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
577 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
578 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
579 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
580 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
581 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
582 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
583 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
584 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
585 |
+
}
|
586 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,3613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.5167958656330749,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0010335917312661498,
|
13 |
+
"grad_norm": 0.0,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.7469,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0020671834625322996,
|
20 |
+
"grad_norm": 0.0,
|
21 |
+
"learning_rate": 0.0,
|
22 |
+
"loss": 1.7373,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0031007751937984496,
|
27 |
+
"grad_norm": 0.0,
|
28 |
+
"learning_rate": 0.0,
|
29 |
+
"loss": 1.7672,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.004134366925064599,
|
34 |
+
"grad_norm": 0.0,
|
35 |
+
"learning_rate": 0.0,
|
36 |
+
"loss": 1.7292,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00516795865633075,
|
41 |
+
"grad_norm": 0.0,
|
42 |
+
"learning_rate": 0.0,
|
43 |
+
"loss": 1.7527,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.006201550387596899,
|
48 |
+
"grad_norm": 0.0,
|
49 |
+
"learning_rate": 0.0,
|
50 |
+
"loss": 1.764,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.007235142118863049,
|
55 |
+
"grad_norm": 0.0,
|
56 |
+
"learning_rate": 0.0,
|
57 |
+
"loss": 1.7631,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.008268733850129198,
|
62 |
+
"grad_norm": 0.0,
|
63 |
+
"learning_rate": 0.0,
|
64 |
+
"loss": 1.743,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.009302325581395349,
|
69 |
+
"grad_norm": 0.0,
|
70 |
+
"learning_rate": 0.0,
|
71 |
+
"loss": 1.7658,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0103359173126615,
|
76 |
+
"grad_norm": 0.0,
|
77 |
+
"learning_rate": 0.0,
|
78 |
+
"loss": 1.7763,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.011369509043927648,
|
83 |
+
"grad_norm": 0.0,
|
84 |
+
"learning_rate": 0.0,
|
85 |
+
"loss": 1.7739,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.012403100775193798,
|
90 |
+
"grad_norm": 0.0,
|
91 |
+
"learning_rate": 0.0,
|
92 |
+
"loss": 1.7558,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.013436692506459949,
|
97 |
+
"grad_norm": 0.0,
|
98 |
+
"learning_rate": 0.0,
|
99 |
+
"loss": 1.7536,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.014470284237726097,
|
104 |
+
"grad_norm": 0.0,
|
105 |
+
"learning_rate": 0.0,
|
106 |
+
"loss": 1.7285,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.015503875968992248,
|
111 |
+
"grad_norm": 0.0,
|
112 |
+
"learning_rate": 0.0,
|
113 |
+
"loss": 1.7508,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.016537467700258397,
|
118 |
+
"grad_norm": 0.0,
|
119 |
+
"learning_rate": 0.0,
|
120 |
+
"loss": 1.753,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.01757105943152455,
|
125 |
+
"grad_norm": 3.294677734375,
|
126 |
+
"learning_rate": 2.5773195876288662e-08,
|
127 |
+
"loss": 1.7609,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.018604651162790697,
|
132 |
+
"grad_norm": 3.3554086685180664,
|
133 |
+
"learning_rate": 5.1546391752577325e-08,
|
134 |
+
"loss": 1.7881,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.019638242894056846,
|
139 |
+
"grad_norm": 2.9532411098480225,
|
140 |
+
"learning_rate": 7.731958762886598e-08,
|
141 |
+
"loss": 1.7593,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.020671834625323,
|
146 |
+
"grad_norm": 2.7428970336914062,
|
147 |
+
"learning_rate": 1.0309278350515465e-07,
|
148 |
+
"loss": 1.7514,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.021705426356589147,
|
153 |
+
"grad_norm": 2.5760021209716797,
|
154 |
+
"learning_rate": 1.288659793814433e-07,
|
155 |
+
"loss": 1.7519,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.022739018087855296,
|
160 |
+
"grad_norm": 3.8851864337921143,
|
161 |
+
"learning_rate": 1.5463917525773197e-07,
|
162 |
+
"loss": 1.7453,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.023772609819121448,
|
167 |
+
"grad_norm": 3.3514232635498047,
|
168 |
+
"learning_rate": 1.804123711340206e-07,
|
169 |
+
"loss": 1.7524,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.024806201550387597,
|
174 |
+
"grad_norm": 3.9262187480926514,
|
175 |
+
"learning_rate": 2.061855670103093e-07,
|
176 |
+
"loss": 1.7754,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.025839793281653745,
|
181 |
+
"grad_norm": 3.5925371646881104,
|
182 |
+
"learning_rate": 2.3195876288659797e-07,
|
183 |
+
"loss": 1.7711,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.026873385012919897,
|
188 |
+
"grad_norm": 3.2370054721832275,
|
189 |
+
"learning_rate": 2.577319587628866e-07,
|
190 |
+
"loss": 1.7327,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.027906976744186046,
|
195 |
+
"grad_norm": 2.7215564250946045,
|
196 |
+
"learning_rate": 2.8350515463917527e-07,
|
197 |
+
"loss": 1.7457,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.028940568475452195,
|
202 |
+
"grad_norm": 3.2791647911071777,
|
203 |
+
"learning_rate": 3.0927835051546394e-07,
|
204 |
+
"loss": 1.7645,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.029974160206718347,
|
209 |
+
"grad_norm": 2.451993942260742,
|
210 |
+
"learning_rate": 3.350515463917526e-07,
|
211 |
+
"loss": 1.7544,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.031007751937984496,
|
216 |
+
"grad_norm": 2.290065288543701,
|
217 |
+
"learning_rate": 3.608247422680412e-07,
|
218 |
+
"loss": 1.7698,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03204134366925065,
|
223 |
+
"grad_norm": 1.9393961429595947,
|
224 |
+
"learning_rate": 3.8659793814432993e-07,
|
225 |
+
"loss": 1.7214,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.03307493540051679,
|
230 |
+
"grad_norm": 2.158582925796509,
|
231 |
+
"learning_rate": 4.123711340206186e-07,
|
232 |
+
"loss": 1.7211,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.034108527131782945,
|
237 |
+
"grad_norm": 1.6859667301177979,
|
238 |
+
"learning_rate": 4.381443298969072e-07,
|
239 |
+
"loss": 1.7438,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.0351421188630491,
|
244 |
+
"grad_norm": 1.663550615310669,
|
245 |
+
"learning_rate": 4.6391752577319593e-07,
|
246 |
+
"loss": 1.7394,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.03617571059431524,
|
251 |
+
"grad_norm": 1.6059417724609375,
|
252 |
+
"learning_rate": 4.896907216494846e-07,
|
253 |
+
"loss": 1.7381,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.037209302325581395,
|
258 |
+
"grad_norm": 1.9995272159576416,
|
259 |
+
"learning_rate": 5.154639175257732e-07,
|
260 |
+
"loss": 1.7384,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.03824289405684755,
|
265 |
+
"grad_norm": 2.1068830490112305,
|
266 |
+
"learning_rate": 5.412371134020619e-07,
|
267 |
+
"loss": 1.7148,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.03927648578811369,
|
272 |
+
"grad_norm": 1.5573288202285767,
|
273 |
+
"learning_rate": 5.670103092783505e-07,
|
274 |
+
"loss": 1.6775,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.040310077519379844,
|
279 |
+
"grad_norm": 1.5803656578063965,
|
280 |
+
"learning_rate": 5.927835051546392e-07,
|
281 |
+
"loss": 1.7361,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.041343669250646,
|
286 |
+
"grad_norm": 1.535320520401001,
|
287 |
+
"learning_rate": 6.185567010309279e-07,
|
288 |
+
"loss": 1.7238,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.04237726098191214,
|
293 |
+
"grad_norm": 1.4646360874176025,
|
294 |
+
"learning_rate": 6.443298969072165e-07,
|
295 |
+
"loss": 1.7127,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.043410852713178294,
|
300 |
+
"grad_norm": 1.7842413187026978,
|
301 |
+
"learning_rate": 6.701030927835052e-07,
|
302 |
+
"loss": 1.7335,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.044444444444444446,
|
307 |
+
"grad_norm": 1.287598967552185,
|
308 |
+
"learning_rate": 6.958762886597939e-07,
|
309 |
+
"loss": 1.681,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.04547803617571059,
|
314 |
+
"grad_norm": 1.4461113214492798,
|
315 |
+
"learning_rate": 7.216494845360824e-07,
|
316 |
+
"loss": 1.6995,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.046511627906976744,
|
321 |
+
"grad_norm": 1.3189141750335693,
|
322 |
+
"learning_rate": 7.474226804123711e-07,
|
323 |
+
"loss": 1.6825,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.047545219638242896,
|
328 |
+
"grad_norm": 1.305091142654419,
|
329 |
+
"learning_rate": 7.731958762886599e-07,
|
330 |
+
"loss": 1.6656,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.04857881136950904,
|
335 |
+
"grad_norm": 1.203321099281311,
|
336 |
+
"learning_rate": 7.989690721649485e-07,
|
337 |
+
"loss": 1.6695,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.04961240310077519,
|
342 |
+
"grad_norm": 1.3265272378921509,
|
343 |
+
"learning_rate": 8.247422680412372e-07,
|
344 |
+
"loss": 1.6644,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.050645994832041345,
|
349 |
+
"grad_norm": 1.613187313079834,
|
350 |
+
"learning_rate": 8.505154639175259e-07,
|
351 |
+
"loss": 1.673,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.05167958656330749,
|
356 |
+
"grad_norm": 1.8446052074432373,
|
357 |
+
"learning_rate": 8.762886597938144e-07,
|
358 |
+
"loss": 1.6362,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.05167958656330749,
|
363 |
+
"eval_loss": 1.6590594053268433,
|
364 |
+
"eval_runtime": 47.8421,
|
365 |
+
"eval_samples_per_second": 20.902,
|
366 |
+
"eval_steps_per_second": 0.669,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.05271317829457364,
|
371 |
+
"grad_norm": 1.5133100748062134,
|
372 |
+
"learning_rate": 9.020618556701031e-07,
|
373 |
+
"loss": 1.6278,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.053746770025839795,
|
378 |
+
"grad_norm": 1.6770209074020386,
|
379 |
+
"learning_rate": 9.278350515463919e-07,
|
380 |
+
"loss": 1.6379,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.05478036175710594,
|
385 |
+
"grad_norm": 1.5879249572753906,
|
386 |
+
"learning_rate": 9.536082474226805e-07,
|
387 |
+
"loss": 1.6203,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.05581395348837209,
|
392 |
+
"grad_norm": 2.090453863143921,
|
393 |
+
"learning_rate": 9.793814432989692e-07,
|
394 |
+
"loss": 1.6323,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.056847545219638244,
|
399 |
+
"grad_norm": 1.4961861371994019,
|
400 |
+
"learning_rate": 1.005154639175258e-06,
|
401 |
+
"loss": 1.5958,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.05788113695090439,
|
406 |
+
"grad_norm": 1.6027110815048218,
|
407 |
+
"learning_rate": 1.0309278350515464e-06,
|
408 |
+
"loss": 1.5987,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.05891472868217054,
|
413 |
+
"grad_norm": 1.8416661024093628,
|
414 |
+
"learning_rate": 1.0567010309278351e-06,
|
415 |
+
"loss": 1.5536,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.059948320413436694,
|
420 |
+
"grad_norm": 1.5269109010696411,
|
421 |
+
"learning_rate": 1.0824742268041239e-06,
|
422 |
+
"loss": 1.5569,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.06098191214470284,
|
427 |
+
"grad_norm": 1.7397830486297607,
|
428 |
+
"learning_rate": 1.1082474226804124e-06,
|
429 |
+
"loss": 1.5512,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.06201550387596899,
|
434 |
+
"grad_norm": 1.7923859357833862,
|
435 |
+
"learning_rate": 1.134020618556701e-06,
|
436 |
+
"loss": 1.5562,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.06304909560723514,
|
441 |
+
"grad_norm": 1.4901388883590698,
|
442 |
+
"learning_rate": 1.1597938144329898e-06,
|
443 |
+
"loss": 1.5431,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.0640826873385013,
|
448 |
+
"grad_norm": 1.6800209283828735,
|
449 |
+
"learning_rate": 1.1855670103092783e-06,
|
450 |
+
"loss": 1.5266,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.06511627906976744,
|
455 |
+
"grad_norm": 1.9110485315322876,
|
456 |
+
"learning_rate": 1.211340206185567e-06,
|
457 |
+
"loss": 1.5346,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.06614987080103359,
|
462 |
+
"grad_norm": 2.066371440887451,
|
463 |
+
"learning_rate": 1.2371134020618557e-06,
|
464 |
+
"loss": 1.5244,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.06718346253229975,
|
469 |
+
"grad_norm": 1.4916744232177734,
|
470 |
+
"learning_rate": 1.2628865979381445e-06,
|
471 |
+
"loss": 1.516,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.06821705426356589,
|
476 |
+
"grad_norm": 1.6237688064575195,
|
477 |
+
"learning_rate": 1.288659793814433e-06,
|
478 |
+
"loss": 1.5123,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.06925064599483204,
|
483 |
+
"grad_norm": 1.643630027770996,
|
484 |
+
"learning_rate": 1.314432989690722e-06,
|
485 |
+
"loss": 1.4794,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.0702842377260982,
|
490 |
+
"grad_norm": 1.4067258834838867,
|
491 |
+
"learning_rate": 1.3402061855670104e-06,
|
492 |
+
"loss": 1.4954,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.07131782945736434,
|
497 |
+
"grad_norm": 1.4735355377197266,
|
498 |
+
"learning_rate": 1.365979381443299e-06,
