Yaning1001 commited on
Commit
d86e868
·
verified ·
1 Parent(s): 6681d02

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. checkpoints/Qwen2.5-14B/babylm_hop_control_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors +3 -0
  3. checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f +3 -0
  4. checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors +3 -0
  5. checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/added_tokens.json +24 -0
  6. checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/config.json +29 -0
  7. checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/tokenizer_config.json +207 -0
  8. checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/trainer_state.json +3613 -0
  9. checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/zero_to_fp32.py +604 -0
  10. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/4d870a72c656404ee7524163ba996bf55050fff252dfe639a90715a9e2c47dba.lock +0 -0
  11. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/68127c9bc4fab170f7aaf63d5c7ac9e182afd10b74a1c6bb8025afefc11447cb.lock +0 -0
  12. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7045cf78c68178b626546982d12b6e9c8e289f1bf1e65c42225ed13e07847180.lock +0 -0
  13. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7250708a789da850ff40a4a5be335971dfa0d2bd7cba2e9905916dab06744d75.lock +0 -0
  14. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7c8139ab9a4e680ff0e9741c678e26c43788abf0.lock +0 -0
  15. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/83bba6e26639fb152bd0077977cf6ea8312b42a9.lock +0 -0
  16. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f.lock +0 -0
  17. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/c2754167c1cbaf94b9af9c7eb646a2286a596f9ded5e2e3c4c5e6a4464352c9e.lock +0 -0
  18. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/cbbb3133034e192527e5321b4c679154e4819ab8.lock +0 -0
  19. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e015e2bc9a26b4e46d77913d8c667608ae7e48aa1eca04af5786c2408f4bc0fa.lock +0 -0
  20. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e7efa1adc8257218813dcb494bb2a3d5775fa268735ab39e5b8119e233c21462.lock +0 -0
  21. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/adapter_config.json +0 -0
  22. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors +0 -0
  23. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/7c8139ab9a4e680ff0e9741c678e26c43788abf0 +586 -0
  24. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/83bba6e26639fb152bd0077977cf6ea8312b42a9 +27 -0
  25. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/cbbb3133034e192527e5321b4c679154e4819ab8 +7 -0
  26. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/refs/main +1 -0
  27. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/config.json +27 -0
  28. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/generation_config.json +7 -0
  29. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors.index.json +586 -0
  30. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/added_tokens.json +24 -0
  31. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/config.json +29 -0
  32. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/generation_config.json +6 -0
  33. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/latest +1 -0
  34. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/merges.txt +0 -0
  35. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/model.safetensors.index.json +586 -0
  36. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/special_tokens_map.json +31 -0
  37. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/tokenizer_config.json +207 -0
  38. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/trainer_state.json +0 -0
  39. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/vocab.json +0 -0
  40. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/zero_to_fp32.py +604 -0
  41. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/added_tokens.json +24 -0
  42. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/config.json +29 -0
  43. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/generation_config.json +6 -0
  44. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/latest +1 -0
  45. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/merges.txt +0 -0
  46. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/model.safetensors.index.json +586 -0
  47. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/special_tokens_map.json +31 -0
  48. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/tokenizer_config.json +207 -0
  49. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/trainer_state.json +3613 -0
  50. checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/vocab.json +0 -0
.gitattributes CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
36
  checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-1934/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f filter=lfs diff=lfs merge=lfs -text
 
 
36
  checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-1934/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/runs/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoints/Qwen2.5-14B/babylm_shuffle_nondeterministic_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f filter=lfs diff=lfs merge=lfs -text
39
+ checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f filter=lfs diff=lfs merge=lfs -text
checkpoints/Qwen2.5-14B/babylm_hop_control_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f
3
+ size 1698724408
checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f
3
+ size 1698724408
checkpoints/Qwen2.5-14B/babylm_hop_words4_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model-00008-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f
3
+ size 1698724408
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-14B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 13824,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 48,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 48,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.45.1",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3613 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5167958656330749,
5
+ "eval_steps": 50,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0010335917312661498,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.6607,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0020671834625322996,
20
+ "grad_norm": 0.0,
21
+ "learning_rate": 0.0,
22
+ "loss": 1.6461,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0031007751937984496,
27
+ "grad_norm": 0.0,
28
+ "learning_rate": 0.0,
29
+ "loss": 1.6883,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.004134366925064599,
34
+ "grad_norm": 0.0,
35
+ "learning_rate": 0.0,
36
+ "loss": 1.6281,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.00516795865633075,
41
+ "grad_norm": 0.0,
42
+ "learning_rate": 0.0,
43
+ "loss": 1.6642,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.006201550387596899,
48
+ "grad_norm": 0.0,
49
+ "learning_rate": 0.0,
50
+ "loss": 1.6784,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.007235142118863049,
55
+ "grad_norm": 0.0,
56
+ "learning_rate": 0.0,
57
+ "loss": 1.6831,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.008268733850129198,
62
+ "grad_norm": 0.0,
63
+ "learning_rate": 0.0,
64
+ "loss": 1.6472,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.009302325581395349,
69
+ "grad_norm": 0.0,
70
+ "learning_rate": 0.0,
71
+ "loss": 1.6772,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.0103359173126615,
76
+ "grad_norm": 0.0,
77
+ "learning_rate": 0.0,
78
+ "loss": 1.6972,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.011369509043927648,
83
+ "grad_norm": 0.0,
84
+ "learning_rate": 0.0,
85
+ "loss": 1.6912,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.012403100775193798,
90
+ "grad_norm": 0.0,
91
+ "learning_rate": 0.0,
92
+ "loss": 1.667,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.013436692506459949,
97
+ "grad_norm": 0.0,
98
+ "learning_rate": 0.0,
99
+ "loss": 1.6719,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.014470284237726097,
104
+ "grad_norm": 0.0,
105
+ "learning_rate": 0.0,
106
+ "loss": 1.6269,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.015503875968992248,
111
+ "grad_norm": 0.0,
112
+ "learning_rate": 0.0,
113
+ "loss": 1.6598,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.016537467700258397,
118
+ "grad_norm": 0.0,
119
+ "learning_rate": 0.0,
120
+ "loss": 1.6819,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.01757105943152455,
125
+ "grad_norm": 2.897101640701294,
126
+ "learning_rate": 2.5773195876288662e-08,
127
+ "loss": 1.6717,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.018604651162790697,
132
+ "grad_norm": 3.3035874366760254,
133
+ "learning_rate": 5.1546391752577325e-08,
134
+ "loss": 1.7092,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.019638242894056846,
139
+ "grad_norm": 2.7663118839263916,
140
+ "learning_rate": 7.731958762886598e-08,
141
+ "loss": 1.6714,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.020671834625323,
146
+ "grad_norm": 2.696624279022217,
147
+ "learning_rate": 1.0309278350515465e-07,
148
+ "loss": 1.6648,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.021705426356589147,
153
+ "grad_norm": 2.572075366973877,
154
+ "learning_rate": 1.288659793814433e-07,
155
+ "loss": 1.649,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.022739018087855296,
160
+ "grad_norm": 3.8518550395965576,
161
+ "learning_rate": 1.5463917525773197e-07,
162
+ "loss": 1.6555,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.023772609819121448,
167
+ "grad_norm": 2.9744110107421875,
168
+ "learning_rate": 1.804123711340206e-07,
169
+ "loss": 1.6683,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.024806201550387597,
174
+ "grad_norm": 3.381155014038086,
175
+ "learning_rate": 2.061855670103093e-07,
176
+ "loss": 1.6864,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.025839793281653745,
181
+ "grad_norm": 3.5349085330963135,
182
+ "learning_rate": 2.3195876288659797e-07,
183
+ "loss": 1.6787,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.026873385012919897,
188
+ "grad_norm": 2.8829333782196045,
189
+ "learning_rate": 2.577319587628866e-07,
190
+ "loss": 1.6425,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.027906976744186046,
195
+ "grad_norm": 2.7831168174743652,
196
+ "learning_rate": 2.8350515463917527e-07,
197
+ "loss": 1.6556,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.028940568475452195,
202
+ "grad_norm": 3.226625919342041,
203
+ "learning_rate": 3.0927835051546394e-07,
204
+ "loss": 1.6755,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.029974160206718347,
209
+ "grad_norm": 2.7015786170959473,
210
+ "learning_rate": 3.350515463917526e-07,
211
+ "loss": 1.6677,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.031007751937984496,
216
+ "grad_norm": 2.572233200073242,
217
+ "learning_rate": 3.608247422680412e-07,
218
+ "loss": 1.6925,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.03204134366925065,
223
+ "grad_norm": 2.339751958847046,
224
+ "learning_rate": 3.8659793814432993e-07,
225
+ "loss": 1.6202,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.03307493540051679,
230
+ "grad_norm": 2.538344621658325,
231
+ "learning_rate": 4.123711340206186e-07,
232
+ "loss": 1.634,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.034108527131782945,
237
+ "grad_norm": 1.9859461784362793,
238
+ "learning_rate": 4.381443298969072e-07,
239
+ "loss": 1.6472,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.0351421188630491,
244
+ "grad_norm": 2.0745434761047363,
245
+ "learning_rate": 4.6391752577319593e-07,
246
+ "loss": 1.662,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.03617571059431524,
251
+ "grad_norm": 1.5810471773147583,
252
+ "learning_rate": 4.896907216494846e-07,
253
+ "loss": 1.6466,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.037209302325581395,
258
+ "grad_norm": 1.4383913278579712,
259
+ "learning_rate": 5.154639175257732e-07,
260
+ "loss": 1.6553,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.03824289405684755,
265
+ "grad_norm": 2.5648560523986816,
266