|
499 |
+
"loss": 1.4949,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.07235142118863049,
|
504 |
+
"grad_norm": 1.4811455011367798,
|
505 |
+
"learning_rate": 1.3917525773195878e-06,
|
506 |
+
"loss": 1.5264,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.07338501291989664,
|
511 |
+
"grad_norm": 1.1310720443725586,
|
512 |
+
"learning_rate": 1.4175257731958764e-06,
|
513 |
+
"loss": 1.5018,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.07441860465116279,
|
518 |
+
"grad_norm": 1.6779255867004395,
|
519 |
+
"learning_rate": 1.4432989690721649e-06,
|
520 |
+
"loss": 1.4662,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.07545219638242893,
|
525 |
+
"grad_norm": 1.1733572483062744,
|
526 |
+
"learning_rate": 1.4690721649484538e-06,
|
527 |
+
"loss": 1.4903,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.0764857881136951,
|
532 |
+
"grad_norm": 1.7176299095153809,
|
533 |
+
"learning_rate": 1.4948453608247423e-06,
|
534 |
+
"loss": 1.4544,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.07751937984496124,
|
539 |
+
"grad_norm": 1.333526849746704,
|
540 |
+
"learning_rate": 1.520618556701031e-06,
|
541 |
+
"loss": 1.4476,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.07855297157622738,
|
546 |
+
"grad_norm": 1.4169801473617554,
|
547 |
+
"learning_rate": 1.5463917525773197e-06,
|
548 |
+
"loss": 1.5011,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.07958656330749354,
|
553 |
+
"grad_norm": 1.4367135763168335,
|
554 |
+
"learning_rate": 1.5721649484536082e-06,
|
555 |
+
"loss": 1.4157,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.08062015503875969,
|
560 |
+
"grad_norm": 1.4957133531570435,
|
561 |
+
"learning_rate": 1.597938144329897e-06,
|
562 |
+
"loss": 1.4575,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.08165374677002583,
|
567 |
+
"grad_norm": 1.357630729675293,
|
568 |
+
"learning_rate": 1.6237113402061857e-06,
|
569 |
+
"loss": 1.4428,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.082687338501292,
|
574 |
+
"grad_norm": 1.884421706199646,
|
575 |
+
"learning_rate": 1.6494845360824744e-06,
|
576 |
+
"loss": 1.4447,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.08372093023255814,
|
581 |
+
"grad_norm": 1.6526613235473633,
|
582 |
+
"learning_rate": 1.675257731958763e-06,
|
583 |
+
"loss": 1.4589,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.08475452196382428,
|
588 |
+
"grad_norm": 1.6600714921951294,
|
589 |
+
"learning_rate": 1.7010309278350518e-06,
|
590 |
+
"loss": 1.4118,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.08578811369509044,
|
595 |
+
"grad_norm": 1.6676090955734253,
|
596 |
+
"learning_rate": 1.7268041237113403e-06,
|
597 |
+
"loss": 1.419,
|
598 |
+
"step": 83
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.08682170542635659,
|
602 |
+
"grad_norm": 1.312245488166809,
|
603 |
+
"learning_rate": 1.7525773195876288e-06,
|
604 |
+
"loss": 1.4401,
|
605 |
+
"step": 84
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.08785529715762273,
|
609 |
+
"grad_norm": 1.5149967670440674,
|
610 |
+
"learning_rate": 1.7783505154639178e-06,
|
611 |
+
"loss": 1.4079,
|
612 |
+
"step": 85
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.08888888888888889,
|
616 |
+
"grad_norm": 1.487531065940857,
|
617 |
+
"learning_rate": 1.8041237113402063e-06,
|
618 |
+
"loss": 1.4028,
|
619 |
+
"step": 86
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.08992248062015504,
|
623 |
+
"grad_norm": 1.6969867944717407,
|
624 |
+
"learning_rate": 1.8298969072164948e-06,
|
625 |
+
"loss": 1.4423,
|
626 |
+
"step": 87
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.09095607235142118,
|
630 |
+
"grad_norm": 1.786713719367981,
|
631 |
+
"learning_rate": 1.8556701030927837e-06,
|
632 |
+
"loss": 1.4331,
|
633 |
+
"step": 88
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.09198966408268734,
|
637 |
+
"grad_norm": 1.43896484375,
|
638 |
+
"learning_rate": 1.8814432989690722e-06,
|
639 |
+
"loss": 1.4063,
|
640 |
+
"step": 89
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.09302325581395349,
|
644 |
+
"grad_norm": 2.0026865005493164,
|
645 |
+
"learning_rate": 1.907216494845361e-06,
|
646 |
+
"loss": 1.3993,
|
647 |
+
"step": 90
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.09405684754521963,
|
651 |
+
"grad_norm": 1.7065625190734863,
|
652 |
+
"learning_rate": 1.9329896907216497e-06,
|
653 |
+
"loss": 1.4029,
|
654 |
+
"step": 91
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.09509043927648579,
|
658 |
+
"grad_norm": 1.3610997200012207,
|
659 |
+
"learning_rate": 1.9587628865979384e-06,
|
660 |
+
"loss": 1.4246,
|
661 |
+
"step": 92
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.09612403100775194,
|
665 |
+
"grad_norm": 1.799842357635498,
|
666 |
+
"learning_rate": 1.9845360824742267e-06,
|
667 |
+
"loss": 1.4015,
|
668 |
+
"step": 93
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.09715762273901808,
|
672 |
+
"grad_norm": 1.0985530614852905,
|
673 |
+
"learning_rate": 2.010309278350516e-06,
|
674 |
+
"loss": 1.4481,
|
675 |
+
"step": 94
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.09819121447028424,
|
679 |
+
"grad_norm": 1.4739775657653809,
|
680 |
+
"learning_rate": 2.036082474226804e-06,
|
681 |
+
"loss": 1.4271,
|
682 |
+
"step": 95
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.09922480620155039,
|
686 |
+
"grad_norm": 1.3937931060791016,
|
687 |
+
"learning_rate": 2.061855670103093e-06,
|
688 |
+
"loss": 1.4002,
|
689 |
+
"step": 96
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.10025839793281653,
|
693 |
+
"grad_norm": 1.3285835981369019,
|
694 |
+
"learning_rate": 2.0876288659793816e-06,
|
695 |
+
"loss": 1.4201,
|
696 |
+
"step": 97
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.10129198966408269,
|
700 |
+
"grad_norm": 1.7354886531829834,
|
701 |
+
"learning_rate": 2.1134020618556703e-06,
|
702 |
+
"loss": 1.3842,
|
703 |
+
"step": 98
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.10232558139534884,
|
707 |
+
"grad_norm": 1.8828879594802856,
|
708 |
+
"learning_rate": 2.139175257731959e-06,
|
709 |
+
"loss": 1.3836,
|
710 |
+
"step": 99
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.10335917312661498,
|
714 |
+
"grad_norm": 1.6674432754516602,
|
715 |
+
"learning_rate": 2.1649484536082477e-06,
|
716 |
+
"loss": 1.3623,
|
717 |
+
"step": 100
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.10335917312661498,
|
721 |
+
"eval_loss": 1.4376535415649414,
|
722 |
+
"eval_runtime": 47.7079,
|
723 |
+
"eval_samples_per_second": 20.961,
|
724 |
+
"eval_steps_per_second": 0.671,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.10439276485788114,
|
729 |
+
"grad_norm": 1.6396552324295044,
|
730 |
+
"learning_rate": 2.1907216494845364e-06,
|
731 |
+
"loss": 1.4139,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.10542635658914729,
|
736 |
+
"grad_norm": 1.4648929834365845,
|
737 |
+
"learning_rate": 2.2164948453608247e-06,
|
738 |
+
"loss": 1.3518,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.10645994832041343,
|
743 |
+
"grad_norm": 1.3640034198760986,
|
744 |
+
"learning_rate": 2.242268041237114e-06,
|
745 |
+
"loss": 1.368,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.10749354005167959,
|
750 |
+
"grad_norm": 1.8199163675308228,
|
751 |
+
"learning_rate": 2.268041237113402e-06,
|
752 |
+
"loss": 1.3712,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.10852713178294573,
|
757 |
+
"grad_norm": 1.469482421875,
|
758 |
+
"learning_rate": 2.293814432989691e-06,
|
759 |
+
"loss": 1.4095,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.10956072351421188,
|
764 |
+
"grad_norm": 1.8030418157577515,
|
765 |
+
"learning_rate": 2.3195876288659796e-06,
|
766 |
+
"loss": 1.3821,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.11059431524547804,
|
771 |
+
"grad_norm": 1.5513843297958374,
|
772 |
+
"learning_rate": 2.3453608247422683e-06,
|
773 |
+
"loss": 1.3813,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.11162790697674418,
|
778 |
+
"grad_norm": 1.3880162239074707,
|
779 |
+
"learning_rate": 2.3711340206185566e-06,
|
780 |
+
"loss": 1.3776,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.11266149870801033,
|
785 |
+
"grad_norm": 1.77285897731781,
|
786 |
+
"learning_rate": 2.3969072164948458e-06,
|
787 |
+
"loss": 1.4228,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.11369509043927649,
|
792 |
+
"grad_norm": 1.7808395624160767,
|
793 |
+
"learning_rate": 2.422680412371134e-06,
|
794 |
+
"loss": 1.331,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.11472868217054263,
|
799 |
+
"grad_norm": 1.3493247032165527,
|
800 |
+
"learning_rate": 2.4484536082474228e-06,
|
801 |
+
"loss": 1.3437,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.11576227390180878,
|
806 |
+
"grad_norm": 1.8478275537490845,
|
807 |
+
"learning_rate": 2.4742268041237115e-06,
|
808 |
+
"loss": 1.3572,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.11679586563307494,
|
813 |
+
"grad_norm": 1.654219627380371,
|
814 |
+
"learning_rate": 2.5e-06,
|
815 |
+
"loss": 1.3514,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.11782945736434108,
|
820 |
+
"grad_norm": 2.001561164855957,
|
821 |
+
"learning_rate": 2.525773195876289e-06,
|
822 |
+
"loss": 1.3659,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.11886304909560723,
|
827 |
+
"grad_norm": 1.4977449178695679,
|
828 |
+
"learning_rate": 2.5515463917525772e-06,
|
829 |
+
"loss": 1.3793,
|
830 |
+
"step": 115
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.11989664082687339,
|
834 |
+
"grad_norm": 1.5144399404525757,
|
835 |
+
"learning_rate": 2.577319587628866e-06,
|
836 |
+
"loss": 1.2933,
|
837 |
+
"step": 116
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.12093023255813953,
|
841 |
+
"grad_norm": 1.8202881813049316,
|
842 |
+
"learning_rate": 2.603092783505155e-06,
|
843 |
+
"loss": 1.3358,
|
844 |
+
"step": 117
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.12196382428940568,
|
848 |
+
"grad_norm": 1.6713426113128662,
|
849 |
+
"learning_rate": 2.628865979381444e-06,
|
850 |
+
"loss": 1.3282,
|
851 |
+
"step": 118
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.12299741602067184,
|
855 |
+
"grad_norm": 1.6758774518966675,
|
856 |
+
"learning_rate": 2.654639175257732e-06,
|
857 |
+
"loss": 1.3103,
|
858 |
+
"step": 119
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.12403100775193798,
|
862 |
+
"grad_norm": 1.8854079246520996,
|
863 |
+
"learning_rate": 2.680412371134021e-06,
|
864 |
+
"loss": 1.3777,
|
865 |
+
"step": 120
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.12506459948320414,
|
869 |
+
"grad_norm": 1.1594630479812622,
|
870 |
+
"learning_rate": 2.7061855670103095e-06,
|
871 |
+
"loss": 1.3589,
|
872 |
+
"step": 121
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.12609819121447027,
|
876 |
+
"grad_norm": 1.8433988094329834,
|
877 |
+
"learning_rate": 2.731958762886598e-06,
|
878 |
+
"loss": 1.3359,
|
879 |
+
"step": 122
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.12713178294573643,
|
883 |
+
"grad_norm": 1.655373454093933,
|
884 |
+
"learning_rate": 2.757731958762887e-06,
|
885 |
+
"loss": 1.3365,
|
886 |
+
"step": 123
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.1281653746770026,
|
890 |
+
"grad_norm": 1.3723413944244385,
|
891 |
+
"learning_rate": 2.7835051546391757e-06,
|
892 |
+
"loss": 1.3367,
|
893 |
+
"step": 124
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.12919896640826872,
|
897 |
+
"grad_norm": 1.4864723682403564,
|
898 |
+
"learning_rate": 2.809278350515464e-06,
|
899 |
+
"loss": 1.3313,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.13023255813953488,
|
904 |
+
"grad_norm": 1.9312248229980469,
|
905 |
+
"learning_rate": 2.8350515463917527e-06,
|
906 |
+
"loss": 1.3337,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.13126614987080104,
|
911 |
+
"grad_norm": 1.6836023330688477,
|
912 |
+
"learning_rate": 2.8608247422680414e-06,
|
913 |
+
"loss": 1.3325,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.13229974160206717,
|
918 |
+
"grad_norm": 1.4429219961166382,
|
919 |
+
"learning_rate": 2.8865979381443297e-06,
|
920 |
+
"loss": 1.3339,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.13333333333333333,
|
925 |
+
"grad_norm": 1.8328365087509155,
|
926 |
+
"learning_rate": 2.912371134020619e-06,
|
927 |
+
"loss": 1.3535,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.1343669250645995,
|
932 |
+
"grad_norm": 1.6869714260101318,
|
933 |
+
"learning_rate": 2.9381443298969076e-06,
|
934 |
+
"loss": 1.3563,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.13540051679586562,
|
939 |
+
"grad_norm": 1.8647464513778687,
|
940 |
+
"learning_rate": 2.9639175257731963e-06,
|
941 |
+
"loss": 1.3431,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.13643410852713178,
|
946 |
+
"grad_norm": 1.4633586406707764,
|
947 |
+
"learning_rate": 2.9896907216494846e-06,
|
948 |
+
"loss": 1.2775,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.13746770025839794,
|
953 |
+
"grad_norm": 1.5387791395187378,
|
954 |
+
"learning_rate": 3.0154639175257733e-06,
|
955 |
+
"loss": 1.3375,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.13850129198966407,
|
960 |
+
"grad_norm": 1.6977742910385132,
|
961 |
+
"learning_rate": 3.041237113402062e-06,
|
962 |
+
"loss": 1.2724,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.13953488372093023,
|
967 |
+
"grad_norm": 1.8981420993804932,
|
968 |
+
"learning_rate": 3.067010309278351e-06,
|
969 |
+
"loss": 1.3518,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.1405684754521964,
|
974 |
+
"grad_norm": 1.464303731918335,
|
975 |
+
"learning_rate": 3.0927835051546395e-06,
|
976 |
+
"loss": 1.3253,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.14160206718346252,
|
981 |
+
"grad_norm": 1.4378321170806885,
|
982 |
+
"learning_rate": 3.118556701030928e-06,
|
983 |
+
"loss": 1.3194,
|
984 |
+
"step": 137
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.14263565891472868,
|
988 |
+
"grad_norm": 1.4051882028579712,
|
989 |
+
"learning_rate": 3.1443298969072165e-06,
|
990 |
+
"loss": 1.3438,
|
991 |
+
"step": 138
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.14366925064599484,
|
995 |
+
"grad_norm": 1.4659231901168823,
|
996 |
+
"learning_rate": 3.170103092783505e-06,
|
997 |
+
"loss": 1.2855,
|
998 |
+
"step": 139
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.14470284237726097,
|
1002 |
+
"grad_norm": 1.6398965120315552,
|
1003 |
+
"learning_rate": 3.195876288659794e-06,
|
1004 |
+
"loss": 1.2988,
|
1005 |
+
"step": 140
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.14573643410852713,
|
1009 |
+
"grad_norm": 2.1323349475860596,
|
1010 |
+
"learning_rate": 3.221649484536083e-06,
|
1011 |
+
"loss": 1.3068,
|
1012 |
+
"step": 141
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.1467700258397933,
|
1016 |
+
"grad_norm": 2.074308395385742,
|
1017 |
+
"learning_rate": 3.2474226804123714e-06,
|
1018 |
+
"loss": 1.3142,
|
1019 |
+
"step": 142
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.14780361757105942,
|
1023 |
+
"grad_norm": 1.7479180097579956,
|
1024 |
+
"learning_rate": 3.27319587628866e-06,
|
1025 |
+
"loss": 1.3224,
|
1026 |
+
"step": 143
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.14883720930232558,
|
1030 |
+
"grad_norm": 1.8256514072418213,
|
1031 |
+
"learning_rate": 3.298969072164949e-06,
|
1032 |
+
"loss": 1.3094,
|
1033 |
+
"step": 144
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.14987080103359174,
|
1037 |
+
"grad_norm": 1.4079580307006836,
|
1038 |
+
"learning_rate": 3.324742268041237e-06,
|
1039 |
+
"loss": 1.3256,
|
1040 |
+
"step": 145
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.15090439276485787,
|
1044 |
+
"grad_norm": 1.598493218421936,
|
1045 |
+
"learning_rate": 3.350515463917526e-06,
|
1046 |
+
"loss": 1.2855,
|
1047 |
+
"step": 146
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.15193798449612403,
|
1051 |
+
"grad_norm": 1.4292045831680298,
|
1052 |
+
"learning_rate": 3.376288659793815e-06,
|
1053 |
+
"loss": 1.3048,
|
1054 |
+
"step": 147
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.1529715762273902,
|
1058 |
+
"grad_norm": 1.9614964723587036,
|
1059 |
+
"learning_rate": 3.4020618556701037e-06,
|
1060 |
+
"loss": 1.3054,
|
1061 |
+
"step": 148
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.15400516795865632,
|
1065 |
+
"grad_norm": 1.69972562789917,
|
1066 |
+
"learning_rate": 3.427835051546392e-06,
|
1067 |
+
"loss": 1.2852,
|
1068 |
+
"step": 149
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.15503875968992248,
|
1072 |
+
"grad_norm": 1.5941336154937744,
|
1073 |
+
"learning_rate": 3.4536082474226807e-06,
|
1074 |
+
"loss": 1.3247,
|
1075 |
+
"step": 150
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.15503875968992248,
|
1079 |
+
"eval_loss": 1.3614064455032349,
|
1080 |
+
"eval_runtime": 47.8004,
|
1081 |
+
"eval_samples_per_second": 20.92,
|
1082 |
+
"eval_steps_per_second": 0.669,
|
1083 |
+
"step": 150
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.15607235142118864,
|
1087 |
+
"grad_norm": 1.6188396215438843,
|
1088 |
+
"learning_rate": 3.4793814432989694e-06,
|
1089 |
+
"loss": 1.3306,
|
1090 |
+
"step": 151
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.15710594315245477,
|
1094 |
+
"grad_norm": 1.3866245746612549,
|
1095 |
+
"learning_rate": 3.5051546391752577e-06,
|
1096 |
+
"loss": 1.3161,
|
1097 |
+
"step": 152
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.15813953488372093,
|
1101 |
+
"grad_norm": 1.398223876953125,
|
1102 |
+
"learning_rate": 3.530927835051547e-06,
|
1103 |
+
"loss": 1.3426,
|
1104 |
+
"step": 153
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.1591731266149871,
|
1108 |
+
"grad_norm": 1.534954309463501,
|
1109 |
+
"learning_rate": 3.5567010309278356e-06,
|
1110 |
+
"loss": 1.3304,
|
1111 |
+
"step": 154
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.16020671834625322,
|
1115 |
+
"grad_norm": 1.5275781154632568,
|
1116 |
+
"learning_rate": 3.582474226804124e-06,
|
1117 |
+
"loss": 1.3096,
|
1118 |
+
"step": 155
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.16124031007751938,
|
1122 |
+
"grad_norm": 1.5809870958328247,
|
1123 |
+
"learning_rate": 3.6082474226804126e-06,
|
1124 |
+
"loss": 1.3282,
|
1125 |
+
"step": 156
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.16227390180878554,
|
1129 |
+
"grad_norm": 1.591422200202942,
|
1130 |
+
"learning_rate": 3.6340206185567013e-06,
|
1131 |
+
"loss": 1.3345,
|
1132 |
+
"step": 157
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.16330749354005167,
|
1136 |
+
"grad_norm": 1.3441708087921143,
|
1137 |
+
"learning_rate": 3.6597938144329896e-06,
|
1138 |
+
"loss": 1.3405,
|
1139 |
+
"step": 158
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.16434108527131783,
|
1143 |
+
"grad_norm": 1.5876100063323975,
|
1144 |
+
"learning_rate": 3.6855670103092787e-06,
|
1145 |
+
"loss": 1.3257,
|
1146 |
+
"step": 159
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.165374677002584,
|
1150 |
+
"grad_norm": 1.5338858366012573,
|
1151 |
+
"learning_rate": 3.7113402061855674e-06,
|
1152 |
+
"loss": 1.3119,
|
1153 |
+
"step": 160
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.16640826873385012,
|
1157 |
+
"grad_norm": 1.53935968875885,
|
1158 |
+
"learning_rate": 3.737113402061856e-06,
|
1159 |
+
"loss": 1.2604,
|
1160 |
+
"step": 161
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.16744186046511628,
|
1164 |
+
"grad_norm": 1.5869868993759155,
|
1165 |
+
"learning_rate": 3.7628865979381445e-06,
|
1166 |
+
"loss": 1.3016,
|
1167 |
+
"step": 162
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.16847545219638244,
|
1171 |
+
"grad_norm": 1.5249017477035522,
|
1172 |
+
"learning_rate": 3.788659793814433e-06,
|
1173 |
+
"loss": 1.3451,
|
1174 |
+
"step": 163
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.16950904392764857,
|
1178 |
+
"grad_norm": 1.4573460817337036,
|
1179 |
+
"learning_rate": 3.814432989690722e-06,
|
1180 |
+
"loss": 1.3037,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.17054263565891473,
|
1185 |
+
"grad_norm": 1.6344059705734253,
|
1186 |
+
"learning_rate": 3.840206185567011e-06,
|
1187 |
+
"loss": 1.2918,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.17157622739018089,
|
1192 |
+
"grad_norm": 1.7674674987792969,
|
1193 |
+
"learning_rate": 3.865979381443299e-06,
|
1194 |
+
"loss": 1.2699,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.17260981912144702,
|
1199 |
+
"grad_norm": 1.7461512088775635,
|
1200 |
+
"learning_rate": 3.891752577319588e-06,
|
1201 |
+
"loss": 1.3533,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.17364341085271318,
|
1206 |
+
"grad_norm": 2.285831928253174,
|
1207 |
+
"learning_rate": 3.917525773195877e-06,
|
1208 |
+
"loss": 1.2838,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.17467700258397933,
|
1213 |
+
"grad_norm": 1.5369038581848145,
|
1214 |
+
"learning_rate": 3.9432989690721655e-06,
|
1215 |
+
"loss": 1.2687,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.17571059431524547,
|
1220 |
+
"grad_norm": 1.6334905624389648,
|
1221 |
+
"learning_rate": 3.969072164948453e-06,
|
1222 |
+
"loss": 1.2232,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.17674418604651163,
|
1227 |
+
"grad_norm": 1.7678533792495728,
|
1228 |
+
"learning_rate": 3.994845360824743e-06,
|
1229 |
+
"loss": 1.3065,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.17777777777777778,
|
1234 |
+
"grad_norm": 1.4618134498596191,
|
1235 |
+
"learning_rate": 4.020618556701032e-06,
|
1236 |
+
"loss": 1.2914,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.17881136950904392,
|
1241 |
+
"grad_norm": 1.7900431156158447,
|
1242 |
+
"learning_rate": 4.04639175257732e-06,
|
1243 |
+
"loss": 1.2476,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.17984496124031008,
|
1248 |
+
"grad_norm": 1.708790898323059,
|
1249 |
+
"learning_rate": 4.072164948453608e-06,
|
1250 |
+
"loss": 1.308,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.18087855297157623,
|
1255 |
+
"grad_norm": 1.3655714988708496,
|
1256 |
+
"learning_rate": 4.097938144329897e-06,
|
1257 |
+
"loss": 1.2606,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.18191214470284237,
|
1262 |
+
"grad_norm": 1.6430952548980713,
|
1263 |
+
"learning_rate": 4.123711340206186e-06,
|
1264 |
+
"loss": 1.2688,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.18294573643410852,
|
1269 |
+
"grad_norm": 1.5826959609985352,
|
1270 |
+
"learning_rate": 4.149484536082475e-06,
|
1271 |
+
"loss": 1.2699,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.18397932816537468,
|
1276 |
+
"grad_norm": 1.387715458869934,
|
1277 |
+
"learning_rate": 4.175257731958763e-06,
|
1278 |
+
"loss": 1.283,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.18501291989664082,
|
1283 |
+
"grad_norm": 1.6880526542663574,
|
1284 |
+
"learning_rate": 4.201030927835052e-06,
|
1285 |
+
"loss": 1.261,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.18604651162790697,
|
1290 |
+
"grad_norm": 1.5378423929214478,
|
1291 |
+
"learning_rate": 4.2268041237113405e-06,
|
1292 |
+
"loss": 1.2676,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.18708010335917313,
|
1297 |
+
"grad_norm": 1.5375232696533203,
|
1298 |
+
"learning_rate": 4.252577319587629e-06,
|
1299 |
+
"loss": 1.2835,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.18811369509043926,
|
1304 |
+
"grad_norm": 1.546204686164856,
|
1305 |
+
"learning_rate": 4.278350515463918e-06,
|
1306 |
+
"loss": 1.2545,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.18914728682170542,
|
1311 |
+
"grad_norm": 1.3169488906860352,
|
1312 |
+
"learning_rate": 4.304123711340207e-06,
|
1313 |
+
"loss": 1.2659,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.19018087855297158,
|
1318 |
+
"grad_norm": 1.4601619243621826,
|
1319 |
+
"learning_rate": 4.329896907216495e-06,
|
1320 |
+
"loss": 1.3015,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.19121447028423771,
|
1325 |
+
"grad_norm": 1.3422333002090454,
|
1326 |
+
"learning_rate": 4.355670103092784e-06,
|
1327 |
+
"loss": 1.2648,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.19224806201550387,
|
1332 |
+
"grad_norm": 1.3259650468826294,
|
1333 |
+
"learning_rate": 4.381443298969073e-06,
|
1334 |
+
"loss": 1.2831,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.19328165374677003,
|
1339 |
+
"grad_norm": 1.3927111625671387,
|
1340 |
+
"learning_rate": 4.407216494845361e-06,
|
1341 |
+
"loss": 1.2696,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.19431524547803616,
|
1346 |
+
"grad_norm": 1.364329218864441,
|
1347 |
+
"learning_rate": 4.4329896907216494e-06,
|
1348 |
+
"loss": 1.2598,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.19534883720930232,
|
1353 |
+
"grad_norm": 1.2551934719085693,
|
1354 |
+
"learning_rate": 4.458762886597939e-06,
|
1355 |
+
"loss": 1.2769,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.19638242894056848,
|
1360 |
+
"grad_norm": 1.4062399864196777,
|
1361 |
+
"learning_rate": 4.484536082474228e-06,
|
1362 |
+
"loss": 1.2705,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.1974160206718346,
|
1367 |
+
"grad_norm": 1.4035496711730957,
|
1368 |
+
"learning_rate": 4.510309278350516e-06,
|
1369 |
+
"loss": 1.2825,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.19844961240310077,
|
1374 |
+
"grad_norm": 1.700435757637024,
|
1375 |
+
"learning_rate": 4.536082474226804e-06,
|
1376 |
+
"loss": 1.2663,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.19948320413436693,
|
1381 |
+
"grad_norm": 1.2739704847335815,
|
1382 |
+
"learning_rate": 4.561855670103093e-06,
|
1383 |
+
"loss": 1.3095,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.20051679586563306,
|
1388 |
+
"grad_norm": 1.2628998756408691,
|
1389 |
+
"learning_rate": 4.587628865979382e-06,
|
1390 |
+
"loss": 1.2704,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.20155038759689922,
|
1395 |
+
"grad_norm": 1.533562421798706,
|
1396 |
+
"learning_rate": 4.6134020618556705e-06,
|
1397 |
+
"loss": 1.2326,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.20258397932816538,
|
1402 |
+
"grad_norm": 1.5663373470306396,
|
1403 |
+
"learning_rate": 4.639175257731959e-06,
|
1404 |
+
"loss": 1.2809,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 0.2036175710594315,
|
1409 |
+
"grad_norm": 1.2257280349731445,
|
1410 |
+
"learning_rate": 4.664948453608248e-06,
|
1411 |
+
"loss": 1.2824,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.20465116279069767,
|
1416 |
+
"grad_norm": 1.496186375617981,
|
1417 |
+
"learning_rate": 4.690721649484537e-06,
|
1418 |
+
"loss": 1.2628,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.20568475452196383,
|
1423 |
+
"grad_norm": 1.5209540128707886,
|
1424 |
+
"learning_rate": 4.716494845360825e-06,
|
1425 |
+
"loss": 1.3015,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.20671834625322996,
|
1430 |
+
"grad_norm": 1.2988780736923218,
|
1431 |
+
"learning_rate": 4.742268041237113e-06,
|
1432 |
+
"loss": 1.252,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.20671834625322996,