+ "learning_rate": 5.412371134020619e-07,
267
+ "loss": 1.638,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.03927648578811369,
272
+ "grad_norm": 1.772307276725769,
273
+ "learning_rate": 5.670103092783505e-07,
274
+ "loss": 1.5873,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.040310077519379844,
279
+ "grad_norm": 1.5337371826171875,
280
+ "learning_rate": 5.927835051546392e-07,
281
+ "loss": 1.6429,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.041343669250646,
286
+ "grad_norm": 1.5859408378601074,
287
+ "learning_rate": 6.185567010309279e-07,
288
+ "loss": 1.6351,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.04237726098191214,
293
+ "grad_norm": 1.5069128274917603,
294
+ "learning_rate": 6.443298969072165e-07,
295
+ "loss": 1.6293,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.043410852713178294,
300
+ "grad_norm": 1.5274145603179932,
301
+ "learning_rate": 6.701030927835052e-07,
302
+ "loss": 1.6553,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.044444444444444446,
307
+ "grad_norm": 2.2933266162872314,
308
+ "learning_rate": 6.958762886597939e-07,
309
+ "loss": 1.5855,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.04547803617571059,
314
+ "grad_norm": 2.9122445583343506,
315
+ "learning_rate": 7.216494845360824e-07,
316
+ "loss": 1.6064,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.046511627906976744,
321
+ "grad_norm": 1.6369024515151978,
322
+ "learning_rate": 7.474226804123711e-07,
323
+ "loss": 1.5924,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.047545219638242896,
328
+ "grad_norm": 1.8904677629470825,
329
+ "learning_rate": 7.731958762886599e-07,
330
+ "loss": 1.5818,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.04857881136950904,
335
+ "grad_norm": 2.2924325466156006,
336
+ "learning_rate": 7.989690721649485e-07,
337
+ "loss": 1.5867,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.04961240310077519,
342
+ "grad_norm": 3.223383665084839,
343
+ "learning_rate": 8.247422680412372e-07,
344
+ "loss": 1.5756,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.050645994832041345,
349
+ "grad_norm": 1.4551427364349365,
350
+ "learning_rate": 8.505154639175259e-07,
351
+ "loss": 1.589,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.05167958656330749,
356
+ "grad_norm": 1.8233811855316162,
357
+ "learning_rate": 8.762886597938144e-07,
358
+ "loss": 1.5486,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.05167958656330749,
363
+ "eval_loss": 1.570243239402771,
364
+ "eval_runtime": 53.2671,
365
+ "eval_samples_per_second": 18.773,
366
+ "eval_steps_per_second": 0.601,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.05271317829457364,
371
+ "grad_norm": 2.7552506923675537,
372
+ "learning_rate": 9.020618556701031e-07,
373
+ "loss": 1.5484,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.053746770025839795,
378
+ "grad_norm": 1.6123155355453491,
379
+ "learning_rate": 9.278350515463919e-07,
380
+ "loss": 1.5412,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.05478036175710594,
385
+ "grad_norm": 1.4314796924591064,
386
+ "learning_rate": 9.536082474226805e-07,
387
+ "loss": 1.5393,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.05581395348837209,
392
+ "grad_norm": 1.6784818172454834,
393
+ "learning_rate": 9.793814432989692e-07,
394
+ "loss": 1.5458,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.056847545219638244,
399
+ "grad_norm": 1.7028733491897583,
400
+ "learning_rate": 1.005154639175258e-06,
401
+ "loss": 1.4995,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.05788113695090439,
406
+ "grad_norm": 1.6766446828842163,
407
+ "learning_rate": 1.0309278350515464e-06,
408
+ "loss": 1.505,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.05891472868217054,
413
+ "grad_norm": 1.7980971336364746,
414
+ "learning_rate": 1.0567010309278351e-06,
415
+ "loss": 1.4519,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.059948320413436694,
420
+ "grad_norm": 1.8206804990768433,
421
+ "learning_rate": 1.0824742268041239e-06,
422
+ "loss": 1.4577,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.06098191214470284,
427
+ "grad_norm": 1.6603621244430542,
428
+ "learning_rate": 1.1082474226804124e-06,
429
+ "loss": 1.4541,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.06201550387596899,
434
+ "grad_norm": 1.7833083868026733,
435
+ "learning_rate": 1.134020618556701e-06,
436
+ "loss": 1.4556,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.06304909560723514,
441
+ "grad_norm": 1.9101687669754028,
442
+ "learning_rate": 1.1597938144329898e-06,
443
+ "loss": 1.4173,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.0640826873385013,
448
+ "grad_norm": 1.8884676694869995,
449
+ "learning_rate": 1.1855670103092783e-06,
450
+ "loss": 1.4172,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.06511627906976744,
455
+ "grad_norm": 1.963536262512207,
456
+ "learning_rate": 1.211340206185567e-06,
457
+ "loss": 1.4207,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.06614987080103359,
462
+ "grad_norm": 2.2165422439575195,
463
+ "learning_rate": 1.2371134020618557e-06,
464
+ "loss": 1.4136,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.06718346253229975,
469
+ "grad_norm": 1.333492398262024,
470
+ "learning_rate": 1.2628865979381445e-06,
471
+ "loss": 1.4001,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.06821705426356589,
476
+ "grad_norm": 1.4832924604415894,
477
+ "learning_rate": 1.288659793814433e-06,
478
+ "loss": 1.3924,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.06925064599483204,
483
+ "grad_norm": 1.7485769987106323,
484
+ "learning_rate": 1.314432989690722e-06,
485
+ "loss": 1.3667,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.0702842377260982,
490
+ "grad_norm": 1.5255411863327026,
491
+ "learning_rate": 1.3402061855670104e-06,
492
+ "loss": 1.3803,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.07131782945736434,
497
+ "grad_norm": 1.6617186069488525,
498
+ "learning_rate": 1.365979381443299e-06,
499
+ "loss": 1.3814,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.07235142118863049,
504
+ "grad_norm": 1.7209995985031128,
505
+ "learning_rate": 1.3917525773195878e-06,
506
+ "loss": 1.4081,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.07338501291989664,
511
+ "grad_norm": 1.6906920671463013,
512
+ "learning_rate": 1.4175257731958764e-06,
513
+ "loss": 1.3755,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.07441860465116279,
518
+ "grad_norm": 1.5806481838226318,
519
+ "learning_rate": 1.4432989690721649e-06,
520
+ "loss": 1.3394,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.07545219638242893,
525
+ "grad_norm": 1.6998566389083862,
526
+ "learning_rate": 1.4690721649484538e-06,
527
+ "loss": 1.3773,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.0764857881136951,
532
+ "grad_norm": 1.4243597984313965,
533
+ "learning_rate": 1.4948453608247423e-06,
534
+ "loss": 1.3232,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.07751937984496124,
539
+ "grad_norm": 1.4643871784210205,
540
+ "learning_rate": 1.520618556701031e-06,
541
+ "loss": 1.312,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.07855297157622738,
546
+ "grad_norm": 1.566022515296936,
547
+ "learning_rate": 1.5463917525773197e-06,
548
+ "loss": 1.3744,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.07958656330749354,
553
+ "grad_norm": 1.6502660512924194,
554
+ "learning_rate": 1.5721649484536082e-06,
555
+ "loss": 1.2804,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.08062015503875969,
560
+ "grad_norm": 1.4917631149291992,
561
+ "learning_rate": 1.597938144329897e-06,
562
+ "loss": 1.3368,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.08165374677002583,
567
+ "grad_norm": 1.1608281135559082,
568
+ "learning_rate": 1.6237113402061857e-06,
569
+ "loss": 1.3036,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.082687338501292,
574
+ "grad_norm": 1.4414565563201904,
575
+ "learning_rate": 1.6494845360824744e-06,
576
+ "loss": 1.3084,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.08372093023255814,
581
+ "grad_norm": 1.8089519739151,
582
+ "learning_rate": 1.675257731958763e-06,
583
+ "loss": 1.3362,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.08475452196382428,
588
+ "grad_norm": 1.835245966911316,
589
+ "learning_rate": 1.7010309278350518e-06,
590
+ "loss": 1.2728,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.08578811369509044,
595
+ "grad_norm": 1.3364133834838867,
596
+ "learning_rate": 1.7268041237113403e-06,
597
+ "loss": 1.2804,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.08682170542635659,
602
+ "grad_norm": 1.287848711013794,
603
+ "learning_rate": 1.7525773195876288e-06,
604
+ "loss": 1.3104,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.08785529715762273,
609
+ "grad_norm": 1.3792903423309326,
610
+ "learning_rate": 1.7783505154639178e-06,
611
+ "loss": 1.2808,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.08888888888888889,
616
+ "grad_norm": 1.4002866744995117,
617
+ "learning_rate": 1.8041237113402063e-06,
618
+ "loss": 1.2652,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.08992248062015504,
623
+ "grad_norm": 1.423072099685669,
624
+ "learning_rate": 1.8298969072164948e-06,
625
+ "loss": 1.3136,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.09095607235142118,
630
+ "grad_norm": 1.472794771194458,
631
+ "learning_rate": 1.8556701030927837e-06,
632
+ "loss": 1.3067,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.09198966408268734,
637
+ "grad_norm": 1.3818236589431763,
638
+ "learning_rate": 1.8814432989690722e-06,
639
+ "loss": 1.2773,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.09302325581395349,
644
+ "grad_norm": 1.799110770225525,
645
+ "learning_rate": 1.907216494845361e-06,
646
+ "loss": 1.2654,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.09405684754521963,
651
+ "grad_norm": 1.6194965839385986,
652
+ "learning_rate": 1.9329896907216497e-06,
653
+ "loss": 1.2556,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.09509043927648579,
658
+ "grad_norm": 1.6596431732177734,
659
+ "learning_rate": 1.9587628865979384e-06,
660
+ "loss": 1.2817,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.09612403100775194,
665
+ "grad_norm": 1.6827796697616577,
666
+ "learning_rate": 1.9845360824742267e-06,
667
+ "loss": 1.2633,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.09715762273901808,
672
+ "grad_norm": 1.3558834791183472,
673
+ "learning_rate": 2.010309278350516e-06,
674
+ "loss": 1.3066,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.09819121447028424,
679
+ "grad_norm": 1.5518406629562378,
680
+ "learning_rate": 2.036082474226804e-06,
681
+ "loss": 1.2849,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.09922480620155039,
686
+ "grad_norm": 1.3061556816101074,
687
+ "learning_rate": 2.061855670103093e-06,
688
+ "loss": 1.2521,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.10025839793281653,
693
+ "grad_norm": 1.401341438293457,
694
+ "learning_rate": 2.0876288659793816e-06,
695
+ "loss": 1.2901,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.10129198966408269,
700
+ "grad_norm": 1.5926023721694946,
701
+ "learning_rate": 2.1134020618556703e-06,
702
+ "loss": 1.2446,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.10232558139534884,
707
+ "grad_norm": 1.6969091892242432,
708
+ "learning_rate": 2.139175257731959e-06,
709
+ "loss": 1.2243,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.10335917312661498,
714
+ "grad_norm": 1.4960438013076782,
715
+ "learning_rate": 2.1649484536082477e-06,
716
+ "loss": 1.2166,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.10335917312661498,
721
+ "eval_loss": 1.3024815320968628,
722
+ "eval_runtime": 52.9952,
723
+ "eval_samples_per_second": 18.87,
724
+ "eval_steps_per_second": 0.604,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.10439276485788114,
729
+ "grad_norm": 1.7148933410644531,
730
+ "learning_rate": 2.1907216494845364e-06,
731
+ "loss": 1.2683,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.10542635658914729,
736
+ "grad_norm": 1.396099328994751,
737
+ "learning_rate": 2.2164948453608247e-06,
738
+ "loss": 1.1986,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.10645994832041343,