|
1437 |
+
"eval_loss": 1.3255563974380493,
|
1438 |
+
"eval_runtime": 47.8452,
|
1439 |
+
"eval_samples_per_second": 20.901,
|
1440 |
+
"eval_steps_per_second": 0.669,
|
1441 |
+
"step": 200
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 0.20775193798449612,
|
1445 |
+
"grad_norm": 1.4737480878829956,
|
1446 |
+
"learning_rate": 4.768041237113403e-06,
|
1447 |
+
"loss": 1.2308,
|
1448 |
+
"step": 201
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.20878552971576228,
|
1452 |
+
"grad_norm": 1.4353716373443604,
|
1453 |
+
"learning_rate": 4.7938144329896915e-06,
|
1454 |
+
"loss": 1.2578,
|
1455 |
+
"step": 202
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.2098191214470284,
|
1459 |
+
"grad_norm": 1.1848849058151245,
|
1460 |
+
"learning_rate": 4.81958762886598e-06,
|
1461 |
+
"loss": 1.2498,
|
1462 |
+
"step": 203
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"epoch": 0.21085271317829457,
|
1466 |
+
"grad_norm": 1.3247244358062744,
|
1467 |
+
"learning_rate": 4.845360824742268e-06,
|
1468 |
+
"loss": 1.2619,
|
1469 |
+
"step": 204
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 0.21188630490956073,
|
1473 |
+
"grad_norm": 1.4854295253753662,
|
1474 |
+
"learning_rate": 4.871134020618557e-06,
|
1475 |
+
"loss": 1.2536,
|
1476 |
+
"step": 205
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 0.21291989664082686,
|
1480 |
+
"grad_norm": 1.5427430868148804,
|
1481 |
+
"learning_rate": 4.8969072164948455e-06,
|
1482 |
+
"loss": 1.2727,
|
1483 |
+
"step": 206
|
1484 |
+
},
|
1485 |
+
{
|
1486 |
+
"epoch": 0.21395348837209302,
|
1487 |
+
"grad_norm": 1.1259032487869263,
|
1488 |
+
"learning_rate": 4.922680412371135e-06,
|
1489 |
+
"loss": 1.2364,
|
1490 |
+
"step": 207
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.21498708010335918,
|
1494 |
+
"grad_norm": 1.374849557876587,
|
1495 |
+
"learning_rate": 4.948453608247423e-06,
|
1496 |
+
"loss": 1.2621,
|
1497 |
+
"step": 208
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.2160206718346253,
|
1501 |
+
"grad_norm": 1.654929518699646,
|
1502 |
+
"learning_rate": 4.974226804123712e-06,
|
1503 |
+
"loss": 1.1872,
|
1504 |
+
"step": 209
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"epoch": 0.21705426356589147,
|
1508 |
+
"grad_norm": 1.6211646795272827,
|
1509 |
+
"learning_rate": 5e-06,
|
1510 |
+
"loss": 1.2585,
|
1511 |
+
"step": 210
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 0.21808785529715763,
|
1515 |
+
"grad_norm": 1.4611238241195679,
|
1516 |
+
"learning_rate": 4.9971264367816096e-06,
|
1517 |
+
"loss": 1.2399,
|
1518 |
+
"step": 211
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 0.21912144702842376,
|
1522 |
+
"grad_norm": 1.6246379613876343,
|
1523 |
+
"learning_rate": 4.994252873563219e-06,
|
1524 |
+
"loss": 1.2592,
|
1525 |
+
"step": 212
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 0.22015503875968992,
|
1529 |
+
"grad_norm": 1.5218091011047363,
|
1530 |
+
"learning_rate": 4.991379310344828e-06,
|
1531 |
+
"loss": 1.2377,
|
1532 |
+
"step": 213
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.22118863049095608,
|
1536 |
+
"grad_norm": 1.5748738050460815,
|
1537 |
+
"learning_rate": 4.988505747126437e-06,
|
1538 |
+
"loss": 1.2072,
|
1539 |
+
"step": 214
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.2222222222222222,
|
1543 |
+
"grad_norm": 1.63685142993927,
|
1544 |
+
"learning_rate": 4.985632183908046e-06,
|
1545 |
+
"loss": 1.3142,
|
1546 |
+
"step": 215
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 0.22325581395348837,
|
1550 |
+
"grad_norm": 1.6139878034591675,
|
1551 |
+
"learning_rate": 4.982758620689655e-06,
|
1552 |
+
"loss": 1.2459,
|
1553 |
+
"step": 216
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 0.22428940568475453,
|
1557 |
+
"grad_norm": 1.648569941520691,
|
1558 |
+
"learning_rate": 4.9798850574712644e-06,
|
1559 |
+
"loss": 1.2329,
|
1560 |
+
"step": 217
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 0.22532299741602066,
|
1564 |
+
"grad_norm": 1.466662883758545,
|
1565 |
+
"learning_rate": 4.977011494252874e-06,
|
1566 |
+
"loss": 1.2421,
|
1567 |
+
"step": 218
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 0.22635658914728682,
|
1571 |
+
"grad_norm": 1.519354224205017,
|
1572 |
+
"learning_rate": 4.9741379310344836e-06,
|
1573 |
+
"loss": 1.2964,
|
1574 |
+
"step": 219
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.22739018087855298,
|
1578 |
+
"grad_norm": 1.6441487073898315,
|
1579 |
+
"learning_rate": 4.971264367816092e-06,
|
1580 |
+
"loss": 1.2484,
|
1581 |
+
"step": 220
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.2284237726098191,
|
1585 |
+
"grad_norm": 1.721964955329895,
|
1586 |
+
"learning_rate": 4.968390804597701e-06,
|
1587 |
+
"loss": 1.2443,
|
1588 |
+
"step": 221
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"epoch": 0.22945736434108527,
|
1592 |
+
"grad_norm": 1.6697990894317627,
|
1593 |
+
"learning_rate": 4.965517241379311e-06,
|
1594 |
+
"loss": 1.2183,
|
1595 |
+
"step": 222
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"epoch": 0.23049095607235143,
|
1599 |
+
"grad_norm": 1.4707998037338257,
|
1600 |
+
"learning_rate": 4.96264367816092e-06,
|
1601 |
+
"loss": 1.2766,
|
1602 |
+
"step": 223
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.23152454780361756,
|
1606 |
+
"grad_norm": 1.960856556892395,
|
1607 |
+
"learning_rate": 4.959770114942529e-06,
|
1608 |
+
"loss": 1.2288,
|
1609 |
+
"step": 224
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 0.23255813953488372,
|
1613 |
+
"grad_norm": 1.502487063407898,
|
1614 |
+
"learning_rate": 4.9568965517241384e-06,
|
1615 |
+
"loss": 1.2393,
|
1616 |
+
"step": 225
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.23359173126614988,
|
1620 |
+
"grad_norm": 1.2606749534606934,
|
1621 |
+
"learning_rate": 4.9540229885057476e-06,
|
1622 |
+
"loss": 1.2697,
|
1623 |
+
"step": 226
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.234625322997416,
|
1627 |
+
"grad_norm": 1.9564929008483887,
|
1628 |
+
"learning_rate": 4.951149425287357e-06,
|
1629 |
+
"loss": 1.272,
|
1630 |
+
"step": 227
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 0.23565891472868217,
|
1634 |
+
"grad_norm": 1.5385324954986572,
|
1635 |
+
"learning_rate": 4.948275862068966e-06,
|
1636 |
+
"loss": 1.2819,
|
1637 |
+
"step": 228
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 0.23669250645994833,
|
1641 |
+
"grad_norm": 1.234011173248291,
|
1642 |
+
"learning_rate": 4.945402298850575e-06,
|
1643 |
+
"loss": 1.2597,
|
1644 |
+
"step": 229
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 0.23772609819121446,
|
1648 |
+
"grad_norm": 1.3302147388458252,
|
1649 |
+
"learning_rate": 4.942528735632184e-06,
|
1650 |
+
"loss": 1.2118,
|
1651 |
+
"step": 230
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 0.23875968992248062,
|
1655 |
+
"grad_norm": 2.138888359069824,
|
1656 |
+
"learning_rate": 4.939655172413793e-06,
|
1657 |
+
"loss": 1.2479,
|
1658 |
+
"step": 231
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.23979328165374678,
|
1662 |
+
"grad_norm": 1.4027204513549805,
|
1663 |
+
"learning_rate": 4.936781609195403e-06,
|
1664 |
+
"loss": 1.2577,
|
1665 |
+
"step": 232
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.2408268733850129,
|
1669 |
+
"grad_norm": 1.064552664756775,
|
1670 |
+
"learning_rate": 4.933908045977012e-06,
|
1671 |
+
"loss": 1.1917,
|
1672 |
+
"step": 233
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 0.24186046511627907,
|
1676 |
+
"grad_norm": 1.5456916093826294,
|
1677 |
+
"learning_rate": 4.931034482758621e-06,
|
1678 |
+
"loss": 1.2093,
|
1679 |
+
"step": 234
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 0.24289405684754523,
|
1683 |
+
"grad_norm": 1.4663442373275757,
|
1684 |
+
"learning_rate": 4.92816091954023e-06,
|
1685 |
+
"loss": 1.2396,
|
1686 |
+
"step": 235
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 0.24392764857881136,
|
1690 |
+
"grad_norm": 1.4049909114837646,
|
1691 |
+
"learning_rate": 4.92528735632184e-06,
|
1692 |
+
"loss": 1.1883,
|
1693 |
+
"step": 236
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"epoch": 0.24496124031007752,
|
1697 |
+
"grad_norm": 1.4005986452102661,
|
1698 |
+
"learning_rate": 4.922413793103449e-06,
|
1699 |
+
"loss": 1.2572,
|
1700 |
+
"step": 237
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.24599483204134368,
|
1704 |
+
"grad_norm": 1.2783763408660889,
|
1705 |
+
"learning_rate": 4.919540229885058e-06,
|
1706 |
+
"loss": 1.2346,
|
1707 |
+
"step": 238
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.2470284237726098,
|
1711 |
+
"grad_norm": 1.2429497241973877,
|
1712 |
+
"learning_rate": 4.9166666666666665e-06,
|
1713 |
+
"loss": 1.212,
|
1714 |
+
"step": 239
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 0.24806201550387597,
|
1718 |
+
"grad_norm": 1.2838530540466309,
|
1719 |
+
"learning_rate": 4.9137931034482765e-06,
|
1720 |
+
"loss": 1.2769,
|
1721 |
+
"step": 240
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 0.24909560723514212,
|
1725 |
+
"grad_norm": 1.1848785877227783,
|
1726 |
+
"learning_rate": 4.910919540229886e-06,
|
1727 |
+
"loss": 1.2526,
|
1728 |
+
"step": 241
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 0.2501291989664083,
|
1732 |
+
"grad_norm": 1.5733468532562256,
|
1733 |
+
"learning_rate": 4.908045977011495e-06,
|
1734 |
+
"loss": 1.2647,
|
1735 |
+
"step": 242
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 0.25116279069767444,
|
1739 |
+
"grad_norm": 1.34541916847229,
|
1740 |
+
"learning_rate": 4.905172413793104e-06,
|
1741 |
+
"loss": 1.2421,
|
1742 |
+
"step": 243
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.25219638242894055,
|
1746 |
+
"grad_norm": 1.6279263496398926,
|
1747 |
+
"learning_rate": 4.902298850574713e-06,
|
1748 |
+
"loss": 1.2265,
|
1749 |
+
"step": 244
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.2532299741602067,
|
1753 |
+
"grad_norm": 1.5125291347503662,
|
1754 |
+
"learning_rate": 4.899425287356322e-06,
|
1755 |
+
"loss": 1.2141,
|
1756 |
+
"step": 245
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 0.25426356589147286,
|
1760 |
+
"grad_norm": 1.299894094467163,
|
1761 |
+
"learning_rate": 4.896551724137931e-06,
|
1762 |
+
"loss": 1.2097,
|
1763 |
+
"step": 246
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 0.255297157622739,
|
1767 |
+
"grad_norm": 1.3731844425201416,
|
1768 |
+
"learning_rate": 4.8936781609195405e-06,
|
1769 |
+
"loss": 1.2145,
|
1770 |
+
"step": 247
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 0.2563307493540052,
|
1774 |
+
"grad_norm": 1.651253581047058,
|
1775 |
+
"learning_rate": 4.89080459770115e-06,
|
1776 |
+
"loss": 1.1912,
|
1777 |
+
"step": 248
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 0.25736434108527134,
|
1781 |
+
"grad_norm": 1.1746879816055298,
|
1782 |
+
"learning_rate": 4.887931034482759e-06,
|
1783 |
+
"loss": 1.2435,
|
1784 |
+
"step": 249
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.25839793281653745,
|
1788 |
+
"grad_norm": 1.2900166511535645,
|
1789 |
+
"learning_rate": 4.885057471264369e-06,
|
1790 |
+
"loss": 1.2003,
|
1791 |
+
"step": 250
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.25839793281653745,
|
1795 |
+
"eval_loss": 1.301725149154663,
|
1796 |
+
"eval_runtime": 48.0635,
|
1797 |
+
"eval_samples_per_second": 20.806,
|
1798 |
+
"eval_steps_per_second": 0.666,
|
1799 |
+
"step": 250
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 0.2594315245478036,
|
1803 |
+
"grad_norm": 1.1423178911209106,
|
1804 |
+
"learning_rate": 4.882183908045978e-06,
|
1805 |
+
"loss": 1.1974,
|
1806 |
+
"step": 251
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.26046511627906976,
|
1810 |
+
"grad_norm": 1.1432229280471802,
|
1811 |
+
"learning_rate": 4.879310344827586e-06,
|
1812 |
+
"loss": 1.2064,
|
1813 |
+
"step": 252
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 0.2614987080103359,
|
1817 |
+
"grad_norm": 1.3829426765441895,
|
1818 |
+
"learning_rate": 4.876436781609195e-06,
|
1819 |
+
"loss": 1.2864,
|
1820 |
+
"step": 253
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.2625322997416021,
|
1824 |
+
"grad_norm": 1.2096635103225708,
|
1825 |
+
"learning_rate": 4.873563218390805e-06,
|
1826 |
+
"loss": 1.1898,
|
1827 |
+
"step": 254
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.26356589147286824,
|
1831 |
+
"grad_norm": 1.4689451456069946,
|
1832 |
+
"learning_rate": 4.8706896551724145e-06,
|
1833 |
+
"loss": 1.2606,
|
1834 |
+
"step": 255
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 0.26459948320413434,
|
1838 |
+
"grad_norm": 1.1531693935394287,
|
1839 |
+
"learning_rate": 4.867816091954024e-06,
|
1840 |
+
"loss": 1.2303,
|
1841 |
+
"step": 256
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 0.2656330749354005,
|
1845 |
+
"grad_norm": 1.7083535194396973,
|
1846 |
+
"learning_rate": 4.864942528735633e-06,
|
1847 |
+
"loss": 1.2353,
|
1848 |
+
"step": 257
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 0.26666666666666666,
|
1852 |
+
"grad_norm": 1.3419526815414429,
|
1853 |
+
"learning_rate": 4.862068965517242e-06,
|
1854 |
+
"loss": 1.2303,
|
1855 |
+
"step": 258
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 0.2677002583979328,
|
1859 |
+
"grad_norm": 1.5559792518615723,
|
1860 |
+
"learning_rate": 4.859195402298851e-06,
|
1861 |
+
"loss": 1.2542,
|
1862 |
+
"step": 259
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.268733850129199,
|
1866 |
+