743
+ "grad_norm": 1.407954216003418,
744
+ "learning_rate": 2.242268041237114e-06,
745
+ "loss": 1.2169,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.10749354005167959,
750
+ "grad_norm": 1.4110890626907349,
751
+ "learning_rate": 2.268041237113402e-06,
752
+ "loss": 1.222,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.10852713178294573,
757
+ "grad_norm": 1.755106806755066,
758
+ "learning_rate": 2.293814432989691e-06,
759
+ "loss": 1.2718,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.10956072351421188,
764
+ "grad_norm": 1.5914361476898193,
765
+ "learning_rate": 2.3195876288659796e-06,
766
+ "loss": 1.2251,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.11059431524547804,
771
+ "grad_norm": 1.3746757507324219,
772
+ "learning_rate": 2.3453608247422683e-06,
773
+ "loss": 1.2494,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.11162790697674418,
778
+ "grad_norm": 1.1640757322311401,
779
+ "learning_rate": 2.3711340206185566e-06,
780
+ "loss": 1.222,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.11266149870801033,
785
+ "grad_norm": 1.5546257495880127,
786
+ "learning_rate": 2.3969072164948458e-06,
787
+ "loss": 1.2793,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.11369509043927649,
792
+ "grad_norm": 1.4767199754714966,
793
+ "learning_rate": 2.422680412371134e-06,
794
+ "loss": 1.1982,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.11472868217054263,
799
+ "grad_norm": 1.5099663734436035,
800
+ "learning_rate": 2.4484536082474228e-06,
801
+ "loss": 1.1992,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.11576227390180878,
806
+ "grad_norm": 1.418818473815918,
807
+ "learning_rate": 2.4742268041237115e-06,
808
+ "loss": 1.2055,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.11679586563307494,
813
+ "grad_norm": 1.59600830078125,
814
+ "learning_rate": 2.5e-06,
815
+ "loss": 1.2178,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.11782945736434108,
820
+ "grad_norm": 1.8103954792022705,
821
+ "learning_rate": 2.525773195876289e-06,
822
+ "loss": 1.2114,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.11886304909560723,
827
+ "grad_norm": 1.437061071395874,
828
+ "learning_rate": 2.5515463917525772e-06,
829
+ "loss": 1.2342,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.11989664082687339,
834
+ "grad_norm": 1.6615889072418213,
835
+ "learning_rate": 2.577319587628866e-06,
836
+ "loss": 1.1291,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.12093023255813953,
841
+ "grad_norm": 1.2814154624938965,
842
+ "learning_rate": 2.603092783505155e-06,
843
+ "loss": 1.1814,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.12196382428940568,
848
+ "grad_norm": 1.5893689393997192,
849
+ "learning_rate": 2.628865979381444e-06,
850
+ "loss": 1.1617,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.12299741602067184,
855
+ "grad_norm": 1.7495357990264893,
856
+ "learning_rate": 2.654639175257732e-06,
857
+ "loss": 1.1541,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.12403100775193798,
862
+ "grad_norm": 1.8175143003463745,
863
+ "learning_rate": 2.680412371134021e-06,
864
+ "loss": 1.224,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.12506459948320414,
869
+ "grad_norm": 1.4747029542922974,
870
+ "learning_rate": 2.7061855670103095e-06,
871
+ "loss": 1.2225,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.12609819121447027,
876
+ "grad_norm": 1.5060474872589111,
877
+ "learning_rate": 2.731958762886598e-06,
878
+ "loss": 1.171,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.12713178294573643,
883
+ "grad_norm": 1.3734132051467896,
884
+ "learning_rate": 2.757731958762887e-06,
885
+ "loss": 1.1808,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.1281653746770026,
890
+ "grad_norm": 1.4248719215393066,
891
+ "learning_rate": 2.7835051546391757e-06,
892
+ "loss": 1.1876,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.12919896640826872,
897
+ "grad_norm": 1.8982905149459839,
898
+ "learning_rate": 2.809278350515464e-06,
899
+ "loss": 1.1586,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.13023255813953488,
904
+ "grad_norm": 1.4861031770706177,
905
+ "learning_rate": 2.8350515463917527e-06,
906
+ "loss": 1.1824,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.13126614987080104,
911
+ "grad_norm": 1.9570235013961792,
912
+ "learning_rate": 2.8608247422680414e-06,
913
+ "loss": 1.1745,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.13229974160206717,
918
+ "grad_norm": 1.6210845708847046,
919
+ "learning_rate": 2.8865979381443297e-06,
920
+ "loss": 1.1904,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.13333333333333333,
925
+ "grad_norm": 1.4611804485321045,
926
+ "learning_rate": 2.912371134020619e-06,
927
+ "loss": 1.204,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.1343669250645995,
932
+ "grad_norm": 1.3150776624679565,
933
+ "learning_rate": 2.9381443298969076e-06,
934
+ "loss": 1.2002,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.13540051679586562,
939
+ "grad_norm": 1.3323931694030762,
940
+ "learning_rate": 2.9639175257731963e-06,
941
+ "loss": 1.1806,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.13643410852713178,
946
+ "grad_norm": 1.5320898294448853,
947
+ "learning_rate": 2.9896907216494846e-06,
948
+ "loss": 1.1181,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.13746770025839794,
953
+ "grad_norm": 1.431869626045227,
954
+ "learning_rate": 3.0154639175257733e-06,
955
+ "loss": 1.1735,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.13850129198966407,
960
+ "grad_norm": 1.5655189752578735,
961
+ "learning_rate": 3.041237113402062e-06,
962
+ "loss": 1.1151,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.13953488372093023,
967
+ "grad_norm": 1.8801727294921875,
968
+ "learning_rate": 3.067010309278351e-06,
969
+ "loss": 1.2014,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.1405684754521964,
974
+ "grad_norm": 1.401580572128296,
975
+ "learning_rate": 3.0927835051546395e-06,
976
+ "loss": 1.1697,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.14160206718346252,
981
+ "grad_norm": 1.3812285661697388,
982
+ "learning_rate": 3.118556701030928e-06,
983
+ "loss": 1.1642,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.14263565891472868,
988
+ "grad_norm": 1.432713270187378,
989
+ "learning_rate": 3.1443298969072165e-06,
990
+ "loss": 1.1816,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.14366925064599484,
995
+ "grad_norm": 1.2863351106643677,
996
+ "learning_rate": 3.170103092783505e-06,
997
+ "loss": 1.1337,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.14470284237726097,
1002
+ "grad_norm": 1.4150452613830566,
1003
+ "learning_rate": 3.195876288659794e-06,
1004
+ "loss": 1.1339,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.14573643410852713,
1009
+ "grad_norm": 1.4986978769302368,
1010
+ "learning_rate": 3.221649484536083e-06,
1011
+ "loss": 1.1486,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.1467700258397933,
1016
+ "grad_norm": 1.4928971529006958,
1017
+ "learning_rate": 3.2474226804123714e-06,
1018
+ "loss": 1.1505,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.14780361757105942,
1023
+ "grad_norm": 1.3250510692596436,
1024
+ "learning_rate": 3.27319587628866e-06,
1025
+ "loss": 1.1501,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.14883720930232558,
1030
+ "grad_norm": 1.3843717575073242,
1031
+ "learning_rate": 3.298969072164949e-06,
1032
+ "loss": 1.1425,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.14987080103359174,
1037
+ "grad_norm": 1.45151948928833,
1038
+ "learning_rate": 3.324742268041237e-06,
1039
+ "loss": 1.1412,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.15090439276485787,
1044
+ "grad_norm": 1.7031517028808594,
1045
+ "learning_rate": 3.350515463917526e-06,
1046
+ "loss": 1.1214,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.15193798449612403,
1051
+ "grad_norm": 1.735508918762207,
1052
+ "learning_rate": 3.376288659793815e-06,
1053
+ "loss": 1.1426,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.1529715762273902,
1058
+ "grad_norm": 1.4877556562423706,
1059
+ "learning_rate": 3.4020618556701037e-06,
1060
+ "loss": 1.1403,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.15400516795865632,
1065
+ "grad_norm": 1.4761852025985718,
1066
+ "learning_rate": 3.427835051546392e-06,
1067
+ "loss": 1.1189,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.15503875968992248,
1072
+ "grad_norm": 1.918549656867981,
1073
+ "learning_rate": 3.4536082474226807e-06,
1074
+ "loss": 1.177,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.15503875968992248,
1079
+ "eval_loss": 1.2169522047042847,
1080
+ "eval_runtime": 52.6165,
1081
+ "eval_samples_per_second": 19.005,
1082
+ "eval_steps_per_second": 0.608,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.15607235142118864,
1087
+ "grad_norm": 1.6830838918685913,
1088
+ "learning_rate": 3.4793814432989694e-06,
1089
+ "loss": 1.1684,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.15710594315245477,
1094
+ "grad_norm": 1.520039677619934,
1095
+ "learning_rate": 3.5051546391752577e-06,
1096
+ "loss": 1.1557,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.15813953488372093,
1101
+ "grad_norm": 1.2740050554275513,
1102
+ "learning_rate": 3.530927835051547e-06,
1103
+ "loss": 1.1757,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.1591731266149871,
1108
+ "grad_norm": 1.6267930269241333,
1109
+ "learning_rate": 3.5567010309278356e-06,
1110
+ "loss": 1.1605,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 0.16020671834625322,
1115
+ "grad_norm": 1.392866611480713,
1116
+ "learning_rate": 3.582474226804124e-06,
1117
+ "loss": 1.1445,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 0.16124031007751938,
1122
+ "grad_norm": 1.5399266481399536,
1123
+ "learning_rate": 3.6082474226804126e-06,
1124
+ "loss": 1.1668,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 0.16227390180878554,
1129
+ "grad_norm": 1.5233243703842163,
1130
+ "learning_rate": 3.6340206185567013e-06,
1131
+ "loss": 1.1807,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 0.16330749354005167,
1136
+ "grad_norm": 1.4621553421020508,
1137
+ "learning_rate": 3.6597938144329896e-06,
1138
+ "loss": 1.1701,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 0.16434108527131783,
1143
+ "grad_norm": 1.4321812391281128,
1144
+ "learning_rate": 3.6855670103092787e-06,
1145
+ "loss": 1.1656,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 0.165374677002584,
1150
+ "grad_norm": 1.6212997436523438,
1151
+ "learning_rate": 3.7113402061855674e-06,
1152
+ "loss": 1.1508,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 0.16640826873385012,
1157
+ "grad_norm": 1.622518539428711,
1158
+ "learning_rate": 3.737113402061856e-06,
1159
+ "loss": 1.0932,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 0.16744186046511628,
1164
+ "grad_norm": 1.5313091278076172,
1165
+ "learning_rate": 3.7628865979381445e-06,
1166
+ "loss": 1.129,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 0.16847545219638244,
1171
+ "grad_norm": 1.4660190343856812,
1172
+ "learning_rate": 3.788659793814433e-06,
1173
+ "loss": 1.1718,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 0.16950904392764857,
1178
+ "grad_norm": 1.6606028079986572,
1179
+ "learning_rate": 3.814432989690722e-06,
1180
+ "loss": 1.141,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.17054263565891473,
1185
+ "grad_norm": 1.7094327211380005,
1186
+ "learning_rate": 3.840206185567011e-06,
1187
+ "loss": 1.0917,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.17157622739018089,
1192
+ "grad_norm": 1.4654054641723633,
1193
+ "learning_rate": 3.865979381443299e-06,
1194
+ "loss": 1.1037,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.17260981912144702,
1199
+ "grad_norm": 1.3869339227676392,
1200
+ "learning_rate": 3.891752577319588e-06,
1201
+ "loss": 1.1842,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.17364341085271318,
1206
+ "grad_norm": 1.8342238664627075,
1207
+ "learning_rate": 3.917525773195877e-06,
1208
+ "loss": 1.1069,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.17467700258397933,
1213
+ "grad_norm": 2.0523226261138916,
1214
+ "learning_rate": 3.9432989690721655e-06,
1215
+ "loss": 1.1172,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.17571059431524547,
1220
+ "grad_norm": 1.6128238439559937,
1221
+ "learning_rate": 3.969072164948453e-06,
1222
+ "loss": 1.0522,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.17674418604651163,
1227
+ "grad_norm": 1.5203567743301392,
1228
+ "learning_rate": 3.994845360824743e-06,
1229
+ "loss": 1.1296,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.17777777777777778,
1234
+ "grad_norm": 1.6611700057983398,
1235
+ "learning_rate": 4.020618556701032e-06,
1236
+ "loss": 1.1274,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.17881136950904392,
1241
+ "grad_norm": 1.6911481618881226,
1242
+ "learning_rate": 4.04639175257732e-06,
1243
+ "loss": 1.0755,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.17984496124031008,
1248
+ "grad_norm": 1.5666862726211548,
1249
+ "learning_rate": 4.072164948453608e-06,
1250
+ "loss": 1.1181,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.18087855297157623,
1255
+ "grad_norm": 1.5833418369293213,
1256
+ "learning_rate": 4.097938144329897e-06,
1257
+ "loss": 1.0879,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.18191214470284237,
1262
+ "grad_norm": 1.508384346961975,
1263
+ "learning_rate": 4.123711340206186e-06,
1264
+ "loss": 1.0751,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.18294573643410852,
1269
+ "grad_norm": 1.361509919166565,
1270
+ "learning_rate": 4.149484536082475e-06,
1271
+ "loss": 1.101,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.18397932816537468,
1276
+ "grad_norm": 1.4818835258483887,
1277
+ "learning_rate": 4.175257731958763e-06,
1278
+ "loss": 1.1135,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.18501291989664082,
1283
+ "grad_norm": 1.272712230682373,
1284
+ "learning_rate": 4.201030927835052e-06,
1285
+ "loss": 1.0984,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.18604651162790697,
1290
+ "grad_norm": 1.3766447305679321,
1291
+ "learning_rate": 4.2268041237113405e-06,
1292
+ "loss": 1.1007,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.18708010335917313,
1297
+ "grad_norm": 1.6823517084121704,
1298
+ "learning_rate": 4.252577319587629e-06,
1299
+ "loss": 1.1079,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.18811369509043926,
1304
+ "grad_norm": 1.7081917524337769,
1305
+ "learning_rate": 4.278350515463918e-06,
1306
+ "loss": 1.0972,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.18914728682170542,
1311
+ "grad_norm": 1.577996850013733,
1312
+ "learning_rate": 4.304123711340207e-06,
1313
+ "loss": 1.0842,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.19018087855297158,
1318
+ "grad_norm": 1.3267565965652466,
1319
+ "learning_rate": 4.329896907216495e-06,
1320
+ "loss": 1.1278,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.19121447028423771,
1325
+ "grad_norm": 1.3708866834640503,
1326
+ "learning_rate": 4.355670103092784e-06,
1327
+ "loss": 1.0795,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.19224806201550387,
1332
+ "grad_norm": 1.3076270818710327,
1333
+ "learning_rate": 4.381443298969073e-06,
1334
+ "loss": 1.1115,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.19328165374677003,
1339
+ "grad_norm": 1.4459667205810547,
1340
+ "learning_rate": 4.407216494845361e-06,
1341
+ "loss": 1.1004,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.19431524547803616,
1346
+ "grad_norm": 1.6593430042266846,
1347
+ "learning_rate": 4.4329896907216494e-06,
1348
+ "loss": 1.0942,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.19534883720930232,
1353
+ "grad_norm": 1.6031999588012695,
1354
+ "learning_rate": 4.458762886597939e-06,
1355
+ "loss": 1.0726,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.19638242894056848,
1360
+ "grad_norm": 1.75920569896698,
1361
+ "learning_rate": 4.484536082474228e-06,
1362
+ "loss": 1.0954,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.1974160206718346,
1367
+ "grad_norm": 1.6617308855056763,
1368
+ "learning_rate": 4.510309278350516e-06,
1369
+ "loss": 1.1088,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.19844961240310077,
1374
+ "grad_norm": 1.6344022750854492,
1375
+ "learning_rate": 4.536082474226804e-06,
1376
+ "loss": 1.102,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.19948320413436693,
1381
+ "grad_norm": 1.6076260805130005,
1382
+ "learning_rate": 4.561855670103093e-06,
1383
+ "loss": 1.1217,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.20051679586563306,
1388
+ "grad_norm": 1.5833053588867188,
1389
+ "learning_rate": 4.587628865979382e-06,
1390
+ "loss": 1.0837,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.20155038759689922,
1395
+ "grad_norm": 1.3770850896835327,
1396
+ "learning_rate": 4.6134020618556705e-06,
1397
+ "loss": 1.0462,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.20258397932816538,
1402
+ "grad_norm": 1.7390103340148926,
1403
+ "learning_rate": 4.639175257731959e-06,
1404
+ "loss": 1.0829,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.2036175710594315,
1409
+ "grad_norm": 1.3181084394454956,
1410
+ "learning_rate": 4.664948453608248e-06,
1411
+ "loss": 1.1128,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.20465116279069767,
1416
+ "grad_norm": 1.3936176300048828,
1417
+ "learning_rate": 4.690721649484537e-06,
1418
+ "loss": 1.1017,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.20568475452196383,
1423
+ "grad_norm": 1.4980775117874146,
1424
+ "learning_rate": 4.716494845360825e-06,
1425
+ "loss": 1.1231,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.20671834625322996,
1430
+ "grad_norm": 1.5333365201950073,
1431
+ "learning_rate": 4.742268041237113e-06,
1432
+ "loss": 1.0665,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.20671834625322996,
1437
+ "eval_loss": 1.1757628917694092,
1438
+ "eval_runtime": 52.2634,
1439
+ "eval_samples_per_second": 19.134,
1440
+ "eval_steps_per_second": 0.612,
1441
+ "step": 200
1442
+ },
1443
+ {
1444
+ "epoch": 0.20775193798449612,
1445
+ "grad_norm": 1.483267903327942,
1446
+ "learning_rate": 4.768041237113403e-06,
1447
+ "loss": 1.0646,
1448
+ "step": 201
1449
+ },
1450
+ {
1451
+ "epoch": 0.20878552971576228,
1452
+ "grad_norm": 1.396013617515564,
1453
+ "learning_rate": 4.7938144329896915e-06,
1454
+ "loss": 1.0782,
1455
+ "step": 202
1456
+ },
1457
+ {
1458
+ "epoch": 0.2098191214470284,
1459
+ "grad_norm": 1.5999109745025635,
1460
+ "learning_rate": 4.81958762886598e-06,
1461
+ "loss": 1.0694,
1462
+ "step": 203
1463
+ },
1464
+ {
1465
+ "epoch": 0.21085271317829457,
1466
+ "grad_norm": 1.274971842765808,
1467
+ "learning_rate": 4.845360824742268e-06,
1468
+ "loss": 1.076,
1469
+ "step": 204
1470
+ },
1471
+ {
1472
+ "epoch": 0.21188630490956073,
1473
+ "grad_norm": 1.6435425281524658,
1474
+ "learning_rate": 4.871134020618557e-06,
1475
+ "loss": 1.0432,
1476
+ "step": 205
1477
+ },
1478
+ {
1479
+ "epoch": 0.21291989664082686,
1480
+ "grad_norm": 1.6180301904678345,
1481
+ "learning_rate": 4.8969072164948455e-06,
1482
+ "loss": 1.0912,
1483
+ "step": 206
1484
+ },
1485
+ {
1486
+ "epoch": 0.21395348837209302,
1487
+ "grad_norm": 1.2818275690078735,
1488
+ "learning_rate": 4.922680412371135e-06,
1489
+ "loss": 1.0355,
1490
+ "step": 207
1491
+ },
1492
+ {
1493
+ "epoch": 0.21498708010335918,
1494
+ "grad_norm": 1.4507101774215698,
1495
+ "learning_rate": 4.948453608247423e-06,
1496
+ "loss": 1.0734,
1497
+ "step": 208
1498
+ },
1499
+ {
1500
+ "epoch": 0.2160206718346253,
1501
+ "grad_norm": 1.4751473665237427,
1502
+ "learning_rate": 4.974226804123712e-06,
1503
+ "loss": 1.0045,
1504
+ "step": 209
1505
+ },
1506
+ {
1507
+ "epoch": 0.21705426356589147,
1508
+ "grad_norm": 1.3976224660873413,
1509
+ "learning_rate": 5e-06,
1510
+ "loss": 1.0913,
1511
+ "step": 210
1512
+ },
1513
+ {
1514
+ "epoch": 0.21808785529715763,
1515
+ "grad_norm": 1.6017869710922241,
1516
+ "learning_rate": 4.9971264367816096e-06,
1517
+ "loss": 1.0493,
1518
+ "step": 211
1519
+ },
1520
+ {
1521
+ "epoch": 0.21912144702842376,
1522
+ "grad_norm": 1.6266984939575195,
1523
+ "learning_rate": 4.994252873563219e-06,
1524
+ "loss": 1.0737,
1525
+ "step": 212
1526
+ },
1527
+ {
1528
+ "epoch": 0.22015503875968992,
1529
+ "grad_norm": 1.6909797191619873,
1530
+ "learning_rate": 4.991379310344828e-06,
1531
+ "loss": 1.0571,
1532
+ "step": 213
1533
+ },
1534
+ {
1535
+ "epoch": 0.22118863049095608,
1536
+ "grad_norm": 1.7753292322158813,
1537
+ "learning_rate": 4.988505747126437e-06,
1538
+ "loss": 1.0213,
1539
+ "step": 214
1540
+ },
1541
+ {
1542
+ "epoch": 0.2222222222222222,
1543
+ "grad_norm": 1.4531023502349854,
1544
+ "learning_rate": 4.985632183908046e-06,
1545
+ "loss": 1.1229,
1546
+ "step": 215
1547
+ },
1548
+ {
1549
+ "epoch": 0.22325581395348837,
1550
+ "grad_norm": 1.3566429615020752,
1551
+ "learning_rate": 4.982758620689655e-06,
1552
+ "loss": 1.0591,
1553
+ "step": 216
1554
+ },
1555
+ {
1556
+ "epoch": 0.22428940568475453,
1557
+ "grad_norm": 1.3583022356033325,
1558
+ "learning_rate": 4.9798850574712644e-06,
1559
+ "loss": 1.0407,
1560
+ "step": 217
1561
+ },
1562
+ {
1563
+ "epoch": 0.22532299741602066,
1564
+ "grad_norm": 1.7409709692001343,
1565
+ "learning_rate": 4.977011494252874e-06,
1566
+ "loss": 1.069,
1567
+ "step": 218
1568
+ },
1569
+ {
1570
+ "epoch": 0.22635658914728682,
1571
+ "grad_norm": 1.4994089603424072,
1572
+ "learning_rate": 4.9741379310344836e-06,
1573
+ "loss": 1.1153,
1574
+ "step": 219
1575
+ },
1576
+ {
1577
+ "epoch": 0.22739018087855298,
1578
+ "grad_norm": 1.6274763345718384,
1579
+ "learning_rate": 4.971264367816092e-06,
1580
+ "loss": 1.0447,
1581
+ "step": 220
1582
+ },
1583
+ {
1584
+ "epoch": 0.2284237726098191,
1585
+ "grad_norm": 1.4050188064575195,
1586
+ "learning_rate": 4.968390804597701e-06,
1587
+ "loss": 1.0514,
1588
+ "step": 221
1589
+ },
1590
+ {
1591
+ "epoch": 0.22945736434108527,
1592
+ "grad_norm": 1.9114052057266235,
1593
+ "learning_rate": 4.965517241379311e-06,
1594
+ "loss": 1.0414,
1595
+ "step": 222
1596
+ },
1597
+ {
1598
+ "epoch": 0.23049095607235143,
1599
+ "grad_norm": 1.6414310932159424,
1600
+ "learning_rate": 4.96264367816092e-06,
1601
+ "loss": 1.1029,
1602
+ "step": 223
1603
+ },
1604
+ {
1605
+ "epoch": 0.23152454780361756,
1606
+ "grad_norm": 1.844107985496521,
1607
+ "learning_rate": 4.959770114942529e-06,
1608
+ "loss": 1.0542,
1609
+ "step": 224
1610
+ },
1611
+ {
1612
+ "epoch": 0.23255813953488372,
1613
+ "grad_norm": 1.539076566696167,
1614
+ "learning_rate": 4.9568965517241384e-06,
1615
+ "loss": 1.0478,
1616
+ "step": 225
1617
+ },
1618
+ {
1619
+ "epoch": 0.23359173126614988,
1620
+ "grad_norm": 1.5214966535568237,
1621
+ "learning_rate": 4.9540229885057476e-06,
1622
+ "loss": 1.1052,
1623
+ "step": 226
1624
+ },
1625
+ {
1626
+ "epoch": 0.234625322997416,
1627
+ "grad_norm": 1.9107270240783691,
1628
+ "learning_rate": 4.951149425287357e-06,
1629
+ "loss": 1.0664,
1630
+ "step": 227
1631
+ },
1632
+ {
1633
+ "epoch": 0.23565891472868217,
1634
+ "grad_norm": 1.4986716508865356,
1635
+ "learning_rate": 4.948275862068966e-06,
1636
+ "loss": 1.0916,
1637
+ "step": 228
1638
+ },
1639
+ {
1640
+ "epoch": 0.23669250645994833,
1641
+ "grad_norm": 1.4086743593215942,
1642
+ "learning_rate": 4.945402298850575e-06,
1643
+ "loss": 1.0774,
1644
+ "step": 229
1645
+ },
1646
+ {
1647
+ "epoch": 0.23772609819121446,
1648
+ "grad_norm": 1.5430121421813965,
1649
+ "learning_rate": 4.942528735632184e-06,
1650
+ "loss": 1.0335,
1651
+ "step": 230
1652
+ },
1653
+ {
1654
+ "epoch": 0.23875968992248062,
1655
+ "grad_norm": 1.9142231941223145,
1656
+ "learning_rate": 4.939655172413793e-06,
1657
+ "loss": 1.049,
1658
+ "step": 231
1659
+ },
1660
+ {
1661
+ "epoch": 0.23979328165374678,
1662
+ "grad_norm": 1.5004005432128906,
1663
+ "learning_rate": 4.936781609195403e-06,
1664
+ "loss": 1.0741,
1665
+ "step": 232
1666
+ },
1667
+ {
1668
+ "epoch": 0.2408268733850129,
1669
+ "grad_norm": 1.4257315397262573,
1670
+ "learning_rate": 4.933908045977012e-06,
1671
+ "loss": 0.9975,
1672
+ "step": 233
1673
+ },
1674
+ {
1675
+ "epoch": 0.24186046511627907,
1676
+ "grad_norm": 1.5501189231872559,
1677
+ "learning_rate": 4.931034482758621e-06,
1678
+ "loss": 1.033,
1679
+ "step": 234
1680
+ },
1681
+ {
1682