"grad_norm": 1.5590232610702515,
|
1867 |
+
"learning_rate": 4.85632183908046e-06,
|
1868 |
+
"loss": 1.2268,
|
1869 |
+
"step": 260
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.26976744186046514,
|
1873 |
+
"grad_norm": 1.3497662544250488,
|
1874 |
+
"learning_rate": 4.853448275862069e-06,
|
1875 |
+
"loss": 1.2335,
|
1876 |
+
"step": 261
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 0.27080103359173124,
|
1880 |
+
"grad_norm": 1.4309333562850952,
|
1881 |
+
"learning_rate": 4.8505747126436785e-06,
|
1882 |
+
"loss": 1.2248,
|
1883 |
+
"step": 262
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 0.2718346253229974,
|
1887 |
+
"grad_norm": 1.1154677867889404,
|
1888 |
+
"learning_rate": 4.847701149425288e-06,
|
1889 |
+
"loss": 1.2418,
|
1890 |
+
"step": 263
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 0.27286821705426356,
|
1894 |
+
"grad_norm": 1.1973319053649902,
|
1895 |
+
"learning_rate": 4.844827586206897e-06,
|
1896 |
+
"loss": 1.2194,
|
1897 |
+
"step": 264
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 0.2739018087855297,
|
1901 |
+
"grad_norm": 1.5104105472564697,
|
1902 |
+
"learning_rate": 4.841954022988506e-06,
|
1903 |
+
"loss": 1.2697,
|
1904 |
+
"step": 265
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.2749354005167959,
|
1908 |
+
"grad_norm": 1.4947834014892578,
|
1909 |
+
"learning_rate": 4.839080459770115e-06,
|
1910 |
+
"loss": 1.2369,
|
1911 |
+
"step": 266
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.27596899224806204,
|
1915 |
+
"grad_norm": 1.555356502532959,
|
1916 |
+
"learning_rate": 4.836206896551724e-06,
|
1917 |
+
"loss": 1.2403,
|
1918 |
+
"step": 267
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 0.27700258397932814,
|
1922 |
+
"grad_norm": 1.5942518711090088,
|
1923 |
+
"learning_rate": 4.833333333333333e-06,
|
1924 |
+
"loss": 1.2013,
|
1925 |
+
"step": 268
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 0.2780361757105943,
|
1929 |
+
"grad_norm": 1.271295189857483,
|
1930 |
+
"learning_rate": 4.830459770114943e-06,
|
1931 |
+
"loss": 1.2265,
|
1932 |
+
"step": 269
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 0.27906976744186046,
|
1936 |
+
"grad_norm": 1.4804733991622925,
|
1937 |
+
"learning_rate": 4.8275862068965525e-06,
|
1938 |
+
"loss": 1.2424,
|
1939 |
+
"step": 270
|
1940 |
+
},
|
1941 |
+
{
|
1942 |
+
"epoch": 0.2801033591731266,
|
1943 |
+
"grad_norm": 1.6949542760849,
|
1944 |
+
"learning_rate": 4.824712643678161e-06,
|
1945 |
+
"loss": 1.2162,
|
1946 |
+
"step": 271
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.2811369509043928,
|
1950 |
+
"grad_norm": 1.4015085697174072,
|
1951 |
+
"learning_rate": 4.82183908045977e-06,
|
1952 |
+
"loss": 1.2009,
|
1953 |
+
"step": 272
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.28217054263565894,
|
1957 |
+
"grad_norm": 1.3916239738464355,
|
1958 |
+
"learning_rate": 4.81896551724138e-06,
|
1959 |
+
"loss": 1.2221,
|
1960 |
+
"step": 273
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 0.28320413436692504,
|
1964 |
+
"grad_norm": 1.4600123167037964,
|
1965 |
+
"learning_rate": 4.816091954022989e-06,
|
1966 |
+
"loss": 1.238,
|
1967 |
+
"step": 274
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 0.2842377260981912,
|
1971 |
+
"grad_norm": 1.1622064113616943,
|
1972 |
+
"learning_rate": 4.813218390804598e-06,
|
1973 |
+
"loss": 1.2032,
|
1974 |
+
"step": 275
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 0.28527131782945736,
|
1978 |
+
"grad_norm": 1.3175055980682373,
|
1979 |
+
"learning_rate": 4.810344827586207e-06,
|
1980 |
+
"loss": 1.2241,
|
1981 |
+
"step": 276
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 0.2863049095607235,
|
1985 |
+
"grad_norm": 1.3803074359893799,
|
1986 |
+
"learning_rate": 4.8074712643678165e-06,
|
1987 |
+
"loss": 1.2347,
|
1988 |
+
"step": 277
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.2873385012919897,
|
1992 |
+
"grad_norm": 1.5483407974243164,
|
1993 |
+
"learning_rate": 4.804597701149426e-06,
|
1994 |
+
"loss": 1.2314,
|
1995 |
+
"step": 278
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.28837209302325584,
|
1999 |
+
"grad_norm": 1.2761492729187012,
|
2000 |
+
"learning_rate": 4.801724137931035e-06,
|
2001 |
+
"loss": 1.2209,
|
2002 |
+
"step": 279
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 0.28940568475452194,
|
2006 |
+
"grad_norm": 1.266837477684021,
|
2007 |
+
"learning_rate": 4.798850574712644e-06,
|
2008 |
+
"loss": 1.2235,
|
2009 |
+
"step": 280
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 0.2904392764857881,
|
2013 |
+
"grad_norm": 1.2987629175186157,
|
2014 |
+
"learning_rate": 4.795977011494253e-06,
|
2015 |
+
"loss": 1.2239,
|
2016 |
+
"step": 281
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 0.29147286821705426,
|
2020 |
+
"grad_norm": 1.4991391897201538,
|
2021 |
+
"learning_rate": 4.793103448275862e-06,
|
2022 |
+
"loss": 1.2396,
|
2023 |
+
"step": 282
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 0.2925064599483204,
|
2027 |
+
"grad_norm": 1.325391173362732,
|
2028 |
+
"learning_rate": 4.790229885057472e-06,
|
2029 |
+
"loss": 1.2246,
|
2030 |
+
"step": 283
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.2935400516795866,
|
2034 |
+
"grad_norm": 1.5597681999206543,
|
2035 |
+
"learning_rate": 4.7873563218390805e-06,
|
2036 |
+
"loss": 1.1917,
|
2037 |
+
"step": 284
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.29457364341085274,
|
2041 |
+
"grad_norm": 1.1909379959106445,
|
2042 |
+
"learning_rate": 4.78448275862069e-06,
|
2043 |
+
"loss": 1.2133,
|
2044 |
+
"step": 285
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 0.29560723514211884,
|
2048 |
+
"grad_norm": 1.2589330673217773,
|
2049 |
+
"learning_rate": 4.781609195402299e-06,
|
2050 |
+
"loss": 1.2324,
|
2051 |
+
"step": 286
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 0.296640826873385,
|
2055 |
+
"grad_norm": 1.5300198793411255,
|
2056 |
+
"learning_rate": 4.778735632183909e-06,
|
2057 |
+
"loss": 1.215,
|
2058 |
+
"step": 287
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 0.29767441860465116,
|
2062 |
+
"grad_norm": 1.285587191581726,
|
2063 |
+
"learning_rate": 4.775862068965518e-06,
|
2064 |
+
"loss": 1.2817,
|
2065 |
+
"step": 288
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"epoch": 0.2987080103359173,
|
2069 |
+
"grad_norm": 1.579711675643921,
|
2070 |
+
"learning_rate": 4.772988505747127e-06,
|
2071 |
+
"loss": 1.206,
|
2072 |
+
"step": 289
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.2997416020671835,
|
2076 |
+
"grad_norm": 1.2438337802886963,
|
2077 |
+
"learning_rate": 4.770114942528735e-06,
|
2078 |
+
"loss": 1.2162,
|
2079 |
+
"step": 290
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.30077519379844964,
|
2083 |
+
"grad_norm": 1.2078229188919067,
|
2084 |
+
"learning_rate": 4.767241379310345e-06,
|
2085 |
+
"loss": 1.2262,
|
2086 |
+
"step": 291
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 0.30180878552971574,
|
2090 |
+
"grad_norm": 1.4489924907684326,
|
2091 |
+
"learning_rate": 4.7643678160919545e-06,
|
2092 |
+
"loss": 1.2028,
|
2093 |
+
"step": 292
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 0.3028423772609819,
|
2097 |
+
"grad_norm": 1.722036600112915,
|
2098 |
+
"learning_rate": 4.761494252873564e-06,
|
2099 |
+
"loss": 1.2321,
|
2100 |
+
"step": 293
|
2101 |
+
},
|
2102 |
+
{
|
2103 |
+
"epoch": 0.30387596899224806,
|
2104 |
+
"grad_norm": 1.2497223615646362,
|
2105 |
+
"learning_rate": 4.758620689655173e-06,
|
2106 |
+
"loss": 1.199,
|
2107 |
+
"step": 294
|
2108 |
+
},
|
2109 |
+
{
|
2110 |
+
"epoch": 0.3049095607235142,
|
2111 |
+
"grad_norm": 1.1889766454696655,
|
2112 |
+
"learning_rate": 4.755747126436782e-06,
|
2113 |
+
"loss": 1.2183,
|
2114 |
+
"step": 295
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.3059431524547804,
|
2118 |
+
"grad_norm": 1.65548837184906,
|
2119 |
+
"learning_rate": 4.752873563218391e-06,
|
2120 |
+
"loss": 1.2535,
|
2121 |
+
"step": 296
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.30697674418604654,
|
2125 |
+
"grad_norm": 1.7176488637924194,
|
2126 |
+
"learning_rate": 4.75e-06,
|
2127 |
+
"loss": 1.1354,
|
2128 |
+
"step": 297
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"epoch": 0.30801033591731264,
|
2132 |
+
"grad_norm": 1.38619863986969,
|
2133 |
+
"learning_rate": 4.747126436781609e-06,
|
2134 |
+
"loss": 1.2093,
|
2135 |
+
"step": 298
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"epoch": 0.3090439276485788,
|
2139 |
+
"grad_norm": 1.469096302986145,
|
2140 |
+
"learning_rate": 4.7442528735632186e-06,
|
2141 |
+
"loss": 1.2218,
|
2142 |
+
"step": 299
|
2143 |
+
},
|
2144 |
+
{
|
2145 |
+
"epoch": 0.31007751937984496,
|
2146 |
+
"grad_norm": 1.6391884088516235,
|
2147 |
+
"learning_rate": 4.741379310344828e-06,
|
2148 |
+
"loss": 1.2108,
|
2149 |
+
"step": 300
|
2150 |
+
},
|
2151 |
+
{
|
2152 |
+
"epoch": 0.31007751937984496,
|
2153 |
+
"eval_loss": 1.2854892015457153,
|
2154 |
+
"eval_runtime": 48.1735,
|
2155 |
+
"eval_samples_per_second": 20.758,
|
2156 |
+
"eval_steps_per_second": 0.664,
|
2157 |
+
"step": 300
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.3111111111111111,
|
2161 |
+
"grad_norm": 1.3288958072662354,
|
2162 |
+
"learning_rate": 4.738505747126438e-06,
|
2163 |
+
"loss": 1.2059,
|
2164 |
+
"step": 301
|
2165 |
+
},
|
2166 |
+
{
|
2167 |
+
"epoch": 0.3121447028423773,
|
2168 |
+
"grad_norm": 1.5343891382217407,
|
2169 |
+
"learning_rate": 4.735632183908047e-06,
|
2170 |
+
"loss": 1.2082,
|
2171 |
+
"step": 302
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"epoch": 0.31317829457364343,
|
2175 |
+
"grad_norm": 1.6383378505706787,
|
2176 |
+
"learning_rate": 4.732758620689655e-06,
|
2177 |
+
"loss": 1.2331,
|
2178 |
+
"step": 303
|
2179 |
+
},
|
2180 |
+
{
|
2181 |
+
"epoch": 0.31421188630490954,
|
2182 |
+
"grad_norm": 1.3862324953079224,
|
2183 |
+
"learning_rate": 4.729885057471264e-06,
|
2184 |
+
"loss": 1.2412,
|
2185 |
+
"step": 304
|
2186 |
+
},
|
2187 |
+
{
|
2188 |
+
"epoch": 0.3152454780361757,
|
2189 |
+
"grad_norm": 1.4603716135025024,
|
2190 |
+
"learning_rate": 4.727011494252874e-06,
|
2191 |
+
"loss": 1.1927,
|
2192 |
+
"step": 305
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.31627906976744186,
|
2196 |
+
"grad_norm": 1.2502843141555786,
|
2197 |
+
"learning_rate": 4.724137931034483e-06,
|
2198 |
+
"loss": 1.2226,
|
2199 |
+
"step": 306
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.317312661498708,
|
2203 |
+
"grad_norm": 1.6000148057937622,
|
2204 |
+
"learning_rate": 4.7212643678160926e-06,
|
2205 |
+
"loss": 1.231,
|
2206 |
+
"step": 307
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"epoch": 0.3183462532299742,
|
2210 |
+
"grad_norm": 1.4646550416946411,
|
2211 |
+
"learning_rate": 4.718390804597702e-06,
|
2212 |
+
"loss": 1.2653,
|
2213 |
+
"step": 308
|
2214 |
+
},
|
2215 |
+
{
|
2216 |
+
"epoch": 0.31937984496124033,
|
2217 |
+
"grad_norm": 1.3548325300216675,
|
2218 |
+
"learning_rate": 4.715517241379311e-06,
|
2219 |
+
"loss": 1.236,
|
2220 |
+
"step": 309
|
2221 |
+
},
|
2222 |
+
{
|
2223 |
+
"epoch": 0.32041343669250644,
|
2224 |
+
"grad_norm": 1.4769961833953857,
|
2225 |
+
"learning_rate": 4.71264367816092e-06,
|
2226 |
+
"loss": 1.209,
|
2227 |
+
"step": 310
|
2228 |
+
},
|
2229 |
+
{
|
2230 |
+
"epoch": 0.3214470284237726,
|
2231 |
+
"grad_norm": 1.2307313680648804,
|
2232 |
+
"learning_rate": 4.709770114942529e-06,
|
2233 |
+
"loss": 1.206,
|
2234 |
+
"step": 311
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.32248062015503876,
|
2238 |
+
"grad_norm": 1.5612189769744873,
|
2239 |
+
"learning_rate": 4.706896551724138e-06,
|
2240 |
+
"loss": 1.2272,
|
2241 |
+
"step": 312
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.3235142118863049,
|
2245 |
+
"grad_norm": 0.9792500734329224,
|
2246 |
+
"learning_rate": 4.7040229885057474e-06,
|
2247 |
+
"loss": 1.2404,
|
2248 |
+
"step": 313
|
2249 |
+
},
|
2250 |
+
{
|
2251 |
+
"epoch": 0.3245478036175711,
|
2252 |
+
"grad_norm": 1.2356388568878174,
|
2253 |
+
"learning_rate": 4.7011494252873566e-06,
|
2254 |
+
"loss": 1.2453,
|
2255 |
+
"step": 314
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 0.32558139534883723,
|
2259 |
+
"grad_norm": 1.3284534215927124,
|
2260 |
+
"learning_rate": 4.698275862068966e-06,
|
2261 |
+
"loss": 1.2451,
|
2262 |
+
"step": 315
|
2263 |
+
},
|
2264 |
+
{
|
2265 |
+
"epoch": 0.32661498708010334,
|
2266 |
+
"grad_norm": 1.2313426733016968,
|
2267 |
+
"learning_rate": 4.695402298850575e-06,
|
2268 |
+
"loss": 1.2073,
|
2269 |
+
"step": 316
|
2270 |
+
},
|
2271 |
+
{
|
2272 |
+
"epoch": 0.3276485788113695,
|
2273 |
+
"grad_norm": 1.2018225193023682,
|
2274 |
+
"learning_rate": 4.692528735632184e-06,
|
2275 |
+
"loss": 1.2499,
|
2276 |
+
"step": 317
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.32868217054263565,
|
2280 |
+
"grad_norm": 1.0967109203338623,
|
2281 |
+
"learning_rate": 4.689655172413793e-06,
|
2282 |
+
"loss": 1.1986,
|
2283 |
+
"step": 318
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.3297157622739018,
|
2287 |
+
"grad_norm": 1.2187355756759644,
|
2288 |
+
"learning_rate": 4.686781609195402e-06,
|
2289 |
+
"loss": 1.2364,
|
2290 |
+
"step": 319
|
2291 |
+
},
|
2292 |
+
{
|
2293 |
+
"epoch": 0.330749354005168,
|
2294 |
+
"grad_norm": 1.3187403678894043,
|
2295 |
+
"learning_rate": 4.683908045977012e-06,
|
2296 |
+
"loss": 1.1911,
|
2297 |
+
"step": 320
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 0.33178294573643413,
|
2301 |
+