+ "epoch": 0.24289405684754523,
1683
+ "grad_norm": 1.5867544412612915,
1684
+ "learning_rate": 4.92816091954023e-06,
1685
+ "loss": 1.0641,
1686
+ "step": 235
1687
+ },
1688
+ {
1689
+ "epoch": 0.24392764857881136,
1690
+ "grad_norm": 1.9389463663101196,
1691
+ "learning_rate": 4.92528735632184e-06,
1692
+ "loss": 0.9939,
1693
+ "step": 236
1694
+ },
1695
+ {
1696
+ "epoch": 0.24496124031007752,
1697
+ "grad_norm": 1.5214310884475708,
1698
+ "learning_rate": 4.922413793103449e-06,
1699
+ "loss": 1.0662,
1700
+ "step": 237
1701
+ },
1702
+ {
1703
+ "epoch": 0.24599483204134368,
1704
+ "grad_norm": 1.4389026165008545,
1705
+ "learning_rate": 4.919540229885058e-06,
1706
+ "loss": 1.044,
1707
+ "step": 238
1708
+ },
1709
+ {
1710
+ "epoch": 0.2470284237726098,
1711
+ "grad_norm": 1.362501621246338,
1712
+ "learning_rate": 4.9166666666666665e-06,
1713
+ "loss": 1.0372,
1714
+ "step": 239
1715
+ },
1716
+ {
1717
+ "epoch": 0.24806201550387597,
1718
+ "grad_norm": 1.5556910037994385,
1719
+ "learning_rate": 4.9137931034482765e-06,
1720
+ "loss": 1.0786,
1721
+ "step": 240
1722
+ },
1723
+ {
1724
+ "epoch": 0.24909560723514212,
1725
+ "grad_norm": 1.384539246559143,
1726
+ "learning_rate": 4.910919540229886e-06,
1727
+ "loss": 1.06,
1728
+ "step": 241
1729
+ },
1730
+ {
1731
+ "epoch": 0.2501291989664083,
1732
+ "grad_norm": 1.4042245149612427,
1733
+ "learning_rate": 4.908045977011495e-06,
1734
+ "loss": 1.0838,
1735
+ "step": 242
1736
+ },
1737
+ {
1738
+ "epoch": 0.25116279069767444,
1739
+ "grad_norm": 1.3736196756362915,
1740
+ "learning_rate": 4.905172413793104e-06,
1741
+ "loss": 1.066,
1742
+ "step": 243
1743
+ },
1744
+ {
1745
+ "epoch": 0.25219638242894055,
1746
+ "grad_norm": 1.4238249063491821,
1747
+ "learning_rate": 4.902298850574713e-06,
1748
+ "loss": 1.045,
1749
+ "step": 244
1750
+ },
1751
+ {
1752
+ "epoch": 0.2532299741602067,
1753
+ "grad_norm": 1.3547841310501099,
1754
+ "learning_rate": 4.899425287356322e-06,
1755
+ "loss": 1.0253,
1756
+ "step": 245
1757
+ },
1758
+ {
1759
+ "epoch": 0.25426356589147286,
1760
+ "grad_norm": 1.4367036819458008,
1761
+ "learning_rate": 4.896551724137931e-06,
1762
+ "loss": 1.0363,
1763
+ "step": 246
1764
+ },
1765
+ {
1766
+ "epoch": 0.255297157622739,
1767
+ "grad_norm": 1.4458998441696167,
1768
+ "learning_rate": 4.8936781609195405e-06,
1769
+ "loss": 1.0069,
1770
+ "step": 247
1771
+ },
1772
+ {
1773
+ "epoch": 0.2563307493540052,
1774
+ "grad_norm": 1.5451279878616333,
1775
+ "learning_rate": 4.89080459770115e-06,
1776
+ "loss": 1.0119,
1777
+ "step": 248
1778
+ },
1779
+ {
1780
+ "epoch": 0.25736434108527134,
1781
+ "grad_norm": 1.3011225461959839,
1782
+ "learning_rate": 4.887931034482759e-06,
1783
+ "loss": 1.064,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 0.25839793281653745,
1788
+ "grad_norm": 1.2902860641479492,
1789
+ "learning_rate": 4.885057471264369e-06,
1790
+ "loss": 1.0082,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 0.25839793281653745,
1795
+ "eval_loss": 1.1425906419754028,
1796
+ "eval_runtime": 52.1487,
1797
+ "eval_samples_per_second": 19.176,
1798
+ "eval_steps_per_second": 0.614,
1799
+ "step": 250
1800
+ },
1801
+ {
1802
+ "epoch": 0.2594315245478036,
1803
+ "grad_norm": 1.3218801021575928,
1804
+ "learning_rate": 4.882183908045978e-06,
1805
+ "loss": 1.0107,
1806
+ "step": 251
1807
+ },
1808
+ {
1809
+ "epoch": 0.26046511627906976,
1810
+ "grad_norm": 1.5538569688796997,
1811
+ "learning_rate": 4.879310344827586e-06,
1812
+ "loss": 1.0203,
1813
+ "step": 252
1814
+ },
1815
+ {
1816
+ "epoch": 0.2614987080103359,
1817
+ "grad_norm": 1.4206135272979736,
1818
+ "learning_rate": 4.876436781609195e-06,
1819
+ "loss": 1.1056,
1820
+ "step": 253
1821
+ },
1822
+ {
1823
+ "epoch": 0.2625322997416021,
1824
+ "grad_norm": 1.5996060371398926,
1825
+ "learning_rate": 4.873563218390805e-06,
1826
+ "loss": 1.0236,
1827
+ "step": 254
1828
+ },
1829
+ {
1830
+ "epoch": 0.26356589147286824,
1831
+ "grad_norm": 1.5735429525375366,
1832
+ "learning_rate": 4.8706896551724145e-06,
1833
+ "loss": 1.0763,
1834
+ "step": 255
1835
+ },
1836
+ {
1837
+ "epoch": 0.26459948320413434,
1838
+ "grad_norm": 1.3383245468139648,
1839
+ "learning_rate": 4.867816091954024e-06,
1840
+ "loss": 1.0463,
1841
+ "step": 256
1842
+ },
1843
+ {
1844
+ "epoch": 0.2656330749354005,
1845
+ "grad_norm": 1.752362847328186,
1846
+ "learning_rate": 4.864942528735633e-06,
1847
+ "loss": 1.0451,
1848
+ "step": 257
1849
+ },
1850
+ {
1851
+ "epoch": 0.26666666666666666,
1852
+ "grad_norm": 1.4010084867477417,
1853
+ "learning_rate": 4.862068965517242e-06,
1854
+ "loss": 1.043,
1855
+ "step": 258
1856
+ },
1857
+ {
1858
+ "epoch": 0.2677002583979328,
1859
+ "grad_norm": 1.4108176231384277,
1860
+ "learning_rate": 4.859195402298851e-06,
1861
+ "loss": 1.0534,
1862
+ "step": 259
1863
+ },
1864
+ {
1865
+ "epoch": 0.268733850129199,
1866
+ "grad_norm": 1.5272636413574219,
1867
+ "learning_rate": 4.85632183908046e-06,
1868
+ "loss": 1.0264,
1869
+ "step": 260
1870
+ },
1871
+ {
1872
+ "epoch": 0.26976744186046514,
1873
+ "grad_norm": 1.2899655103683472,
1874
+ "learning_rate": 4.853448275862069e-06,
1875
+ "loss": 1.0403,
1876
+ "step": 261
1877
+ },
1878
+ {
1879
+ "epoch": 0.27080103359173124,
1880
+ "grad_norm": 1.5390360355377197,
1881
+ "learning_rate": 4.8505747126436785e-06,
1882
+ "loss": 1.0281,
1883
+ "step": 262
1884
+ },
1885
+ {
1886
+ "epoch": 0.2718346253229974,
1887
+ "grad_norm": 1.4357856512069702,
1888
+ "learning_rate": 4.847701149425288e-06,
1889
+ "loss": 1.0423,
1890
+ "step": 263
1891
+ },
1892
+ {
1893
+ "epoch": 0.27286821705426356,
1894
+ "grad_norm": 1.2563819885253906,
1895
+ "learning_rate": 4.844827586206897e-06,
1896
+ "loss": 1.0487,
1897
+ "step": 264
1898
+ },
1899
+ {
1900
+ "epoch": 0.2739018087855297,
1901
+ "grad_norm": 1.605078935623169,
1902
+ "learning_rate": 4.841954022988506e-06,
1903
+ "loss": 1.0626,
1904
+ "step": 265
1905
+ },
1906
+ {
1907
+ "epoch": 0.2749354005167959,
1908
+ "grad_norm": 1.4388753175735474,
1909
+ "learning_rate": 4.839080459770115e-06,
1910
+ "loss": 1.0494,
1911
+ "step": 266
1912
+ },
1913
+ {
1914
+ "epoch": 0.27596899224806204,
1915
+ "grad_norm": 1.735318660736084,
1916
+ "learning_rate": 4.836206896551724e-06,
1917
+ "loss": 1.0359,
1918
+ "step": 267
1919
+ },
1920
+ {
1921
+ "epoch": 0.27700258397932814,
1922
+ "grad_norm": 1.7299683094024658,
1923
+ "learning_rate": 4.833333333333333e-06,
1924
+ "loss": 1.005,
1925
+ "step": 268
1926
+ },
1927
+ {
1928
+ "epoch": 0.2780361757105943,
1929
+ "grad_norm": 1.3382335901260376,
1930
+ "learning_rate": 4.830459770114943e-06,
1931
+ "loss": 1.0523,
1932
+ "step": 269
1933
+ },
1934
+ {
1935
+ "epoch": 0.27906976744186046,
1936
+ "grad_norm": 1.3449649810791016,
1937
+ "learning_rate": 4.8275862068965525e-06,
1938
+ "loss": 1.042,
1939
+ "step": 270
1940
+ },
1941
+ {
1942
+ "epoch": 0.2801033591731266,
1943
+ "grad_norm": 1.615478277206421,
1944
+ "learning_rate": 4.824712643678161e-06,
1945
+ "loss": 1.042,
1946
+ "step": 271
1947
+ },
1948
+ {
1949
+ "epoch": 0.2811369509043928,
1950
+ "grad_norm": 1.556579351425171,
1951
+ "learning_rate": 4.82183908045977e-06,
1952
+ "loss": 0.9972,
1953
+ "step": 272
1954
+ },
1955
+ {
1956
+ "epoch": 0.28217054263565894,
1957
+ "grad_norm": 1.4196879863739014,
1958
+ "learning_rate": 4.81896551724138e-06,
1959
+ "loss": 1.0311,
1960
+ "step": 273
1961
+ },
1962
+ {
1963
+ "epoch": 0.28320413436692504,
1964
+ "grad_norm": 1.2686911821365356,
1965
+ "learning_rate": 4.816091954022989e-06,
1966
+ "loss": 1.0503,
1967
+ "step": 274
1968
+ },
1969
+ {
1970
+ "epoch": 0.2842377260981912,
1971
+ "grad_norm": 1.1563490629196167,
1972
+ "learning_rate": 4.813218390804598e-06,
1973
+ "loss": 1.0183,
1974
+ "step": 275
1975
+ },
1976
+ {
1977
+ "epoch": 0.28527131782945736,
1978
+ "grad_norm": 1.4043651819229126,
1979
+ "learning_rate": 4.810344827586207e-06,
1980
+ "loss": 1.0437,
1981
+ "step": 276
1982
+ },
1983
+ {
1984
+ "epoch": 0.2863049095607235,
1985
+ "grad_norm": 1.4565726518630981,
1986
+ "learning_rate": 4.8074712643678165e-06,
1987
+ "loss": 1.0212,
1988
+ "step": 277
1989
+ },
1990
+ {
1991
+ "epoch": 0.2873385012919897,
1992
+ "grad_norm": 1.4200972318649292,
1993
+ "learning_rate": 4.804597701149426e-06,
1994
+ "loss": 1.0355,
1995
+ "step": 278
1996
+ },
1997
+ {
1998
+ "epoch": 0.28837209302325584,
1999
+ "grad_norm": 1.403757095336914,
2000
+ "learning_rate": 4.801724137931035e-06,
2001
+ "loss": 1.0271,
2002
+ "step": 279
2003
+ },
2004
+ {
2005
+ "epoch": 0.28940568475452194,
2006
+ "grad_norm": 1.2572818994522095,
2007
+ "learning_rate": 4.798850574712644e-06,
2008
+ "loss": 1.0319,
2009
+ "step": 280
2010
+ },
2011
+ {
2012
+ "epoch": 0.2904392764857881,
2013
+ "grad_norm": 1.3813985586166382,
2014
+ "learning_rate": 4.795977011494253e-06,
2015
+ "loss": 1.0502,
2016
+ "step": 281
2017
+ },
2018
+ {
2019
+ "epoch": 0.29147286821705426,
2020
+ "grad_norm": 1.8169054985046387,
2021
+ "learning_rate": 4.793103448275862e-06,
2022
+ "loss": 1.0395,
2023
+ "step": 282
2024
+ },
2025
+ {
2026
+ "epoch": 0.2925064599483204,
2027
+ "grad_norm": 1.2015506029129028,
2028
+ "learning_rate": 4.790229885057472e-06,
2029
+ "loss": 1.0498,
2030
+ "step": 283
2031
+ },
2032
+ {
2033
+ "epoch": 0.2935400516795866,
2034
+ "grad_norm": 1.4416213035583496,
2035
+ "learning_rate": 4.7873563218390805e-06,
2036
+ "loss": 0.9921,
2037
+ "step": 284
2038
+ },
2039
+ {
2040
+ "epoch": 0.29457364341085274,
2041
+ "grad_norm": 1.3626724481582642,
2042
+ "learning_rate": 4.78448275862069e-06,
2043
+ "loss": 1.0185,
2044
+ "step": 285
2045
+ },
2046
+ {
2047
+ "epoch": 0.29560723514211884,
2048
+ "grad_norm": 1.3624345064163208,
2049
+ "learning_rate": 4.781609195402299e-06,
2050
+ "loss": 1.0376,
2051
+ "step": 286
2052
+ },
2053
+ {
2054
+ "epoch": 0.296640826873385,
2055
+ "grad_norm": 1.5711549520492554,
2056
+ "learning_rate": 4.778735632183909e-06,
2057
+ "loss": 1.0078,
2058
+ "step": 287
2059
+ },
2060
+ {
2061
+ "epoch": 0.29767441860465116,
2062
+ "grad_norm": 1.721814513206482,
2063
+ "learning_rate": 4.775862068965518e-06,
2064
+ "loss": 1.0828,
2065
+ "step": 288
2066
+ },
2067
+ {
2068
+ "epoch": 0.2987080103359173,
2069
+ "grad_norm": 1.5979557037353516,
2070
+ "learning_rate": 4.772988505747127e-06,
2071
+ "loss": 1.0135,
2072
+ "step": 289
2073
+ },
2074
+ {
2075
+ "epoch": 0.2997416020671835,
2076
+ "grad_norm": 1.3976504802703857,
2077
+ "learning_rate": 4.770114942528735e-06,
2078
+ "loss": 1.0213,
2079
+ "step": 290
2080
+ },
2081
+ {
2082
+ "epoch": 0.30077519379844964,
2083
+ "grad_norm": 1.361649513244629,
2084
+ "learning_rate": 4.767241379310345e-06,
2085
+ "loss": 1.0308,
2086
+ "step": 291
2087
+ },
2088
+ {
2089
+ "epoch": 0.30180878552971574,
2090
+ "grad_norm": 1.3206751346588135,
2091
+ "learning_rate": 4.7643678160919545e-06,
2092
+ "loss": 0.9987,
2093
+ "step": 292
2094
+ },
2095
+ {
2096
+ "epoch": 0.3028423772609819,
2097
+ "grad_norm": 1.720141053199768,
2098
+ "learning_rate": 4.761494252873564e-06,
2099
+ "loss": 1.0413,
2100
+ "step": 293
2101
+ },
2102
+ {
2103
+ "epoch": 0.30387596899224806,
2104
+ "grad_norm": 1.5092377662658691,
2105
+ "learning_rate": 4.758620689655173e-06,
2106
+ "loss": 0.9938,
2107
+ "step": 294
2108
+ },
2109
+ {
2110
+ "epoch": 0.3049095607235142,
2111
+ "grad_norm": 1.4403694868087769,
2112
+ "learning_rate": 4.755747126436782e-06,
2113
+ "loss": 1.0379,
2114
+ "step": 295
2115
+ },
2116
+ {
2117
+ "epoch": 0.3059431524547804,
2118
+ "grad_norm": 1.3464564085006714,
2119
+ "learning_rate": 4.752873563218391e-06,
2120
+ "loss": 1.0645,
2121
+ "step": 296
2122
+ },
2123
+ {
2124
+ "epoch": 0.30697674418604654,
2125
+ "grad_norm": 1.3892803192138672,
2126
+ "learning_rate": 4.75e-06,
2127
+ "loss": 0.9331,
2128
+ "step": 297
2129
+ },
2130
+ {
2131
+ "epoch": 0.30801033591731264,
2132
+ "grad_norm": 1.650929570198059,
2133
+ "learning_rate": 4.747126436781609e-06,
2134
+ "loss": 1.0249,
2135
+ "step": 298
2136
+ },
2137
+ {
2138
+ "epoch": 0.3090439276485788,
2139
+ "grad_norm": 1.3314130306243896,
2140
+ "learning_rate": 4.7442528735632186e-06,
2141
+ "loss": 1.0332,
2142
+ "step": 299
2143
+ },
2144
+ {
2145
+ "epoch": 0.31007751937984496,
2146
+ "grad_norm": 1.6108005046844482,
2147
+ "learning_rate": 4.741379310344828e-06,
2148
+ "loss": 1.0138,
2149
+ "step": 300
2150
+ },
2151
+ {
2152
+ "epoch": 0.31007751937984496,
2153
+ "eval_loss": 1.1177282333374023,
2154
+ "eval_runtime": 52.0926,
2155
+ "eval_samples_per_second": 19.197,
2156
+ "eval_steps_per_second": 0.614,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 0.3111111111111111,
2161
+ "grad_norm": 1.2376863956451416,
2162
+ "learning_rate": 4.738505747126438e-06,
2163
+ "loss": 1.0149,
2164
+ "step": 301
2165
+ },
2166
+ {
2167
+ "epoch": 0.3121447028423773,
2168
+ "grad_norm": 1.3628637790679932,
2169
+ "learning_rate": 4.735632183908047e-06,
2170
+ "loss": 1.0157,
2171
+ "step": 302
2172
+ },
2173
+ {
2174
+ "epoch": 0.31317829457364343,
2175
+ "grad_norm": 1.2822990417480469,
2176
+ "learning_rate": 4.732758620689655e-06,
2177
+ "loss": 1.0286,
2178
+ "step": 303
2179
+ },
2180
+ {
2181
+ "epoch": 0.31421188630490954,
2182
+ "grad_norm": 1.2702423334121704,
2183
+ "learning_rate": 4.729885057471264e-06,
2184
+ "loss": 1.0365,
2185
+ "step": 304
2186
+ },
2187
+ {
2188
+ "epoch": 0.3152454780361757,
2189
+ "grad_norm": 1.2091736793518066,
2190
+ "learning_rate": 4.727011494252874e-06,
2191
+ "loss": 0.995,
2192
+ "step": 305
2193
+ },
2194
+ {
2195
+ "epoch": 0.31627906976744186,
2196
+ "grad_norm": 1.223698377609253,
2197
+ "learning_rate": 4.724137931034483e-06,
2198
+ "loss": 1.016,
2199
+ "step": 306
2200
+ },
2201
+ {
2202
+ "epoch": 0.317312661498708,
2203
+ "grad_norm": 1.7964216470718384,
2204
+ "learning_rate": 4.7212643678160926e-06,
2205
+ "loss": 1.0564,
2206
+ "step": 307
2207
+ },
2208
+ {
2209
+ "epoch": 0.3183462532299742,
2210
+ "grad_norm": 1.693984866142273,
2211
+ "learning_rate": 4.718390804597702e-06,
2212
+ "loss": 1.0381,
2213
+ "step": 308
2214
+ },
2215
+ {
2216
+ "epoch": 0.31937984496124033,
2217
+ "grad_norm": 1.3786847591400146,
2218
+ "learning_rate": 4.715517241379311e-06,
2219
+ "loss": 1.0385,
2220
+ "step": 309
2221
+ },
2222
+ {
2223
+ "epoch": 0.32041343669250644,
2224
+ "grad_norm": 1.5243544578552246,
2225
+ "learning_rate": 4.71264367816092e-06,
2226
+ "loss": 1.0313,
2227
+ "step": 310
2228
+ },
2229
+ {
2230
+ "epoch": 0.3214470284237726,
2231
+ "grad_norm": 1.2947908639907837,
2232
+ "learning_rate": 4.709770114942529e-06,
2233
+ "loss": 1.0126,
2234
+ "step": 311
2235
+ },
2236
+ {
2237
+ "epoch": 0.32248062015503876,
2238
+ "grad_norm": 1.5751510858535767,
2239
+ "learning_rate": 4.706896551724138e-06,
2240
+ "loss": 1.0268,
2241
+ "step": 312
2242
+ },
2243
+ {
2244
+ "epoch": 0.3235142118863049,
2245
+ "grad_norm": 1.335180401802063,
2246
+ "learning_rate": 4.7040229885057474e-06,
2247
+ "loss": 1.0474,
2248
+ "step": 313
2249
+ },
2250
+ {
2251
+ "epoch": 0.3245478036175711,
2252
+ "grad_norm": 1.4872468709945679,
2253
+ "learning_rate": 4.7011494252873566e-06,
2254
+ "loss": 1.0709,
2255
+ "step": 314
2256
+ },
2257
+ {
2258
+ "epoch": 0.32558139534883723,
2259
+ "grad_norm": 1.5406771898269653,
2260
+ "learning_rate": 4.698275862068966e-06,
2261
+ "loss": 1.032,
2262
+ "step": 315
2263
+ },
2264
+ {
2265
+ "epoch": 0.32661498708010334,
2266
+ "grad_norm": 1.2771215438842773,
2267
+ "learning_rate": 4.695402298850575e-06,
2268
+ "loss": 1.0122,
2269
+ "step": 316
2270
+ },
2271
+ {
2272
+ "epoch": 0.3276485788113695,
2273
+ "grad_norm": 1.4511051177978516,
2274
+ "learning_rate": 4.692528735632184e-06,
2275
+ "loss": 1.0457,
2276
+ "step": 317
2277
+ },
2278
+ {
2279
+ "epoch": 0.32868217054263565,
2280
+ "grad_norm": 1.2866500616073608,
2281
+ "learning_rate": 4.689655172413793e-06,
2282
+ "loss": 1.0154,
2283
+ "step": 318
2284
+ },
2285
+ {
2286
+ "epoch": 0.3297157622739018,
2287
+ "grad_norm": 1.3319385051727295,
2288
+ "learning_rate": 4.686781609195402e-06,
2289
+ "loss": 1.0351,
2290
+ "step": 319
2291
+ },
2292
+ {
2293
+ "epoch": 0.330749354005168,
2294
+ "grad_norm": 1.499594807624817,
2295
+ "learning_rate": 4.683908045977012e-06,
2296
+ "loss": 0.9905,
2297
+ "step": 320
2298
+ },
2299
+ {
2300
+ "epoch": 0.33178294573643413,
2301
+ "grad_norm": 1.4195674657821655,
2302
+ "learning_rate": 4.6810344827586214e-06,
2303
+ "loss": 0.9723,
2304
+ "step": 321
2305
+ },
2306
+ {
2307
+ "epoch": 0.33281653746770024,
2308
+ "grad_norm": 1.398489236831665,
2309
+ "learning_rate": 4.67816091954023e-06,
2310
+ "loss": 0.9869,
2311
+ "step": 322
2312
+ },
2313
+ {
2314
+ "epoch": 0.3338501291989664,
2315
+ "grad_norm": 1.5325692892074585,
2316
+ "learning_rate": 4.675287356321839e-06,
2317
+ "loss": 0.9852,
2318
+ "step": 323
2319
+ },
2320
+ {
2321
+ "epoch": 0.33488372093023255,
2322
+ "grad_norm": 1.5350309610366821,
2323
+ "learning_rate": 4.672413793103449e-06,
2324
+ "loss": 1.044,
2325
+ "step": 324
2326
+ },
2327
+ {
2328
+ "epoch": 0.3359173126614987,
2329
+ "grad_norm": 1.534777045249939,
2330
+ "learning_rate": 4.669540229885058e-06,
2331
+ "loss": 0.9982,
2332
+ "step": 325
2333
+ },
2334
+ {
2335
+ "epoch": 0.33695090439276487,
2336
+ "grad_norm": 1.7731380462646484,
2337
+ "learning_rate": 4.666666666666667e-06,
2338
+ "loss": 1.0407,
2339
+ "step": 326
2340
+ },
2341
+ {
2342
+ "epoch": 0.33798449612403103,
2343
+ "grad_norm": 1.6210086345672607,
2344
+ "learning_rate": 4.663793103448276e-06,
2345
+ "loss": 0.9839,
2346
+ "step": 327
2347
+ },
2348
+ {
2349
+ "epoch": 0.33901808785529713,
2350
+ "grad_norm": 1.139635682106018,
2351
+ "learning_rate": 4.6609195402298855e-06,
2352
+ "loss": 0.9218,
2353
+ "step": 328
2354
+ },
2355
+ {
2356
+ "epoch": 0.3400516795865633,
2357
+ "grad_norm": 1.3825052976608276,
2358
+ "learning_rate": 4.658045977011495e-06,
2359
+ "loss": 0.9853,
2360
+ "step": 329
2361
+ },
2362
+ {
2363
+ "epoch": 0.34108527131782945,
2364
+ "grad_norm": 1.6630350351333618,
2365
+ "learning_rate": 4.655172413793104e-06,
2366
+ "loss": 1.0007,
2367
+ "step": 330
2368
+ },
2369
+ {
2370
+ "epoch": 0.3421188630490956,
2371
+ "grad_norm": 1.585688591003418,
2372
+ "learning_rate": 4.652298850574713e-06,
2373
+ "loss": 1.0594,
2374
+ "step": 331
2375
+ },
2376
+ {
2377
+ "epoch": 0.34315245478036177,
2378
+ "grad_norm": 1.8591464757919312,
2379
+ "learning_rate": 4.649425287356322e-06,
2380
+ "loss": 1.0056,
2381
+ "step": 332
2382
+ },
2383
+ {
2384
+ "epoch": 0.34418604651162793,
2385
+ "grad_norm": 1.5832587480545044,
2386
+ "learning_rate": 4.646551724137931e-06,
2387
+ "loss": 0.9986,
2388
+ "step": 333
2389
+ },
2390
+ {
2391
+ "epoch": 0.34521963824289403,
2392
+ "grad_norm": 1.7467713356018066,
2393
+ "learning_rate": 4.643678160919541e-06,
2394
+ "loss": 0.9925,
2395
+ "step": 334
2396
+ },
2397
+ {
2398
+ "epoch": 0.3462532299741602,
2399
+ "grad_norm": 1.3366422653198242,
2400
+ "learning_rate": 4.6408045977011495e-06,
2401
+ "loss": 1.0477,
2402
+ "step": 335
2403
+ },
2404
+ {
2405
+ "epoch": 0.34728682170542635,
2406
+ "grad_norm": 1.473027229309082,
2407
+ "learning_rate": 4.637931034482759e-06,
2408
+ "loss": 0.9695,
2409
+ "step": 336
2410
+ },
2411
+ {
2412
+ "epoch": 0.3483204134366925,
2413
+ "grad_norm": 1.5177369117736816,
2414
+ "learning_rate": 4.635057471264368e-06,
2415
+ "loss": 1.0238,
2416
+ "step": 337
2417
+ },
2418
+ {
2419
+ "epoch": 0.34935400516795867,
2420
+ "grad_norm": 1.9143269062042236,
2421
+ "learning_rate": 4.632183908045978e-06,
2422
+ "loss": 1.0595,
2423
+ "step": 338
2424
+ },
2425
+ {
2426
+ "epoch": 0.35038759689922483,
2427
+ "grad_norm": 1.4199109077453613,
2428
+ "learning_rate": 4.629310344827587e-06,
2429
+ "loss": 1.02,
2430
+ "step": 339
2431
+ },
2432
+ {
2433
+ "epoch": 0.35142118863049093,
2434
+ "grad_norm": 1.3345683813095093,
2435
+ "learning_rate": 4.626436781609196e-06,
2436
+ "loss": 0.9948,
2437
+ "step": 340
2438
+ },
2439
+ {
2440
+ "epoch": 0.3524547803617571,
2441
+ "grad_norm": 1.3201162815093994,
2442
+ "learning_rate": 4.623563218390805e-06,
2443
+ "loss": 0.9978,
2444
+ "step": 341
2445
+ },
2446
+ {
2447
+ "epoch": 0.35348837209302325,
2448
+ "grad_norm": 1.7195253372192383,
2449
+ "learning_rate": 4.620689655172414e-06,
2450
+ "loss": 0.9977,
2451
+ "step": 342
2452
+ },
2453
+ {
2454
+ "epoch": 0.3545219638242894,
2455
+ "grad_norm": 1.3972502946853638,
2456
+ "learning_rate": 4.6178160919540235e-06,
2457
+ "loss": 1.0299,
2458
+ "step": 343
2459
+ },
2460
+ {
2461
+ "epoch": 0.35555555555555557,
2462
+ "grad_norm": 1.4695457220077515,
2463
+ "learning_rate": 4.614942528735633e-06,
2464
+ "loss": 1.0164,
2465
+ "step": 344
2466
+ },
2467
+ {
2468
+ "epoch": 0.35658914728682173,
2469
+ "grad_norm": 1.5302752256393433,
2470
+ "learning_rate": 4.612068965517242e-06,
2471
+ "loss": 1.0209,
2472
+ "step": 345
2473
+ },
2474
+ {
2475
+ "epoch": 0.35762273901808783,
2476
+ "grad_norm": 1.2683886289596558,
2477
+ "learning_rate": 4.609195402298851e-06,
2478
+ "loss": 0.9828,
2479
+ "step": 346
2480
+ },
2481
+ {
2482
+ "epoch": 0.358656330749354,
2483
+ "grad_norm": 1.2424372434616089,
2484
+ "learning_rate": 4.60632183908046e-06,
2485
+ "loss": 0.9937,
2486
+ "step": 347
2487
+ },
2488
+ {
2489
+ "epoch": 0.35968992248062015,
2490
+ "grad_norm": 1.2774847745895386,
2491
+ "learning_rate": 4.603448275862069e-06,
2492
+ "loss": 1.0385,
2493
+ "step": 348
2494
+ },
2495
+ {
2496
+ "epoch": 0.3607235142118863,
2497
+ "grad_norm": 1.1979737281799316,
2498
+ "learning_rate": 4.600574712643678e-06,
2499
+ "loss": 0.9658,
2500
+ "step": 349
2501
+ },
2502
+ {
2503
+ "epoch": 0.36175710594315247,
2504
+ "grad_norm": 1.6517276763916016,
2505
+ "learning_rate": 4.5977011494252875e-06,
2506
+ "loss": 0.9967,
2507
+ "step": 350
2508
+ },
2509
+ {
2510
+ "epoch": 0.36175710594315247,
2511
+ "eval_loss": 1.1045842170715332,
2512
+ "eval_runtime": 52.4997,
2513
+ "eval_samples_per_second": 19.048,
2514
+ "eval_steps_per_second": 0.61,
2515
+ "step": 350
2516
+ },
2517
+ {
2518
+ "epoch": 0.3627906976744186,
2519
+ "grad_norm": 1.2296693325042725,
2520
+ "learning_rate": 4.594827586206897e-06,
2521
+ "loss": 0.9675,
2522
+ "step": 351
2523
+ },
2524
+ {
2525
+ "epoch": 0.36382428940568473,
2526
+ "grad_norm": 1.367437720298767,
2527
+ "learning_rate": 4.591954022988507e-06,
2528
+ "loss": 1.0251,
2529
+ "step": 352
2530
+ },
2531
+ {
2532
+ "epoch": 0.3648578811369509,
2533
+ "grad_norm": 1.3952935934066772,
2534
+ "learning_rate": 4.589080459770116e-06,
2535
+ "loss": 1.0408,
2536
+ "step": 353
2537
+ },
2538
+ {
2539
+ "epoch": 0.36589147286821705,
2540
+ "grad_norm": 1.287678837776184,
2541
+ "learning_rate": 4.586206896551724e-06,
2542
+ "loss": 0.9839,
2543
+ "step": 354
2544
+ },
2545
+ {
2546
+ "epoch": 0.3669250645994832,
2547
+ "grad_norm": 1.599214792251587,
2548
+ "learning_rate": 4.583333333333333e-06,
2549
+ "loss": 1.0125,
2550
+ "step": 355
2551
+ },
2552
+ {
2553
+ "epoch": 0.36795865633074937,
2554
+ "grad_norm": 1.6125950813293457,
2555
+ "learning_rate": 4.580459770114943e-06,
2556
+ "loss": 1.0108,
2557
+ "step": 356
2558
+ },
2559
+ {
2560
+ "epoch": 0.3689922480620155,
2561
+ "grad_norm": 1.167265772819519,
2562
+ "learning_rate": 4.577586206896552e-06,
2563
+ "loss": 0.9809,
2564
+ "step": 357
2565
+ },
2566
+ {
2567
+ "epoch": 0.37002583979328163,
2568
+ "grad_norm": 1.3578706979751587,
2569
+ "learning_rate": 4.5747126436781615e-06,
2570
+ "loss": 1.0054,
2571
+ "step": 358
2572
+ },
2573
+ {
2574
+ "epoch": 0.3710594315245478,
2575
+ "grad_norm": 1.5812793970108032,
2576
+ "learning_rate": 4.571839080459771e-06,
2577
+ "loss": 0.9962,
2578
+ "step": 359
2579
+ },
2580
+ {
2581
+ "epoch": 0.37209302325581395,
2582
+ "grad_norm": 1.6925969123840332,
2583
+ "learning_rate": 4.56896551724138e-06,
2584
+ "loss": 1.0039,
2585
+ "step": 360
2586
+ },
2587
+ {
2588
+ "epoch": 0.3731266149870801,
2589
+ "grad_norm": 1.5617161989212036,
2590
+ "learning_rate": 4.566091954022989e-06,
2591
+ "loss": 1.0123,
2592
+ "step": 361
2593
+ },
2594
+ {
2595
+ "epoch": 0.37416020671834627,
2596
+ "grad_norm": 1.2854423522949219,
2597
+ "learning_rate": 4.563218390804598e-06,
2598
+ "loss": 1.0074,
2599
+ "step": 362
2600
+ },
2601
+ {
2602
+ "epoch": 0.3751937984496124,
2603
+ "grad_norm": 1.5997135639190674,
2604
+ "learning_rate": 4.560344827586207e-06,
2605
+ "loss": 0.9894,
2606
+ "step": 363
2607
+ },
2608
+ {
2609