"grad_norm": 1.2736074924468994,
|
2302 |
+
"learning_rate": 4.6810344827586214e-06,
|
2303 |
+
"loss": 1.1957,
|
2304 |
+
"step": 321
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 0.33281653746770024,
|
2308 |
+
"grad_norm": 1.3698259592056274,
|
2309 |
+
"learning_rate": 4.67816091954023e-06,
|
2310 |
+
"loss": 1.1875,
|
2311 |
+
"step": 322
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 0.3338501291989664,
|
2315 |
+
"grad_norm": 1.4535542726516724,
|
2316 |
+
"learning_rate": 4.675287356321839e-06,
|
2317 |
+
"loss": 1.18,
|
2318 |
+
"step": 323
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.33488372093023255,
|
2322 |
+
"grad_norm": 1.2355557680130005,
|
2323 |
+
"learning_rate": 4.672413793103449e-06,
|
2324 |
+
"loss": 1.237,
|
2325 |
+
"step": 324
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.3359173126614987,
|
2329 |
+
"grad_norm": 1.1696377992630005,
|
2330 |
+
"learning_rate": 4.669540229885058e-06,
|
2331 |
+
"loss": 1.2044,
|
2332 |
+
"step": 325
|
2333 |
+
},
|
2334 |
+
{
|
2335 |
+
"epoch": 0.33695090439276487,
|
2336 |
+
"grad_norm": 1.768639087677002,
|
2337 |
+
"learning_rate": 4.666666666666667e-06,
|
2338 |
+
"loss": 1.2423,
|
2339 |
+
"step": 326
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 0.33798449612403103,
|
2343 |
+
"grad_norm": 1.7557653188705444,
|
2344 |
+
"learning_rate": 4.663793103448276e-06,
|
2345 |
+
"loss": 1.1876,
|
2346 |
+
"step": 327
|
2347 |
+
},
|
2348 |
+
{
|
2349 |
+
"epoch": 0.33901808785529713,
|
2350 |
+
"grad_norm": 1.2822763919830322,
|
2351 |
+
"learning_rate": 4.6609195402298855e-06,
|
2352 |
+
"loss": 1.1353,
|
2353 |
+
"step": 328
|
2354 |
+
},
|
2355 |
+
{
|
2356 |
+
"epoch": 0.3400516795865633,
|
2357 |
+
"grad_norm": 1.4557548761367798,
|
2358 |
+
"learning_rate": 4.658045977011495e-06,
|
2359 |
+
"loss": 1.1894,
|
2360 |
+
"step": 329
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.34108527131782945,
|
2364 |
+
"grad_norm": 1.5415141582489014,
|
2365 |
+
"learning_rate": 4.655172413793104e-06,
|
2366 |
+
"loss": 1.1799,
|
2367 |
+
"step": 330
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.3421188630490956,
|
2371 |
+
"grad_norm": 1.247830867767334,
|
2372 |
+
"learning_rate": 4.652298850574713e-06,
|
2373 |
+
"loss": 1.2636,
|
2374 |
+
"step": 331
|
2375 |
+
},
|
2376 |
+
{
|
2377 |
+
"epoch": 0.34315245478036177,
|
2378 |
+
"grad_norm": 1.9219553470611572,
|
2379 |
+
"learning_rate": 4.649425287356322e-06,
|
2380 |
+
"loss": 1.2055,
|
2381 |
+
"step": 332
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 0.34418604651162793,
|
2385 |
+
"grad_norm": 1.318398356437683,
|
2386 |
+
"learning_rate": 4.646551724137931e-06,
|
2387 |
+
"loss": 1.2062,
|
2388 |
+
"step": 333
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"epoch": 0.34521963824289403,
|
2392 |
+
"grad_norm": 1.304222583770752,
|
2393 |
+
"learning_rate": 4.643678160919541e-06,
|
2394 |
+
"loss": 1.1955,
|
2395 |
+
"step": 334
|
2396 |
+
},
|
2397 |
+
{
|
2398 |
+
"epoch": 0.3462532299741602,
|
2399 |
+
"grad_norm": 1.1557509899139404,
|
2400 |
+
"learning_rate": 4.6408045977011495e-06,
|
2401 |
+
"loss": 1.2426,
|
2402 |
+
"step": 335
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 0.34728682170542635,
|
2406 |
+
"grad_norm": 1.3262536525726318,
|
2407 |
+
"learning_rate": 4.637931034482759e-06,
|
2408 |
+
"loss": 1.1738,
|
2409 |
+
"step": 336
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.3483204134366925,
|
2413 |
+
"grad_norm": 1.2595785856246948,
|
2414 |
+
"learning_rate": 4.635057471264368e-06,
|
2415 |
+
"loss": 1.2302,
|
2416 |
+
"step": 337
|
2417 |
+
},
|
2418 |
+
{
|
2419 |
+
"epoch": 0.34935400516795867,
|
2420 |
+
"grad_norm": 1.6142576932907104,
|
2421 |
+
"learning_rate": 4.632183908045978e-06,
|
2422 |
+
"loss": 1.2723,
|
2423 |
+
"step": 338
|
2424 |
+
},
|
2425 |
+
{
|
2426 |
+
"epoch": 0.35038759689922483,
|
2427 |
+
"grad_norm": 1.139347791671753,
|
2428 |
+
"learning_rate": 4.629310344827587e-06,
|
2429 |
+
"loss": 1.2137,
|
2430 |
+
"step": 339
|
2431 |
+
},
|
2432 |
+
{
|
2433 |
+
"epoch": 0.35142118863049093,
|
2434 |
+
"grad_norm": 1.1879801750183105,
|
2435 |
+
"learning_rate": 4.626436781609196e-06,
|
2436 |
+
"loss": 1.2047,
|
2437 |
+
"step": 340
|
2438 |
+
},
|
2439 |
+
{
|
2440 |
+
"epoch": 0.3524547803617571,
|
2441 |
+
"grad_norm": 1.2845611572265625,
|
2442 |
+
"learning_rate": 4.623563218390805e-06,
|
2443 |
+
"loss": 1.2227,
|
2444 |
+
"step": 341
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 0.35348837209302325,
|
2448 |
+
"grad_norm": 1.5612064599990845,
|
2449 |
+
"learning_rate": 4.620689655172414e-06,
|
2450 |
+
"loss": 1.2102,
|
2451 |
+
"step": 342
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 0.3545219638242894,
|
2455 |
+
"grad_norm": 1.1952980756759644,
|
2456 |
+
"learning_rate": 4.6178160919540235e-06,
|
2457 |
+
"loss": 1.2232,
|
2458 |
+
"step": 343
|
2459 |
+
},
|
2460 |
+
{
|
2461 |
+
"epoch": 0.35555555555555557,
|
2462 |
+
"grad_norm": 1.310408592224121,
|
2463 |
+
"learning_rate": 4.614942528735633e-06,
|
2464 |
+
"loss": 1.2293,
|
2465 |
+
"step": 344
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 0.35658914728682173,
|
2469 |
+
"grad_norm": 1.197373390197754,
|
2470 |
+
"learning_rate": 4.612068965517242e-06,
|
2471 |
+
"loss": 1.2348,
|
2472 |
+
"step": 345
|
2473 |
+
},
|
2474 |
+
{
|
2475 |
+
"epoch": 0.35762273901808783,
|
2476 |
+
"grad_norm": 1.1051040887832642,
|
2477 |
+
"learning_rate": 4.609195402298851e-06,
|
2478 |
+
"loss": 1.1952,
|
2479 |
+
"step": 346
|
2480 |
+
},
|
2481 |
+
{
|
2482 |
+
"epoch": 0.358656330749354,
|
2483 |
+
"grad_norm": 1.2444984912872314,
|
2484 |
+
"learning_rate": 4.60632183908046e-06,
|
2485 |
+
"loss": 1.1804,
|
2486 |
+
"step": 347
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 0.35968992248062015,
|
2490 |
+
"grad_norm": 1.3992429971694946,
|
2491 |
+
"learning_rate": 4.603448275862069e-06,
|
2492 |
+
"loss": 1.2365,
|
2493 |
+
"step": 348
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 0.3607235142118863,
|
2497 |
+
"grad_norm": 1.09051513671875,
|
2498 |
+
"learning_rate": 4.600574712643678e-06,
|
2499 |
+
"loss": 1.1629,
|
2500 |
+
"step": 349
|
2501 |
+
},
|
2502 |
+
{
|
2503 |
+
"epoch": 0.36175710594315247,
|
2504 |
+
"grad_norm": 1.7428574562072754,
|
2505 |
+
"learning_rate": 4.5977011494252875e-06,
|
2506 |
+
"loss": 1.2076,
|
2507 |
+
"step": 350
|
2508 |
+
},
|
2509 |
+
{
|
2510 |
+
"epoch": 0.36175710594315247,
|
2511 |
+
"eval_loss": 1.2728006839752197,
|
2512 |
+
"eval_runtime": 48.2021,
|
2513 |
+
"eval_samples_per_second": 20.746,
|
2514 |
+
"eval_steps_per_second": 0.664,
|
2515 |
+
"step": 350
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.3627906976744186,
|
2519 |
+
"grad_norm": 1.1538360118865967,
|
2520 |
+
"learning_rate": 4.594827586206897e-06,
|
2521 |
+
"loss": 1.1889,
|
2522 |
+
"step": 351
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.36382428940568473,
|
2526 |
+
"grad_norm": 1.1787687540054321,
|
2527 |
+
"learning_rate": 4.591954022988507e-06,
|
2528 |
+
"loss": 1.2185,
|
2529 |
+
"step": 352
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.3648578811369509,
|
2533 |
+
"grad_norm": 1.3935431241989136,
|
2534 |
+
"learning_rate": 4.589080459770116e-06,
|
2535 |
+
"loss": 1.2258,
|
2536 |
+
"step": 353
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.36589147286821705,
|
2540 |
+
"grad_norm": 1.6494699716567993,
|
2541 |
+
"learning_rate": 4.586206896551724e-06,
|
2542 |
+
"loss": 1.1766,
|
2543 |
+
"step": 354
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.3669250645994832,
|
2547 |
+
"grad_norm": 1.6146515607833862,
|
2548 |
+
"learning_rate": 4.583333333333333e-06,
|
2549 |
+
"loss": 1.2243,
|
2550 |
+
"step": 355
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.36795865633074937,
|
2554 |
+
"grad_norm": 1.7873674631118774,
|
2555 |
+
"learning_rate": 4.580459770114943e-06,
|
2556 |
+
"loss": 1.2206,
|
2557 |
+
"step": 356
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.3689922480620155,
|
2561 |
+
"grad_norm": 1.2191059589385986,
|
2562 |
+
"learning_rate": 4.577586206896552e-06,
|
2563 |
+
"loss": 1.205,
|
2564 |
+
"step": 357
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.37002583979328163,
|
2568 |
+
"grad_norm": 1.1856673955917358,
|
2569 |
+
"learning_rate": 4.5747126436781615e-06,
|
2570 |
+
"loss": 1.1971,
|
2571 |
+
"step": 358
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.3710594315245478,
|
2575 |
+
"grad_norm": 1.3208264112472534,
|
2576 |
+
"learning_rate": 4.571839080459771e-06,
|
2577 |
+
"loss": 1.1928,
|
2578 |
+
"step": 359
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.37209302325581395,
|
2582 |
+
"grad_norm": 1.5640398263931274,
|
2583 |
+
"learning_rate": 4.56896551724138e-06,
|
2584 |
+
"loss": 1.2044,
|
2585 |
+
"step": 360
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.3731266149870801,
|
2589 |
+
"grad_norm": 1.401240587234497,
|
2590 |
+
"learning_rate": 4.566091954022989e-06,
|
2591 |
+
"loss": 1.2301,
|
2592 |
+
"step": 361
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.37416020671834627,
|
2596 |
+
"grad_norm": 1.1681466102600098,
|
2597 |
+
"learning_rate": 4.563218390804598e-06,
|
2598 |
+
"loss": 1.1905,
|
2599 |
+
"step": 362
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.3751937984496124,
|
2603 |
+
"grad_norm": 1.317150592803955,
|
2604 |
+
"learning_rate": 4.560344827586207e-06,
|
2605 |
+
"loss": 1.1847,
|
2606 |
+
"step": 363
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.37622739018087853,
|
2610 |
+
"grad_norm": 1.352041244506836,
|
2611 |
+
"learning_rate": 4.557471264367816e-06,
|
2612 |
+
"loss": 1.2131,
|
2613 |
+
"step": 364
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.3772609819121447,
|
2617 |
+
"grad_norm": 1.1713517904281616,
|
2618 |
+
"learning_rate": 4.5545977011494255e-06,
|
2619 |
+
"loss": 1.2225,
|
2620 |
+
"step": 365
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.37829457364341085,
|
2624 |
+
"grad_norm": 1.0403046607971191,
|
2625 |
+
"learning_rate": 4.551724137931035e-06,
|
2626 |
+
"loss": 1.2035,
|
2627 |
+
"step": 366
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.379328165374677,
|
2631 |
+
"grad_norm": 1.5299835205078125,
|
2632 |
+
"learning_rate": 4.548850574712644e-06,
|
2633 |
+
"loss": 1.2136,
|
2634 |
+
"step": 367
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.38036175710594317,
|
2638 |
+
"grad_norm": 1.5781452655792236,
|
2639 |
+
"learning_rate": 4.545977011494253e-06,
|
2640 |
+
"loss": 1.1985,
|
2641 |
+
"step": 368
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.3813953488372093,
|
2645 |
+
"grad_norm": 1.2083759307861328,
|
2646 |
+
"learning_rate": 4.543103448275862e-06,
|
2647 |
+
"loss": 1.2026,
|
2648 |
+
"step": 369
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.38242894056847543,
|
2652 |
+
"grad_norm": 1.3300983905792236,
|
2653 |
+
"learning_rate": 4.540229885057471e-06,
|
2654 |
+
"loss": 1.1836,
|
2655 |
+
"step": 370
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.3834625322997416,
|
2659 |
+
"grad_norm": 1.4870195388793945,
|
2660 |
+
"learning_rate": 4.537356321839081e-06,
|
2661 |
+
"loss": 1.2231,
|
2662 |
+
"step": 371
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.38449612403100775,
|
2666 |
+
"grad_norm": 1.2063935995101929,
|
2667 |
+
"learning_rate": 4.53448275862069e-06,
|
2668 |
+
"loss": 1.1906,
|
2669 |
+
"step": 372
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.3855297157622739,
|
2673 |
+
"grad_norm": 1.3956559896469116,
|
2674 |
+
"learning_rate": 4.5316091954022995e-06,
|
2675 |
+
"loss": 1.2301,
|
2676 |
+
"step": 373
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.38656330749354006,
|
2680 |
+
"grad_norm": 1.1331489086151123,
|
2681 |
+
"learning_rate": 4.528735632183908e-06,
|
2682 |
+
"loss": 1.2028,
|
2683 |
+
"step": 374
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.3875968992248062,
|
2687 |
+
"grad_norm": 1.4904316663742065,
|
2688 |
+
"learning_rate": 4.525862068965518e-06,
|
2689 |
+
"loss": 1.1915,
|
2690 |
+
"step": 375
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.3886304909560723,
|
2694 |
+
"grad_norm": 1.1676017045974731,
|
2695 |
+
"learning_rate": 4.522988505747127e-06,
|
2696 |
+
"loss": 1.1624,
|
2697 |
+
"step": 376
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.3896640826873385,
|
2701 |
+
"grad_norm": 1.2875901460647583,
|
2702 |
+
"learning_rate": 4.520114942528736e-06,
|
2703 |
+
"loss": 1.2227,
|
2704 |
+
"step": 377
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.39069767441860465,
|
2708 |
+
"grad_norm": 1.2845635414123535,
|
2709 |
+
"learning_rate": 4.517241379310345e-06,
|
2710 |
+
"loss": 1.2218,
|
2711 |
+
"step": 378
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.3917312661498708,
|
2715 |
+
"grad_norm": 1.3359668254852295,
|
2716 |
+
"learning_rate": 4.514367816091954e-06,
|
2717 |
+
"loss": 1.1604,
|
2718 |
+
"step": 379
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.39276485788113696,
|
2722 |
+
"grad_norm": 1.3478506803512573,
|
2723 |
+
"learning_rate": 4.5114942528735635e-06,
|
2724 |
+
"loss": 1.1677,
|
2725 |
+
"step": 380
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.3937984496124031,
|
2729 |
+
"grad_norm": 1.0987980365753174,
|
2730 |
+
"learning_rate": 4.508620689655173e-06,
|
2731 |
+
"loss": 1.1661,
|
2732 |
+
"step": 381
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.3948320413436692,
|
2736 |
+
"grad_norm": 1.3515042066574097,
|
2737 |
+