+ "epoch": 0.37622739018087853,
2610
+ "grad_norm": 1.5839483737945557,
2611
+ "learning_rate": 4.557471264367816e-06,
2612
+ "loss": 1.0093,
2613
+ "step": 364
2614
+ },
2615
+ {
2616
+ "epoch": 0.3772609819121447,
2617
+ "grad_norm": 1.3355575799942017,
2618
+ "learning_rate": 4.5545977011494255e-06,
2619
+ "loss": 1.0131,
2620
+ "step": 365
2621
+ },
2622
+ {
2623
+ "epoch": 0.37829457364341085,
2624
+ "grad_norm": 1.3378883600234985,
2625
+ "learning_rate": 4.551724137931035e-06,
2626
+ "loss": 1.0251,
2627
+ "step": 366
2628
+ },
2629
+ {
2630
+ "epoch": 0.379328165374677,
2631
+ "grad_norm": 1.5703293085098267,
2632
+ "learning_rate": 4.548850574712644e-06,
2633
+ "loss": 1.0052,
2634
+ "step": 367
2635
+ },
2636
+ {
2637
+ "epoch": 0.38036175710594317,
2638
+ "grad_norm": 1.6331372261047363,
2639
+ "learning_rate": 4.545977011494253e-06,
2640
+ "loss": 1.0063,
2641
+ "step": 368
2642
+ },
2643
+ {
2644
+ "epoch": 0.3813953488372093,
2645
+ "grad_norm": 1.4740118980407715,
2646
+ "learning_rate": 4.543103448275862e-06,
2647
+ "loss": 1.0024,
2648
+ "step": 369
2649
+ },
2650
+ {
2651
+ "epoch": 0.38242894056847543,
2652
+ "grad_norm": 1.3222692012786865,
2653
+ "learning_rate": 4.540229885057471e-06,
2654
+ "loss": 0.982,
2655
+ "step": 370
2656
+ },
2657
+ {
2658
+ "epoch": 0.3834625322997416,
2659
+ "grad_norm": 1.4858118295669556,
2660
+ "learning_rate": 4.537356321839081e-06,
2661
+ "loss": 1.033,
2662
+ "step": 371
2663
+ },
2664
+ {
2665
+ "epoch": 0.38449612403100775,
2666
+ "grad_norm": 1.201407551765442,
2667
+ "learning_rate": 4.53448275862069e-06,
2668
+ "loss": 0.9925,
2669
+ "step": 372
2670
+ },
2671
+ {
2672
+ "epoch": 0.3855297157622739,
2673
+ "grad_norm": 1.276807427406311,
2674
+ "learning_rate": 4.5316091954022995e-06,
2675
+ "loss": 1.0374,
2676
+ "step": 373
2677
+ },
2678
+ {
2679
+ "epoch": 0.38656330749354006,
2680
+ "grad_norm": 1.306963324546814,
2681
+ "learning_rate": 4.528735632183908e-06,
2682
+ "loss": 0.9913,
2683
+ "step": 374
2684
+ },
2685
+ {
2686
+ "epoch": 0.3875968992248062,
2687
+ "grad_norm": 1.4419054985046387,
2688
+ "learning_rate": 4.525862068965518e-06,
2689
+ "loss": 1.0021,
2690
+ "step": 375
2691
+ },
2692
+ {
2693
+ "epoch": 0.3886304909560723,
2694
+ "grad_norm": 1.1594988107681274,
2695
+ "learning_rate": 4.522988505747127e-06,
2696
+ "loss": 0.967,
2697
+ "step": 376
2698
+ },
2699
+ {
2700
+ "epoch": 0.3896640826873385,
2701
+ "grad_norm": 1.2666174173355103,
2702
+ "learning_rate": 4.520114942528736e-06,
2703
+ "loss": 1.0206,
2704
+ "step": 377
2705
+ },
2706
+ {
2707
+ "epoch": 0.39069767441860465,
2708
+ "grad_norm": 1.4637069702148438,
2709
+ "learning_rate": 4.517241379310345e-06,
2710
+ "loss": 1.0182,
2711
+ "step": 378
2712
+ },
2713
+ {
2714
+ "epoch": 0.3917312661498708,
2715
+ "grad_norm": 1.3480263948440552,
2716
+ "learning_rate": 4.514367816091954e-06,
2717
+ "loss": 0.9642,
2718
+ "step": 379
2719
+ },
2720
+ {
2721
+ "epoch": 0.39276485788113696,
2722
+ "grad_norm": 1.3101832866668701,
2723
+ "learning_rate": 4.5114942528735635e-06,
2724
+ "loss": 0.9631,
2725
+ "step": 380
2726
+ },
2727
+ {
2728
+ "epoch": 0.3937984496124031,
2729
+ "grad_norm": 1.2533233165740967,
2730
+ "learning_rate": 4.508620689655173e-06,
2731
+ "loss": 0.9842,
2732
+ "step": 381
2733
+ },
2734
+ {
2735
+ "epoch": 0.3948320413436692,
2736
+ "grad_norm": 1.2661020755767822,
2737
+ "learning_rate": 4.505747126436782e-06,
2738
+ "loss": 0.9842,
2739
+ "step": 382
2740
+ },
2741
+ {
2742
+ "epoch": 0.3958656330749354,
2743
+ "grad_norm": 1.4904688596725464,
2744
+ "learning_rate": 4.502873563218391e-06,
2745
+ "loss": 0.9785,
2746
+ "step": 383
2747
+ },
2748
+ {
2749
+ "epoch": 0.39689922480620154,
2750
+ "grad_norm": 1.2895351648330688,
2751
+ "learning_rate": 4.5e-06,
2752
+ "loss": 0.9755,
2753
+ "step": 384
2754
+ },
2755
+ {
2756
+ "epoch": 0.3979328165374677,
2757
+ "grad_norm": 1.186653971672058,
2758
+ "learning_rate": 4.49712643678161e-06,
2759
+ "loss": 0.9699,
2760
+ "step": 385
2761
+ },
2762
+ {
2763
+ "epoch": 0.39896640826873386,
2764
+ "grad_norm": 1.6472855806350708,
2765
+ "learning_rate": 4.494252873563218e-06,
2766
+ "loss": 0.9963,
2767
+ "step": 386
2768
+ },
2769
+ {
2770
+ "epoch": 0.4,
2771
+ "grad_norm": 1.535745620727539,
2772
+ "learning_rate": 4.4913793103448275e-06,
2773
+ "loss": 0.9925,
2774
+ "step": 387
2775
+ },
2776
+ {
2777
+ "epoch": 0.4010335917312661,
2778
+ "grad_norm": 1.3963381052017212,
2779
+ "learning_rate": 4.488505747126437e-06,
2780
+ "loss": 0.9926,
2781
+ "step": 388
2782
+ },
2783
+ {
2784
+ "epoch": 0.4020671834625323,
2785
+ "grad_norm": 1.2652450799942017,
2786
+ "learning_rate": 4.485632183908047e-06,
2787
+ "loss": 1.0224,
2788
+ "step": 389
2789
+ },
2790
+ {
2791
+ "epoch": 0.40310077519379844,
2792
+ "grad_norm": 1.329743504524231,
2793
+ "learning_rate": 4.482758620689656e-06,
2794
+ "loss": 0.9473,
2795
+ "step": 390
2796
+ },
2797
+ {
2798
+ "epoch": 0.4041343669250646,
2799
+ "grad_norm": 1.471661925315857,
2800
+ "learning_rate": 4.479885057471265e-06,
2801
+ "loss": 0.9788,
2802
+ "step": 391
2803
+ },
2804
+ {
2805
+ "epoch": 0.40516795865633076,
2806
+ "grad_norm": 1.3997739553451538,
2807
+ "learning_rate": 4.477011494252874e-06,
2808
+ "loss": 0.9918,
2809
+ "step": 392
2810
+ },
2811
+ {
2812
+ "epoch": 0.4062015503875969,
2813
+ "grad_norm": 1.3732025623321533,
2814
+ "learning_rate": 4.474137931034483e-06,
2815
+ "loss": 0.9972,
2816
+ "step": 393
2817
+ },
2818
+ {
2819
+ "epoch": 0.407235142118863,
2820
+ "grad_norm": 1.3872554302215576,
2821
+ "learning_rate": 4.471264367816092e-06,
2822
+ "loss": 0.9695,
2823
+ "step": 394
2824
+ },
2825
+ {
2826
+ "epoch": 0.4082687338501292,
2827
+ "grad_norm": 1.3868608474731445,
2828
+ "learning_rate": 4.4683908045977016e-06,
2829
+ "loss": 1.0138,
2830
+ "step": 395
2831
+ },
2832
+ {
2833
+ "epoch": 0.40930232558139534,
2834
+ "grad_norm": 1.59169602394104,
2835
+ "learning_rate": 4.465517241379311e-06,
2836
+ "loss": 1.0182,
2837
+ "step": 396
2838
+ },
2839
+ {
2840
+ "epoch": 0.4103359173126615,
2841
+ "grad_norm": 1.4743701219558716,
2842
+ "learning_rate": 4.46264367816092e-06,
2843
+ "loss": 0.9811,
2844
+ "step": 397
2845
+ },
2846
+ {
2847
+ "epoch": 0.41136950904392766,
2848
+ "grad_norm": 1.2035115957260132,
2849
+ "learning_rate": 4.459770114942529e-06,
2850
+ "loss": 0.9673,
2851
+ "step": 398
2852
+ },
2853
+ {
2854
+ "epoch": 0.4124031007751938,
2855
+ "grad_norm": 1.3029043674468994,
2856
+ "learning_rate": 4.456896551724138e-06,
2857
+ "loss": 0.9564,
2858
+ "step": 399
2859
+ },
2860
+ {
2861
+ "epoch": 0.4134366925064599,
2862
+ "grad_norm": 1.3427908420562744,
2863
+ "learning_rate": 4.454022988505747e-06,
2864
+ "loss": 0.9982,
2865
+ "step": 400
2866
+ },
2867
+ {
2868
+ "epoch": 0.4134366925064599,
2869
+ "eval_loss": 1.091240644454956,
2870
+ "eval_runtime": 52.5565,
2871
+ "eval_samples_per_second": 19.027,
2872
+ "eval_steps_per_second": 0.609,
2873
+ "step": 400
2874
+ },
2875
+ {
2876
+ "epoch": 0.4144702842377261,
2877
+ "grad_norm": 1.3828445672988892,
2878
+ "learning_rate": 4.4511494252873564e-06,
2879
+ "loss": 0.9612,
2880
+ "step": 401
2881
+ },
2882
+ {
2883
+ "epoch": 0.41550387596899224,
2884
+ "grad_norm": 1.3622734546661377,
2885
+ "learning_rate": 4.4482758620689656e-06,
2886
+ "loss": 1.0141,
2887
+ "step": 402
2888
+ },
2889
+ {
2890
+ "epoch": 0.4165374677002584,
2891
+ "grad_norm": 1.2798258066177368,
2892
+ "learning_rate": 4.4454022988505756e-06,
2893
+ "loss": 0.9491,
2894
+ "step": 403
2895
+ },
2896
+ {
2897
+ "epoch": 0.41757105943152456,
2898
+ "grad_norm": 1.223121166229248,
2899
+ "learning_rate": 4.442528735632185e-06,
2900
+ "loss": 0.9722,
2901
+ "step": 404
2902
+ },
2903
+ {
2904
+ "epoch": 0.4186046511627907,
2905
+ "grad_norm": 1.2730870246887207,
2906
+ "learning_rate": 4.439655172413794e-06,
2907
+ "loss": 0.9465,
2908
+ "step": 405
2909
+ },
2910
+ {
2911
+ "epoch": 0.4196382428940568,
2912
+ "grad_norm": 1.1687973737716675,
2913
+ "learning_rate": 4.436781609195402e-06,
2914
+ "loss": 0.9508,
2915
+ "step": 406
2916
+ },
2917
+ {
2918
+ "epoch": 0.420671834625323,
2919
+ "grad_norm": 1.233321189880371,
2920
+ "learning_rate": 4.433908045977012e-06,
2921
+ "loss": 0.9406,
2922
+ "step": 407
2923
+ },
2924
+ {
2925
+ "epoch": 0.42170542635658914,
2926
+ "grad_norm": 1.6981616020202637,
2927
+ "learning_rate": 4.431034482758621e-06,
2928
+ "loss": 0.9796,
2929
+ "step": 408
2930
+ },
2931
+ {
2932
+ "epoch": 0.4227390180878553,
2933
+ "grad_norm": 2.0248169898986816,
2934
+ "learning_rate": 4.4281609195402304e-06,
2935
+ "loss": 1.0083,
2936
+ "step": 409
2937
+ },
2938
+ {
2939
+ "epoch": 0.42377260981912146,
2940
+ "grad_norm": 1.5073792934417725,
2941
+ "learning_rate": 4.42528735632184e-06,
2942
+ "loss": 1.0211,
2943
+ "step": 410
2944
+ },
2945
+ {
2946
+ "epoch": 0.4248062015503876,
2947
+ "grad_norm": 1.2407021522521973,
2948
+ "learning_rate": 4.422413793103449e-06,
2949
+ "loss": 0.965,
2950
+ "step": 411
2951
+ },
2952
+ {
2953
+ "epoch": 0.4258397932816537,
2954
+ "grad_norm": 1.5259541273117065,
2955
+ "learning_rate": 4.419540229885058e-06,
2956
+ "loss": 0.9618,
2957
+ "step": 412
2958
+ },
2959
+ {
2960
+ "epoch": 0.4268733850129199,
2961
+ "grad_norm": 1.3160191774368286,
2962
+ "learning_rate": 4.416666666666667e-06,
2963
+ "loss": 1.0031,
2964
+ "step": 413
2965
+ },
2966
+ {
2967
+ "epoch": 0.42790697674418604,
2968
+ "grad_norm": 1.366034984588623,
2969
+ "learning_rate": 4.413793103448276e-06,
2970
+ "loss": 0.9726,
2971
+ "step": 414
2972
+ },
2973
+ {
2974
+ "epoch": 0.4289405684754522,
2975
+ "grad_norm": 1.3648245334625244,
2976
+ "learning_rate": 4.410919540229885e-06,
2977
+ "loss": 0.9727,
2978
+ "step": 415
2979
+ },
2980
+ {
2981
+ "epoch": 0.42997416020671836,
2982
+ "grad_norm": 1.4371240139007568,
2983
+ "learning_rate": 4.4080459770114944e-06,
2984
+ "loss": 0.9921,
2985
+ "step": 416
2986
+ },
2987
+ {
2988
+ "epoch": 0.4310077519379845,
2989
+ "grad_norm": 1.4490691423416138,
2990
+ "learning_rate": 4.405172413793104e-06,
2991
+ "loss": 1.0286,
2992
+ "step": 417
2993
+ },
2994
+ {
2995
+ "epoch": 0.4320413436692506,
2996
+ "grad_norm": 1.4341950416564941,
2997
+ "learning_rate": 4.402298850574713e-06,
2998
+ "loss": 0.9953,
2999
+ "step": 418
3000
+ },
3001
+ {
3002
+ "epoch": 0.4330749354005168,
3003
+ "grad_norm": 1.4683347940444946,
3004
+ "learning_rate": 4.399425287356322e-06,
3005
+ "loss": 0.9812,
3006
+ "step": 419
3007
+ },
3008
+ {
3009
+ "epoch": 0.43410852713178294,
3010
+ "grad_norm": 1.459459662437439,
3011
+ "learning_rate": 4.396551724137931e-06,
3012
+ "loss": 0.9855,
3013
+ "step": 420
3014
+ },
3015
+ {
3016
+ "epoch": 0.4351421188630491,
3017
+ "grad_norm": 1.3102967739105225,
3018
+ "learning_rate": 4.39367816091954e-06,
3019
+ "loss": 1.0135,
3020
+ "step": 421
3021
+ },
3022
+ {
3023
+ "epoch": 0.43617571059431526,
3024
+ "grad_norm": 1.4162970781326294,
3025
+ "learning_rate": 4.39080459770115e-06,
3026
+ "loss": 1.0225,
3027
+ "step": 422
3028
+ },
3029
+ {
3030
+ "epoch": 0.4372093023255814,
3031
+ "grad_norm": 1.4849135875701904,
3032
+ "learning_rate": 4.387931034482759e-06,
3033
+ "loss": 0.9791,
3034
+ "step": 423
3035
+ },
3036
+ {
3037
+ "epoch": 0.4382428940568475,
3038
+ "grad_norm": 1.3206710815429688,
3039
+ "learning_rate": 4.3850574712643685e-06,
3040
+ "loss": 0.9568,
3041
+ "step": 424
3042
+ },
3043
+ {
3044
+ "epoch": 0.4392764857881137,
3045
+ "grad_norm": 1.401818037033081,
3046
+ "learning_rate": 4.382183908045977e-06,
3047
+ "loss": 1.0067,
3048
+ "step": 425
3049
+ },
3050
+ {
3051
+ "epoch": 0.44031007751937984,
3052
+ "grad_norm": 1.4235022068023682,
3053
+ "learning_rate": 4.379310344827587e-06,
3054
+ "loss": 0.9687,
3055
+ "step": 426
3056
+ },
3057
+ {
3058
+ "epoch": 0.441343669250646,
3059
+ "grad_norm": 1.413816213607788,
3060
+ "learning_rate": 4.376436781609196e-06,
3061
+ "loss": 0.9889,
3062
+ "step": 427
3063
+ },
3064
+ {
3065
+ "epoch": 0.44237726098191216,
3066
+ "grad_norm": 1.4104002714157104,
3067
+ "learning_rate": 4.373563218390805e-06,
3068
+ "loss": 1.0102,
3069
+ "step": 428
3070
+ },
3071
+ {
3072
+ "epoch": 0.4434108527131783,
3073