"learning_rate": 4.505747126436782e-06,
|
2738 |
+
"loss": 1.2192,
|
2739 |
+
"step": 382
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.3958656330749354,
|
2743 |
+
"grad_norm": 1.5531221628189087,
|
2744 |
+
"learning_rate": 4.502873563218391e-06,
|
2745 |
+
"loss": 1.1888,
|
2746 |
+
"step": 383
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.39689922480620154,
|
2750 |
+
"grad_norm": 1.011456847190857,
|
2751 |
+
"learning_rate": 4.5e-06,
|
2752 |
+
"loss": 1.1671,
|
2753 |
+
"step": 384
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.3979328165374677,
|
2757 |
+
"grad_norm": 1.3113720417022705,
|
2758 |
+
"learning_rate": 4.49712643678161e-06,
|
2759 |
+
"loss": 1.1745,
|
2760 |
+
"step": 385
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.39896640826873386,
|
2764 |
+
"grad_norm": 1.6751645803451538,
|
2765 |
+
"learning_rate": 4.494252873563218e-06,
|
2766 |
+
"loss": 1.2111,
|
2767 |
+
"step": 386
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.4,
|
2771 |
+
"grad_norm": 1.4498629570007324,
|
2772 |
+
"learning_rate": 4.4913793103448275e-06,
|
2773 |
+
"loss": 1.2099,
|
2774 |
+
"step": 387
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.4010335917312661,
|
2778 |
+
"grad_norm": 1.3328680992126465,
|
2779 |
+
"learning_rate": 4.488505747126437e-06,
|
2780 |
+
"loss": 1.1965,
|
2781 |
+
"step": 388
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.4020671834625323,
|
2785 |
+
"grad_norm": 1.3834558725357056,
|
2786 |
+
"learning_rate": 4.485632183908047e-06,
|
2787 |
+
"loss": 1.2279,
|
2788 |
+
"step": 389
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.40310077519379844,
|
2792 |
+
"grad_norm": 1.228224754333496,
|
2793 |
+
"learning_rate": 4.482758620689656e-06,
|
2794 |
+
"loss": 1.1387,
|
2795 |
+
"step": 390
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.4041343669250646,
|
2799 |
+
"grad_norm": 1.141613245010376,
|
2800 |
+
"learning_rate": 4.479885057471265e-06,
|
2801 |
+
"loss": 1.2034,
|
2802 |
+
"step": 391
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.40516795865633076,
|
2806 |
+
"grad_norm": 1.2839511632919312,
|
2807 |
+
"learning_rate": 4.477011494252874e-06,
|
2808 |
+
"loss": 1.1951,
|
2809 |
+
"step": 392
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.4062015503875969,
|
2813 |
+
"grad_norm": 1.5047776699066162,
|
2814 |
+
"learning_rate": 4.474137931034483e-06,
|
2815 |
+
"loss": 1.1889,
|
2816 |
+
"step": 393
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.407235142118863,
|
2820 |
+
"grad_norm": 1.5040572881698608,
|
2821 |
+
"learning_rate": 4.471264367816092e-06,
|
2822 |
+
"loss": 1.1624,
|
2823 |
+
"step": 394
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.4082687338501292,
|
2827 |
+
"grad_norm": 1.1555923223495483,
|
2828 |
+
"learning_rate": 4.4683908045977016e-06,
|
2829 |
+
"loss": 1.2081,
|
2830 |
+
"step": 395
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.40930232558139534,
|
2834 |
+
"grad_norm": 1.3135583400726318,
|
2835 |
+
"learning_rate": 4.465517241379311e-06,
|
2836 |
+
"loss": 1.1992,
|
2837 |
+
"step": 396
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.4103359173126615,
|
2841 |
+
"grad_norm": 1.0716359615325928,
|
2842 |
+
"learning_rate": 4.46264367816092e-06,
|
2843 |
+
"loss": 1.1869,
|
2844 |
+
"step": 397
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.41136950904392766,
|
2848 |
+
"grad_norm": 1.249202847480774,
|
2849 |
+
"learning_rate": 4.459770114942529e-06,
|
2850 |
+
"loss": 1.1742,
|
2851 |
+
"step": 398
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.4124031007751938,
|
2855 |
+
"grad_norm": 1.2279281616210938,
|
2856 |
+
"learning_rate": 4.456896551724138e-06,
|
2857 |
+
"loss": 1.1665,
|
2858 |
+
"step": 399
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.4134366925064599,
|
2862 |
+
"grad_norm": 0.9841963052749634,
|
2863 |
+
"learning_rate": 4.454022988505747e-06,
|
2864 |
+
"loss": 1.2191,
|
2865 |
+
"step": 400
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.4134366925064599,
|
2869 |
+
"eval_loss": 1.2680693864822388,
|
2870 |
+
"eval_runtime": 48.4023,
|
2871 |
+
"eval_samples_per_second": 20.66,
|
2872 |
+
"eval_steps_per_second": 0.661,
|
2873 |
+
"step": 400
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 0.4144702842377261,
|
2877 |
+
"grad_norm": 1.42137610912323,
|
2878 |
+
"learning_rate": 4.4511494252873564e-06,
|
2879 |
+
"loss": 1.1756,
|
2880 |
+
"step": 401
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 0.41550387596899224,
|
2884 |
+
"grad_norm": 1.0953741073608398,
|
2885 |
+
"learning_rate": 4.4482758620689656e-06,
|
2886 |
+
"loss": 1.219,
|
2887 |
+
"step": 402
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 0.4165374677002584,
|
2891 |
+
"grad_norm": 1.101485013961792,
|
2892 |
+
"learning_rate": 4.4454022988505756e-06,
|
2893 |
+
"loss": 1.1576,
|
2894 |
+
"step": 403
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.41757105943152456,
|
2898 |
+
"grad_norm": 1.3133827447891235,
|
2899 |
+
"learning_rate": 4.442528735632185e-06,
|
2900 |
+
"loss": 1.16,
|
2901 |
+
"step": 404
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.4186046511627907,
|
2905 |
+
"grad_norm": 1.1481531858444214,
|
2906 |
+
"learning_rate": 4.439655172413794e-06,
|
2907 |
+
"loss": 1.1493,
|
2908 |
+
"step": 405
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 0.4196382428940568,
|
2912 |
+
"grad_norm": 1.3434548377990723,
|
2913 |
+
"learning_rate": 4.436781609195402e-06,
|
2914 |
+
"loss": 1.1506,
|
2915 |
+
"step": 406
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 0.420671834625323,
|
2919 |
+
"grad_norm": 1.102965235710144,
|
2920 |
+
"learning_rate": 4.433908045977012e-06,
|
2921 |
+
"loss": 1.1446,
|
2922 |
+
"step": 407
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 0.42170542635658914,
|
2926 |
+
"grad_norm": 1.3014981746673584,
|
2927 |
+
"learning_rate": 4.431034482758621e-06,
|
2928 |
+
"loss": 1.1921,
|
2929 |
+
"step": 408
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 0.4227390180878553,
|
2933 |
+
"grad_norm": 1.3584136962890625,
|
2934 |
+
"learning_rate": 4.4281609195402304e-06,
|
2935 |
+
"loss": 1.2074,
|
2936 |
+
"step": 409
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.42377260981912146,
|
2940 |
+
"grad_norm": 1.6955718994140625,
|
2941 |
+
"learning_rate": 4.42528735632184e-06,
|
2942 |
+
"loss": 1.2293,
|
2943 |
+
"step": 410
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.4248062015503876,
|
2947 |
+
"grad_norm": 1.273550033569336,
|
2948 |
+
"learning_rate": 4.422413793103449e-06,
|
2949 |
+
"loss": 1.1775,
|
2950 |
+
"step": 411
|
2951 |
+
},
|
2952 |
+
{
|
2953 |
+
"epoch": 0.4258397932816537,
|
2954 |
+
"grad_norm": 1.1694968938827515,
|
2955 |
+
"learning_rate": 4.419540229885058e-06,
|
2956 |
+
"loss": 1.1528,
|
2957 |
+
"step": 412
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 0.4268733850129199,
|
2961 |
+
"grad_norm": 1.134385108947754,
|
2962 |
+
"learning_rate": 4.416666666666667e-06,
|
2963 |
+
"loss": 1.2074,
|
2964 |
+
"step": 413
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 0.42790697674418604,
|
2968 |
+
"grad_norm": 1.3740071058273315,
|
2969 |
+
"learning_rate": 4.413793103448276e-06,
|
2970 |
+
"loss": 1.1792,
|
2971 |
+
"step": 414
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 0.4289405684754522,
|
2975 |
+
"grad_norm": 1.0105552673339844,
|
2976 |
+
"learning_rate": 4.410919540229885e-06,
|
2977 |
+
"loss": 1.198,
|
2978 |
+
"step": 415
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.42997416020671836,
|
2982 |
+
"grad_norm": 1.2491987943649292,
|
2983 |
+
"learning_rate": 4.4080459770114944e-06,
|
2984 |
+
"loss": 1.2049,
|
2985 |
+
"step": 416
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.4310077519379845,
|
2989 |
+
"grad_norm": 1.2663400173187256,
|
2990 |
+
"learning_rate": 4.405172413793104e-06,
|
2991 |
+
"loss": 1.2276,
|
2992 |
+
"step": 417
|
2993 |
+
},
|
2994 |
+
{
|
2995 |
+
"epoch": 0.4320413436692506,
|
2996 |
+
"grad_norm": 1.1918857097625732,
|
2997 |
+
"learning_rate": 4.402298850574713e-06,
|
2998 |
+
"loss": 1.1922,
|
2999 |
+
"step": 418
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"epoch": 0.4330749354005168,
|
3003 |
+
"grad_norm": 1.4146064519882202,
|
3004 |
+
"learning_rate": 4.399425287356322e-06,
|
3005 |
+
"loss": 1.2117,
|
3006 |
+
"step": 419
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"epoch": 0.43410852713178294,
|
3010 |
+
"grad_norm": 1.4689112901687622,
|
3011 |
+
"learning_rate": 4.396551724137931e-06,
|
3012 |
+
"loss": 1.1674,
|
3013 |
+
"step": 420
|
3014 |
+
},
|
3015 |
+
{
|
3016 |
+
"epoch": 0.4351421188630491,
|
3017 |
+
"grad_norm": 1.2137223482131958,
|
3018 |
+
"learning_rate": 4.39367816091954e-06,
|
3019 |
+
"loss": 1.2254,
|
3020 |
+
"step": 421
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.43617571059431526,
|
3024 |
+
"grad_norm": 1.5300006866455078,
|
3025 |
+
"learning_rate": 4.39080459770115e-06,
|
3026 |
+
"loss": 1.2286,
|
3027 |
+
"step": 422
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.4372093023255814,
|
3031 |
+
"grad_norm": 1.0909467935562134,
|
3032 |
+
"learning_rate": 4.387931034482759e-06,
|
3033 |
+
"loss": 1.2015,
|
3034 |
+
"step": 423
|
3035 |
+
},
|
3036 |
+
{
|
3037 |
+
"epoch": 0.4382428940568475,
|
3038 |
+
"grad_norm": 1.1437002420425415,
|
3039 |
+
"learning_rate": 4.3850574712643685e-06,
|
3040 |
+
"loss": 1.1486,
|
3041 |
+
"step": 424
|
3042 |
+
},
|
3043 |
+
{
|
3044 |
+
"epoch": 0.4392764857881137,
|
3045 |
+
"grad_norm": 1.2198647260665894,
|
3046 |
+
"learning_rate": 4.382183908045977e-06,
|
3047 |
+
"loss": 1.1961,
|
3048 |
+
"step": 425
|
3049 |
+
},
|
3050 |
+
{
|
3051 |
+
"epoch": 0.44031007751937984,
|
3052 |
+
"grad_norm": 1.4140639305114746,
|
3053 |
+
"learning_rate": 4.379310344827587e-06,
|
3054 |
+
"loss": 1.186,
|
3055 |
+
"step": 426
|
3056 |
+
},
|
3057 |
+
{
|
3058 |
+
"epoch": 0.441343669250646,
|
3059 |
+
"grad_norm": 1.1367213726043701,
|
3060 |
+
"learning_rate": 4.376436781609196e-06,
|
3061 |
+
"loss": 1.1975,
|
3062 |
+
"step": 427
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.44237726098191216,
|
3066 |
+
"grad_norm": 1.3699185848236084,
|
3067 |
+
"learning_rate": 4.373563218390805e-06,
|
3068 |
+
"loss": 1.2206,
|
3069 |
+
"step": 428
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.4434108527131783,
|
3073 |
+
"grad_norm": 1.152096152305603,
|
3074 |
+
"learning_rate": 4.370689655172414e-06,
|
3075 |
+
"loss": 1.1758,
|
3076 |
+
"step": 429
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 0.4444444444444444,
|
3080 |
+
"grad_norm": 1.2542738914489746,
|
3081 |
+
"learning_rate": 4.367816091954023e-06,
|
3082 |
+
"loss": 1.1657,
|
3083 |
+
"step": 430
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 0.4454780361757106,
|
3087 |
+
"grad_norm": 1.3231966495513916,
|
3088 |
+
"learning_rate": 4.3649425287356325e-06,
|
3089 |
+
"loss": 1.1864,
|
3090 |
+
"step": 431
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"epoch": 0.44651162790697674,
|
3094 |
+
"grad_norm": 1.4225741624832153,
|
3095 |
+
"learning_rate": 4.362068965517242e-06,
|
3096 |
+
"loss": 1.1983,
|
3097 |
+
"step": 432
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"epoch": 0.4475452196382429,
|
3101 |
+
"grad_norm": 1.2822364568710327,
|
3102 |
+
"learning_rate": 4.359195402298851e-06,
|
3103 |
+
"loss": 1.1802,
|
3104 |
+
"step": 433
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.44857881136950906,
|
3108 |
+
"grad_norm": 1.3587886095046997,
|
3109 |
+
"learning_rate": 4.35632183908046e-06,
|
3110 |
+
"loss": 1.1926,
|
3111 |
+
"step": 434
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.4496124031007752,
|
3115 |
+
"grad_norm": 1.5335510969161987,
|
3116 |
+
"learning_rate": 4.353448275862069e-06,
|
3117 |
+
"loss": 1.1817,
|
3118 |
+
"step": 435
|
3119 |
+
},
|
3120 |
+
{
|
3121 |
+
"epoch": 0.4506459948320413,
|
3122 |
+
"grad_norm": 1.1684523820877075,
|
3123 |
+
"learning_rate": 4.350574712643679e-06,
|
3124 |
+
"loss": 1.1831,
|
3125 |
+
"step": 436
|
3126 |
+
},
|
3127 |
+
{
|
3128 |
+
"epoch": 0.4516795865633075,
|
3129 |
+
"grad_norm": 1.1984566450119019,
|
3130 |
+
"learning_rate": 4.347701149425288e-06,
|
3131 |
+
"loss": 1.1373,
|
3132 |
+
"step": 437
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 0.45271317829457364,
|
3136 |
+
"grad_norm": 1.2617523670196533,
|
3137 |
+
"learning_rate": 4.3448275862068965e-06,
|
3138 |
+
"loss": 1.1713,
|
3139 |
+
"step": 438
|
3140 |
+
},
|
3141 |
+
{
|
3142 |
+
"epoch": 0.4537467700258398,
|
3143 |
+
"grad_norm": 1.2004725933074951,
|
3144 |
+
"learning_rate": 4.341954022988506e-06,
|
3145 |
+
"loss": 1.1768,
|
3146 |
+
"step": 439
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.45478036175710596,
|
3150 |
+
"grad_norm": 1.4468493461608887,
|
3151 |
+
"learning_rate": 4.339080459770116e-06,
|
3152 |
+
"loss": 1.1597,
|
3153 |
+
"step": 440
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.4558139534883721,
|
3157 |
+
"grad_norm": 1.1114490032196045,
|
3158 |
+
"learning_rate": 4.336206896551725e-06,
|
3159 |
+
"loss": 1.1791,
|
3160 |
+
"step": 441
|
3161 |
+
},
|
3162 |
+
{
|
3163 |
+
"epoch": 0.4568475452196382,
|
3164 |
+
"grad_norm": 1.325484037399292,
|
3165 |
+
"learning_rate": 4.333333333333334e-06,
|
3166 |
+
"loss": 1.1689,
|
3167 |
+
"step": 442
|
3168 |
+
},
|
3169 |
+
{
|
3170 |
+
"epoch": 0.4578811369509044,
|
3171 |
+
"grad_norm": 1.3673852682113647,
|
3172 |
+
"learning_rate": 4.330459770114943e-06,
|
3173 |
+
"loss": 1.173,
|
3174 |
+
"step": 443
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 0.45891472868217054,
|
3178 |
+
"grad_norm": 1.173619031906128,
|
3179 |
+
"learning_rate": 4.327586206896552e-06,
|
3180 |
+
"loss": 1.1969,
|
3181 |
+
"step": 444
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 0.4599483204134367,
|
3185 |
+
"grad_norm": 1.1025069952011108,
|
3186 |
+
"learning_rate": 4.324712643678161e-06,
|
3187 |
+
"loss": 1.1858,
|
3188 |
+
"step": 445
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.46098191214470285,
|
3192 |
+
"grad_norm": 1.2002084255218506,
|
3193 |
+
"learning_rate": 4.3218390804597705e-06,
|
3194 |
+
"loss": 1.1835,
|
3195 |
+
"step": 446
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.462015503875969,
|
3199 |
+
"grad_norm": 1.1930514574050903,
|
3200 |
+
"learning_rate": 4.31896551724138e-06,
|
3201 |
+
"loss": 1.1871,
|
3202 |
+
"step": 447
|
3203 |
+
},
|
3204 |
+
{
|
3205 |
+
"epoch": 0.4630490956072351,
|
3206 |
+
"grad_norm": 1.4340951442718506,
|
3207 |
+
"learning_rate": 4.316091954022989e-06,
|
3208 |
+
"loss": 1.1525,
|
3209 |
+
"step": 448
|
3210 |
+
},
|
3211 |
+
{
|
3212 |
+
"epoch": 0.4640826873385013,
|
3213 |
+
"grad_norm": 1.5040807723999023,
|
3214 |
+
"learning_rate": 4.313218390804598e-06,
|
3215 |
+
"loss": 1.18,
|
3216 |
+
"step": 449
|
3217 |
+
},
|
3218 |
+
{
|
3219 |
+
"epoch": 0.46511627906976744,
|
3220 |
+
"grad_norm": 1.2207226753234863,
|
3221 |
+
"learning_rate": 4.310344827586207e-06,
|
3222 |
+
"loss": 1.177,
|
3223 |
+
"step": 450
|
3224 |
+
},
|
3225 |
+
{
|
3226 |
+
"epoch": 0.46511627906976744,
|
3227 |
+
"eval_loss": 1.2576266527175903,
|
3228 |
+
"eval_runtime": 48.4102,
|
3229 |
+
"eval_samples_per_second": 20.657,
|
3230 |
+
"eval_steps_per_second": 0.661,
|
3231 |
+
"step": 450
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 0.4661498708010336,
|
3235 |
+
"grad_norm": 1.4215892553329468,
|
3236 |
+
"learning_rate": 4.307471264367816e-06,
|
3237 |
+
"loss": 1.1994,
|
3238 |
+
"step": 451
|
3239 |
+
},
|
3240 |
+
{
|
3241 |
+
"epoch": 0.46718346253229975,
|
3242 |
+
"grad_norm": 1.152346134185791,
|
3243 |
+
"learning_rate": 4.304597701149425e-06,
|
3244 |
+
"loss": 1.1397,
|
3245 |
+
"step": 452
|
3246 |
+
},
|
3247 |
+
{
|
3248 |
+
"epoch": 0.4682170542635659,
|
3249 |
+
"grad_norm": 1.2140494585037231,
|
3250 |
+
"learning_rate": 4.3017241379310345e-06,
|
3251 |
+
"loss": 1.1908,
|
3252 |
+
"step": 453
|
3253 |
+
},
|
3254 |
+
{
|
3255 |
+
"epoch": 0.469250645994832,
|
3256 |
+
"grad_norm": 1.2626186609268188,
|
3257 |
+
"learning_rate": 4.2988505747126445e-06,
|
3258 |
+
"loss": 1.1904,
|
3259 |
+
"step": 454
|
3260 |
+
},
|
3261 |
+
{
|
3262 |
+
"epoch": 0.4702842377260982,
|
3263 |
+
"grad_norm": 1.5459721088409424,
|
3264 |
+
"learning_rate": 4.295977011494254e-06,
|
3265 |
+
"loss": 1.1698,
|
3266 |
+
"step": 455
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 0.47131782945736433,
|
3270 |
+
"grad_norm": 1.2738758325576782,
|
3271 |
+
"learning_rate": 4.293103448275863e-06,
|
3272 |
+
"loss": 1.1824,
|
3273 |
+
"step": 456
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 0.4723514211886305,
|
3277 |
+
"grad_norm": 1.1245863437652588,
|
3278 |
+
"learning_rate": 4.290229885057471e-06,
|
3279 |
+
"loss": 1.1698,
|
3280 |
+
"step": 457
|
3281 |
+
},
|
3282 |
+
{
|
3283 |
+
"epoch": 0.47338501291989665,
|
3284 |
+
"grad_norm": 1.2073432207107544,
|
3285 |
+
"learning_rate": 4.287356321839081e-06,
|
3286 |
+
"loss": 1.132,
|
3287 |
+
"step": 458
|
3288 |
+
},
|
3289 |
+
{
|
3290 |
+
"epoch": 0.4744186046511628,
|
3291 |
+
"grad_norm": 1.552643060684204,
|
3292 |
+
"learning_rate": 4.28448275862069e-06,
|
3293 |
+
"loss": 1.2027,
|
3294 |
+
"step": 459
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 0.4754521963824289,
|
3298 |
+
"grad_norm": 1.4971299171447754,
|
3299 |
+
"learning_rate": 4.281609195402299e-06,
|
3300 |
+
"loss": 1.1758,
|
3301 |
+
"step": 460
|
3302 |
+
},
|
3303 |
+
{
|
3304 |
+
"epoch": 0.4764857881136951,
|
3305 |
+
"grad_norm": 1.0017420053482056,
|
3306 |
+
"learning_rate": 4.2787356321839085e-06,
|
3307 |
+
"loss": 1.1464,
|
3308 |
+
"step": 461
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 0.47751937984496123,
|
3312 |
+
"grad_norm": 1.210776925086975,
|
3313 |
+
"learning_rate": 4.275862068965518e-06,
|
3314 |
+
"loss": 1.1984,
|
3315 |
+
"step": 462
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 0.4785529715762274,
|
3319 |
+
"grad_norm": 1.0808087587356567,
|
3320 |
+
"learning_rate": 4.272988505747127e-06,
|
3321 |
+
"loss": 1.2179,
|
3322 |
+
"step": 463
|
3323 |
+
},
|
3324 |
+
{
|
3325 |
+
"epoch": 0.47958656330749355,
|
3326 |
+
"grad_norm": 1.408263921737671,
|
3327 |
+
"learning_rate": 4.270114942528736e-06,
|
3328 |
+
"loss": 1.1446,
|
3329 |
+
"step": 464
|
3330 |
+
},
|
3331 |
+
{
|
3332 |
+
"epoch": 0.4806201550387597,
|
3333 |
+
"grad_norm": 1.3446722030639648,
|
3334 |
+
"learning_rate": 4.267241379310345e-06,
|
3335 |
+
"loss": 1.1894,
|
3336 |
+
"step": 465
|
3337 |
+
},
|
3338 |
+
{
|
3339 |
+
"epoch": 0.4816537467700258,
|
3340 |
+
"grad_norm": 1.1083803176879883,
|
3341 |
+
"learning_rate": 4.264367816091954e-06,
|
3342 |
+
"loss": 1.1972,
|
3343 |
+
"step": 466
|
3344 |
+
},
|
3345 |
+
{
|
3346 |
+
"epoch": 0.482687338501292,
|
3347 |
+
"grad_norm": 1.3985694646835327,
|
3348 |
+
"learning_rate": 4.261494252873563e-06,
|
3349 |
+
"loss": 1.2348,
|
3350 |
+
"step": 467
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 0.48372093023255813,
|
3354 |
+
"grad_norm": 1.1992748975753784,
|
3355 |
+
"learning_rate": 4.2586206896551725e-06,
|
3356 |
+
"loss": 1.1702,
|
3357 |
+
"step": 468
|
3358 |
+
},
|
3359 |
+
{
|
3360 |
+
"epoch": 0.4847545219638243,
|
3361 |
+
"grad_norm": 1.3031333684921265,
|
3362 |
+
"learning_rate": 4.2557471264367825e-06,
|
3363 |
+
"loss": 1.1977,
|
3364 |
+
"step": 469
|
3365 |
+
},
|
3366 |
+
{
|
3367 |
+
"epoch": 0.48578811369509045,
|
3368 |
+
"grad_norm": 1.161007285118103,
|
3369 |
+
"learning_rate": 4.252873563218391e-06,
|
3370 |
+
"loss": 1.1841,
|
3371 |
+
"step": 470
|
3372 |
+
},
|
3373 |
+
{
|
3374 |
+
"epoch": 0.4868217054263566,
|
3375 |
+
"grad_norm": 1.0703585147857666,
|
3376 |
+
"learning_rate": 4.25e-06,
|
3377 |
+
"loss": 1.1654,
|
3378 |
+
"step": 471
|
3379 |
+
},
|
3380 |
+
{
|
3381 |
+
"epoch": 0.4878552971576227,
|
3382 |
+
"grad_norm": 1.2260897159576416,
|
3383 |
+
"learning_rate": 4.247126436781609e-06,
|
3384 |
+
"loss": 1.1918,
|
3385 |
+
"step": 472
|
3386 |
+
},
|
3387 |
+
{
|
3388 |
+
"epoch": 0.4888888888888889,
|
3389 |
+
"grad_norm": 1.16552734375,
|
3390 |
+
"learning_rate": 4.244252873563219e-06,
|
3391 |
+
"loss": 1.1821,
|
3392 |
+
"step": 473
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 0.48992248062015503,
|
3396 |
+
"grad_norm": 1.2570924758911133,
|
3397 |
+
"learning_rate": 4.241379310344828e-06,
|
3398 |
+
"loss": 1.1526,
|
3399 |
+
"step": 474
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 0.4909560723514212,
|
3403 |
+
"grad_norm": 1.1815022230148315,
|
3404 |
+
"learning_rate": 4.238505747126437e-06,
|
3405 |
+
"loss": 1.1735,
|
3406 |
+
"step": 475
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 0.49198966408268735,
|
3410 |
+
"grad_norm": 1.4533460140228271,
|
3411 |
+
"learning_rate": 4.235632183908046e-06,
|
3412 |
+
"loss": 1.1875,
|
3413 |
+
"step": 476
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 0.4930232558139535,
|
3417 |
+
"grad_norm": 1.09726881980896,
|
3418 |
+
"learning_rate": 4.232758620689656e-06,
|
3419 |
+
"loss": 1.1541,
|
3420 |
+
"step": 477
|
3421 |
+
},
|
3422 |
+
{
|
3423 |
+
"epoch": 0.4940568475452196,
|
3424 |
+
"grad_norm": 1.1364957094192505,
|
3425 |
+
"learning_rate": 4.229885057471265e-06,
|
3426 |
+
"loss": 1.1704,
|
3427 |
+
"step": 478
|
3428 |
+
},
|
3429 |
+
{
|
3430 |
+
"epoch": 0.49509043927648577,
|
3431 |
+
"grad_norm": 1.0956162214279175,
|
3432 |
+
"learning_rate": 4.227011494252874e-06,
|
3433 |
+
"loss": 1.159,
|
3434 |
+
"step": 479
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 0.49612403100775193,
|
3438 |
+
"grad_norm": 1.3513314723968506,
|
3439 |
+
"learning_rate": 4.224137931034483e-06,
|
3440 |
+
"loss": 1.1436,
|
3441 |
+
"step": 480
|
3442 |
+
},
|
3443 |
+
{
|
3444 |
+
"epoch": 0.4971576227390181,
|
3445 |
+
"grad_norm": 1.3028982877731323,
|
3446 |
+
"learning_rate": 4.221264367816092e-06,
|
3447 |
+
"loss": 1.1976,
|
3448 |
+
"step": 481
|
3449 |
+
},
|
3450 |
+
{
|
3451 |
+
"epoch": 0.49819121447028425,
|
3452 |
+
"grad_norm": 1.1886882781982422,
|
3453 |
+
"learning_rate": 4.218390804597701e-06,
|
3454 |
+
"loss": 1.1843,
|
3455 |
+
"step": 482
|
3456 |
+
},
|
3457 |
+
{
|
3458 |
+
"epoch": 0.4992248062015504,
|
3459 |
+
"grad_norm": 1.1816167831420898,
|
3460 |
+
"learning_rate": 4.2155172413793106e-06,
|
3461 |
+
"loss": 1.1305,
|
3462 |
+
"step": 483
|
3463 |
+
},
|
3464 |
+
{
|
3465 |
+
"epoch": 0.5002583979328166,
|
3466 |
+
"grad_norm": 1.1279879808425903,
|
3467 |
+
"learning_rate": 4.21264367816092e-06,
|
3468 |
+
"loss": 1.1278,
|
3469 |
+
"step": 484
|
3470 |
+
},
|
3471 |
+
{
|
3472 |
+
"epoch": 0.5012919896640827,
|
3473 |
+
"grad_norm": 1.1833527088165283,
|
3474 |
+
"learning_rate": 4.209770114942529e-06,
|
3475 |
+
"loss": 1.1395,
|
3476 |
+
"step": 485
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 0.5023255813953489,
|
3480 |
+
"grad_norm": 1.0197025537490845,
|
3481 |
+
"learning_rate": 4.206896551724138e-06,
|
3482 |
+
"loss": 1.1979,
|
3483 |
+
"step": 486
|
3484 |
+
},
|
3485 |
+
{
|
3486 |
+
"epoch": 0.5033591731266149,
|
3487 |
+
"grad_norm": 1.1991444826126099,
|
3488 |
+
"learning_rate": 4.204022988505748e-06,
|
3489 |
+
"loss": 1.1873,
|
3490 |
+
"step": 487
|
3491 |
+
},
|
3492 |
+
{
|
3493 |
+
"epoch": 0.5043927648578811,
|
3494 |
+
"grad_norm": 1.2488261461257935,
|
3495 |
+
"learning_rate": 4.201149425287357e-06,
|
3496 |
+
"loss": 1.1615,
|
3497 |
+
"step": 488
|
3498 |
+
},
|
3499 |
+
{
|
3500 |
+
"epoch": 0.5054263565891473,
|
3501 |
+
"grad_norm": 1.042624592781067,
|
3502 |
+
"learning_rate": 4.1982758620689654e-06,
|
3503 |
+
"loss": 1.1975,
|
3504 |
+
"step": 489
|
3505 |
+
},
|
3506 |
+
{
|
3507 |
+
"epoch": 0.5064599483204134,
|
3508 |
+
"grad_norm": 1.2511039972305298,
|
3509 |
+
"learning_rate": 4.1954022988505746e-06,
|
3510 |
+
"loss": 1.1775,
|
3511 |
+
"step": 490
|
3512 |
+
},
|
3513 |
+
{
|
3514 |
+
"epoch": 0.5074935400516796,
|
3515 |
+
"grad_norm": 1.2317752838134766,
|
3516 |
+
"learning_rate": 4.1925287356321846e-06,
|
3517 |
+
"loss": 1.2116,
|
3518 |
+
"step": 491
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 0.5085271317829457,
|
3522 |
+
"grad_norm": 1.1231718063354492,
|
3523 |
+
"learning_rate": 4.189655172413794e-06,
|
3524 |
+
"loss": 1.1769,
|
3525 |
+
"step": 492
|
3526 |
+
},
|
3527 |
+
{
|
3528 |
+
"epoch": 0.5095607235142119,
|
3529 |
+
"grad_norm": 1.025221347808838,
|
3530 |
+
"learning_rate": 4.186781609195403e-06,
|
3531 |
+
"loss": 1.1715,
|
3532 |
+
"step": 493
|
3533 |
+
},
|
3534 |
+
{
|
3535 |
+
"epoch": 0.510594315245478,
|
3536 |
+
"grad_norm": 1.2898812294006348,
|
3537 |
+
"learning_rate": 4.183908045977012e-06,
|
3538 |
+
"loss": 1.223,
|
3539 |
+
"step": 494
|
3540 |
+
},
|
3541 |
+
{
|
3542 |
+
"epoch": 0.5116279069767442,
|
3543 |
+
"grad_norm": 1.2475007772445679,
|
3544 |
+
"learning_rate": 4.181034482758621e-06,
|
3545 |
+
"loss": 1.167,
|
3546 |
+
"step": 495
|
3547 |
+
},
|
3548 |
+
{
|
3549 |
+
"epoch": 0.5126614987080104,
|
3550 |
+
"grad_norm": 1.4511774778366089,
|
3551 |
+
"learning_rate": 4.17816091954023e-06,
|
3552 |
+
"loss": 1.1787,
|
3553 |
+
"step": 496
|
3554 |
+
},
|
3555 |
+
{
|
3556 |
+
"epoch": 0.5136950904392765,
|
3557 |
+
"grad_norm": 1.3853965997695923,
|
3558 |
+
"learning_rate": 4.1752873563218394e-06,
|
3559 |
+
"loss": 1.1974,
|
3560 |
+
"step": 497
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 0.5147286821705427,
|
3564 |
+
"grad_norm": 1.340599536895752,
|
3565 |
+
"learning_rate": 4.1724137931034486e-06,
|
3566 |
+
"loss": 1.1505,
|
3567 |
+
"step": 498
|
3568 |
+
},
|
3569 |
+
{
|
3570 |
+
"epoch": 0.5157622739018087,
|
3571 |
+
"grad_norm": 1.0093344449996948,
|
3572 |
+
"learning_rate": 4.169540229885058e-06,
|
3573 |
+
"loss": 1.1297,
|
3574 |
+
"step": 499
|
3575 |
+
},
|
3576 |
+
{
|
3577 |
+
"epoch": 0.5167958656330749,
|
3578 |
+
"grad_norm": 1.3832353353500366,
|
3579 |
+
"learning_rate": 4.166666666666667e-06,
|
3580 |
+
"loss": 1.174,
|
3581 |
+
"step": 500
|
3582 |
+
},
|
3583 |
+
{
|
3584 |
+
"epoch": 0.5167958656330749,
|
3585 |
+
"eval_loss": 1.2501999139785767,
|
3586 |
+
"eval_runtime": 48.1533,
|
3587 |
+
"eval_samples_per_second": 20.767,
|
3588 |
+
"eval_steps_per_second": 0.665,
|
3589 |
+
"step": 500
|
3590 |
+
}
|
3591 |
+
],
|
3592 |
+
"logging_steps": 1,
|
3593 |
+
"max_steps": 1934,
|
3594 |
+
"num_input_tokens_seen": 0,
|
3595 |
+
"num_train_epochs": 2,
|
3596 |
+
"save_steps": 500,
|
3597 |
+
"stateful_callbacks": {
|
3598 |
+
"TrainerControl": {
|
3599 |
+
"args": {
|
3600 |
+
"should_epoch_stop": false,
|
3601 |
+
"should_evaluate": false,
|
3602 |
+
"should_log": false,
|
3603 |
+
"should_save": true,
|
3604 |
+
"should_training_stop": false
|
3605 |
+
},
|
3606 |
+
"attributes": {}
|
3607 |
+
}
|
3608 |
+
},
|
3609 |
+
"total_flos": 6.87708552822784e+17,
|
3610 |
+
"train_batch_size": 2,
|
3611 |
+
"trial_name": null,
|
3612 |
+
"trial_params": null
|
3613 |
+
}
|
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|