+ "grad_norm": 1.1682835817337036,
3074
+ "learning_rate": 4.370689655172414e-06,
3075
+ "loss": 0.9593,
3076
+ "step": 429
3077
+ },
3078
+ {
3079
+ "epoch": 0.4444444444444444,
3080
+ "grad_norm": 1.4189906120300293,
3081
+ "learning_rate": 4.367816091954023e-06,
3082
+ "loss": 0.9598,
3083
+ "step": 430
3084
+ },
3085
+ {
3086
+ "epoch": 0.4454780361757106,
3087
+ "grad_norm": 1.4035252332687378,
3088
+ "learning_rate": 4.3649425287356325e-06,
3089
+ "loss": 0.9726,
3090
+ "step": 431
3091
+ },
3092
+ {
3093
+ "epoch": 0.44651162790697674,
3094
+ "grad_norm": 1.3095788955688477,
3095
+ "learning_rate": 4.362068965517242e-06,
3096
+ "loss": 0.9867,
3097
+ "step": 432
3098
+ },
3099
+ {
3100
+ "epoch": 0.4475452196382429,
3101
+ "grad_norm": 1.5546255111694336,
3102
+ "learning_rate": 4.359195402298851e-06,
3103
+ "loss": 0.9851,
3104
+ "step": 433
3105
+ },
3106
+ {
3107
+ "epoch": 0.44857881136950906,
3108
+ "grad_norm": 1.545753002166748,
3109
+ "learning_rate": 4.35632183908046e-06,
3110
+ "loss": 1.002,
3111
+ "step": 434
3112
+ },
3113
+ {
3114
+ "epoch": 0.4496124031007752,
3115
+ "grad_norm": 1.5164129734039307,
3116
+ "learning_rate": 4.353448275862069e-06,
3117
+ "loss": 0.9835,
3118
+ "step": 435
3119
+ },
3120
+ {
3121
+ "epoch": 0.4506459948320413,
3122
+ "grad_norm": 1.285075306892395,
3123
+ "learning_rate": 4.350574712643679e-06,
3124
+ "loss": 0.991,
3125
+ "step": 436
3126
+ },
3127
+ {
3128
+ "epoch": 0.4516795865633075,
3129
+ "grad_norm": 1.2409052848815918,
3130
+ "learning_rate": 4.347701149425288e-06,
3131
+ "loss": 0.9413,
3132
+ "step": 437
3133
+ },
3134
+ {
3135
+ "epoch": 0.45271317829457364,
3136
+ "grad_norm": 1.6471928358078003,
3137
+ "learning_rate": 4.3448275862068965e-06,
3138
+ "loss": 0.9642,
3139
+ "step": 438
3140
+ },
3141
+ {
3142
+ "epoch": 0.4537467700258398,
3143
+ "grad_norm": 1.3383151292800903,
3144
+ "learning_rate": 4.341954022988506e-06,
3145
+ "loss": 0.9621,
3146
+ "step": 439
3147
+ },
3148
+ {
3149
+ "epoch": 0.45478036175710596,
3150
+ "grad_norm": 1.2632237672805786,
3151
+ "learning_rate": 4.339080459770116e-06,
3152
+ "loss": 0.9729,
3153
+ "step": 440
3154
+ },
3155
+ {
3156
+ "epoch": 0.4558139534883721,
3157
+ "grad_norm": 1.1937509775161743,
3158
+ "learning_rate": 4.336206896551725e-06,
3159
+ "loss": 0.987,
3160
+ "step": 441
3161
+ },
3162
+ {
3163
+ "epoch": 0.4568475452196382,
3164
+ "grad_norm": 1.5322760343551636,
3165
+ "learning_rate": 4.333333333333334e-06,
3166
+ "loss": 0.9693,
3167
+ "step": 442
3168
+ },
3169
+ {
3170
+ "epoch": 0.4578811369509044,
3171
+ "grad_norm": 1.3935906887054443,
3172
+ "learning_rate": 4.330459770114943e-06,
3173
+ "loss": 0.9734,
3174
+ "step": 443
3175
+ },
3176
+ {
3177
+ "epoch": 0.45891472868217054,
3178
+ "grad_norm": 1.305679440498352,
3179
+ "learning_rate": 4.327586206896552e-06,
3180
+ "loss": 0.9886,
3181
+ "step": 444
3182
+ },
3183
+ {
3184
+ "epoch": 0.4599483204134367,
3185
+ "grad_norm": 1.2530243396759033,
3186
+ "learning_rate": 4.324712643678161e-06,
3187
+ "loss": 1.0004,
3188
+ "step": 445
3189
+ },
3190
+ {
3191
+ "epoch": 0.46098191214470285,
3192
+ "grad_norm": 1.4160491228103638,
3193
+ "learning_rate": 4.3218390804597705e-06,
3194
+ "loss": 0.9865,
3195
+ "step": 446
3196
+ },
3197
+ {
3198
+ "epoch": 0.462015503875969,
3199
+ "grad_norm": 1.4170372486114502,
3200
+ "learning_rate": 4.31896551724138e-06,
3201
+ "loss": 0.9965,
3202
+ "step": 447
3203
+ },
3204
+ {
3205
+ "epoch": 0.4630490956072351,
3206
+ "grad_norm": 1.4800901412963867,
3207
+ "learning_rate": 4.316091954022989e-06,
3208
+ "loss": 0.9386,
3209
+ "step": 448
3210
+ },
3211
+ {
3212
+ "epoch": 0.4640826873385013,
3213
+ "grad_norm": 1.3258070945739746,
3214
+ "learning_rate": 4.313218390804598e-06,
3215
+ "loss": 0.9501,
3216
+ "step": 449
3217
+ },
3218
+ {
3219
+ "epoch": 0.46511627906976744,
3220
+ "grad_norm": 1.2615549564361572,
3221
+ "learning_rate": 4.310344827586207e-06,
3222
+ "loss": 0.9698,
3223
+ "step": 450
3224
+ },
3225
+ {
3226
+ "epoch": 0.46511627906976744,
3227
+ "eval_loss": 1.0821963548660278,
3228
+ "eval_runtime": 52.7658,
3229
+ "eval_samples_per_second": 18.952,
3230
+ "eval_steps_per_second": 0.606,
3231
+ "step": 450
3232
+ },
3233
+ {
3234
+ "epoch": 0.4661498708010336,
3235
+ "grad_norm": 1.5667704343795776,
3236
+ "learning_rate": 4.307471264367816e-06,
3237
+ "loss": 0.9839,
3238
+ "step": 451
3239
+ },
3240
+ {
3241
+ "epoch": 0.46718346253229975,
3242
+ "grad_norm": 1.287380576133728,
3243
+ "learning_rate": 4.304597701149425e-06,
3244
+ "loss": 0.9428,
3245
+ "step": 452
3246
+ },
3247
+ {
3248
+ "epoch": 0.4682170542635659,
3249
+ "grad_norm": 1.3471415042877197,
3250
+ "learning_rate": 4.3017241379310345e-06,
3251
+ "loss": 0.9671,
3252
+ "step": 453
3253
+ },
3254
+ {
3255
+ "epoch": 0.469250645994832,
3256
+ "grad_norm": 1.1595243215560913,
3257
+ "learning_rate": 4.2988505747126445e-06,
3258
+ "loss": 0.9905,
3259
+ "step": 454
3260
+ },
3261
+ {
3262
+ "epoch": 0.4702842377260982,
3263
+ "grad_norm": 1.6918305158615112,
3264
+ "learning_rate": 4.295977011494254e-06,
3265
+ "loss": 0.9637,
3266
+ "step": 455
3267
+ },
3268
+ {
3269
+ "epoch": 0.47131782945736433,
3270
+ "grad_norm": 1.4655194282531738,
3271
+ "learning_rate": 4.293103448275863e-06,
3272
+ "loss": 0.9627,
3273
+ "step": 456
3274
+ },
3275
+ {
3276
+ "epoch": 0.4723514211886305,
3277
+ "grad_norm": 1.2935839891433716,
3278
+ "learning_rate": 4.290229885057471e-06,
3279
+ "loss": 0.9736,
3280
+ "step": 457
3281
+ },
3282
+ {
3283
+ "epoch": 0.47338501291989665,
3284
+ "grad_norm": 1.3914062976837158,
3285
+ "learning_rate": 4.287356321839081e-06,
3286
+ "loss": 0.9054,
3287
+ "step": 458
3288
+ },
3289
+ {
3290
+ "epoch": 0.4744186046511628,
3291
+ "grad_norm": 1.7281622886657715,
3292
+ "learning_rate": 4.28448275862069e-06,
3293
+ "loss": 0.9869,
3294
+ "step": 459
3295
+ },
3296
+ {
3297
+ "epoch": 0.4754521963824289,
3298
+ "grad_norm": 1.552720069885254,
3299
+ "learning_rate": 4.281609195402299e-06,
3300
+ "loss": 0.9255,
3301
+ "step": 460
3302
+ },
3303
+ {
3304
+ "epoch": 0.4764857881136951,
3305
+ "grad_norm": 1.1797876358032227,
3306
+ "learning_rate": 4.2787356321839085e-06,
3307
+ "loss": 0.948,
3308
+ "step": 461
3309
+ },
3310
+ {
3311
+ "epoch": 0.47751937984496123,
3312
+ "grad_norm": 1.426317811012268,
3313
+ "learning_rate": 4.275862068965518e-06,
3314
+ "loss": 0.9781,
3315
+ "step": 462
3316
+ },
3317
+ {
3318
+ "epoch": 0.4785529715762274,
3319
+ "grad_norm": 1.3194639682769775,
3320
+ "learning_rate": 4.272988505747127e-06,
3321
+ "loss": 1.0075,
3322
+ "step": 463
3323
+ },
3324
+ {
3325
+ "epoch": 0.47958656330749355,
3326
+ "grad_norm": 1.493377447128296,
3327
+ "learning_rate": 4.270114942528736e-06,
3328
+ "loss": 0.9497,
3329
+ "step": 464
3330
+ },
3331
+ {
3332
+ "epoch": 0.4806201550387597,
3333
+ "grad_norm": 1.4328482151031494,
3334
+ "learning_rate": 4.267241379310345e-06,
3335
+ "loss": 0.9838,
3336
+ "step": 465
3337
+ },
3338
+ {
3339
+ "epoch": 0.4816537467700258,
3340
+ "grad_norm": 1.420423984527588,
3341
+ "learning_rate": 4.264367816091954e-06,
3342
+ "loss": 0.9939,
3343
+ "step": 466
3344
+ },
3345
+ {
3346
+ "epoch": 0.482687338501292,
3347
+ "grad_norm": 1.3972870111465454,
3348
+ "learning_rate": 4.261494252873563e-06,
3349
+ "loss": 1.0312,
3350
+ "step": 467
3351
+ },
3352
+ {
3353
+ "epoch": 0.48372093023255813,
3354
+ "grad_norm": 1.2692211866378784,
3355
+ "learning_rate": 4.2586206896551725e-06,
3356
+ "loss": 0.9715,
3357
+ "step": 468
3358
+ },
3359
+ {
3360
+ "epoch": 0.4847545219638243,
3361
+ "grad_norm": 1.4559839963912964,
3362
+ "learning_rate": 4.2557471264367825e-06,
3363
+ "loss": 1.0095,
3364
+ "step": 469
3365
+ },
3366
+ {
3367
+ "epoch": 0.48578811369509045,
3368
+ "grad_norm": 1.3825651407241821,
3369
+ "learning_rate": 4.252873563218391e-06,
3370
+ "loss": 0.9871,
3371
+ "step": 470
3372
+ },
3373
+ {
3374
+ "epoch": 0.4868217054263566,
3375
+ "grad_norm": 1.1747273206710815,
3376
+ "learning_rate": 4.25e-06,
3377
+ "loss": 0.9756,
3378
+ "step": 471
3379
+ },
3380
+ {
3381
+ "epoch": 0.4878552971576227,
3382
+ "grad_norm": 1.3212231397628784,
3383
+ "learning_rate": 4.247126436781609e-06,
3384
+ "loss": 0.9916,
3385
+ "step": 472
3386
+ },
3387
+ {
3388
+ "epoch": 0.4888888888888889,
3389
+ "grad_norm": 1.4103412628173828,
3390
+ "learning_rate": 4.244252873563219e-06,
3391
+ "loss": 0.9748,
3392
+ "step": 473
3393
+ },
3394
+ {
3395
+ "epoch": 0.48992248062015503,
3396
+ "grad_norm": 1.3848503828048706,
3397
+ "learning_rate": 4.241379310344828e-06,
3398
+ "loss": 0.941,
3399
+ "step": 474
3400
+ },
3401
+ {
3402
+ "epoch": 0.4909560723514212,
3403
+ "grad_norm": 1.3593331575393677,
3404
+ "learning_rate": 4.238505747126437e-06,
3405
+ "loss": 0.9571,
3406
+ "step": 475
3407
+ },
3408
+ {
3409
+ "epoch": 0.49198966408268735,
3410
+ "grad_norm": 1.3448289632797241,
3411
+ "learning_rate": 4.235632183908046e-06,
3412
+ "loss": 0.9889,
3413
+ "step": 476
3414
+ },
3415
+ {
3416
+ "epoch": 0.4930232558139535,
3417
+ "grad_norm": 1.2616806030273438,
3418
+ "learning_rate": 4.232758620689656e-06,
3419
+ "loss": 0.9372,
3420
+ "step": 477
3421
+ },
3422
+ {
3423
+ "epoch": 0.4940568475452196,
3424
+ "grad_norm": 1.2876821756362915,
3425
+ "learning_rate": 4.229885057471265e-06,
3426
+ "loss": 0.9688,
3427
+ "step": 478
3428
+ },
3429
+ {
3430
+ "epoch": 0.49509043927648577,
3431
+ "grad_norm": 1.2750991582870483,
3432
+ "learning_rate": 4.227011494252874e-06,
3433
+ "loss": 0.9564,
3434
+ "step": 479
3435
+ },
3436
+ {
3437
+ "epoch": 0.49612403100775193,
3438
+ "grad_norm": 1.4402563571929932,
3439
+ "learning_rate": 4.224137931034483e-06,
3440
+ "loss": 0.9376,
3441
+ "step": 480
3442
+ },
3443
+ {
3444
+ "epoch": 0.4971576227390181,
3445
+ "grad_norm": 1.5290478467941284,
3446
+ "learning_rate": 4.221264367816092e-06,
3447
+ "loss": 0.9947,
3448
+ "step": 481
3449
+ },
3450
+ {
3451
+ "epoch": 0.49819121447028425,
3452
+ "grad_norm": 1.6395635604858398,
3453
+ "learning_rate": 4.218390804597701e-06,
3454
+ "loss": 0.9764,
3455
+ "step": 482
3456
+ },
3457
+ {
3458
+ "epoch": 0.4992248062015504,
3459
+ "grad_norm": 1.3985153436660767,
3460
+ "learning_rate": 4.2155172413793106e-06,
3461
+ "loss": 0.9296,
3462
+ "step": 483
3463
+ },
3464
+ {
3465
+ "epoch": 0.5002583979328166,
3466
+ "grad_norm": 1.1870092153549194,
3467
+ "learning_rate": 4.21264367816092e-06,
3468
+ "loss": 0.9223,
3469
+ "step": 484
3470
+ },
3471
+ {
3472
+ "epoch": 0.5012919896640827,
3473
+ "grad_norm": 1.3690369129180908,
3474
+ "learning_rate": 4.209770114942529e-06,
3475
+ "loss": 0.9249,
3476
+ "step": 485
3477
+ },
3478
+ {
3479
+ "epoch": 0.5023255813953489,
3480
+ "grad_norm": 1.1812691688537598,
3481
+ "learning_rate": 4.206896551724138e-06,
3482
+ "loss": 0.9863,
3483
+ "step": 486
3484
+ },
3485
+ {
3486
+ "epoch": 0.5033591731266149,
3487
+ "grad_norm": 1.2263563871383667,
3488
+ "learning_rate": 4.204022988505748e-06,
3489
+ "loss": 0.9696,
3490
+ "step": 487
3491
+ },
3492
+ {
3493
+ "epoch": 0.5043927648578811,
3494
+ "grad_norm": 1.3079935312271118,
3495
+ "learning_rate": 4.201149425287357e-06,
3496
+ "loss": 0.9546,
3497
+ "step": 488
3498
+ },
3499
+ {
3500
+ "epoch": 0.5054263565891473,
3501
+ "grad_norm": 1.288635015487671,
3502
+ "learning_rate": 4.1982758620689654e-06,
3503
+ "loss": 0.9735,
3504
+ "step": 489
3505
+ },
3506
+ {
3507
+ "epoch": 0.5064599483204134,
3508
+ "grad_norm": 1.3041417598724365,
3509
+ "learning_rate": 4.1954022988505746e-06,
3510
+ "loss": 0.9615,
3511
+ "step": 490
3512
+ },
3513
+ {
3514
+ "epoch": 0.5074935400516796,
3515
+ "grad_norm": 1.2297852039337158,
3516
+ "learning_rate": 4.1925287356321846e-06,
3517
+ "loss": 1.0156,
3518
+ "step": 491
3519
+ },
3520
+ {
3521
+ "epoch": 0.5085271317829457,
3522
+ "grad_norm": 1.167002558708191,
3523
+ "learning_rate": 4.189655172413794e-06,
3524
+ "loss": 0.9535,
3525
+ "step": 492
3526
+ },
3527
+ {
3528
+ "epoch": 0.5095607235142119,
3529
+ "grad_norm": 1.1384843587875366,
3530
+ "learning_rate": 4.186781609195403e-06,
3531
+ "loss": 0.9567,
3532
+ "step": 493
3533
+ },
3534
+ {
3535
+ "epoch": 0.510594315245478,
3536
+ "grad_norm": 1.6105479001998901,
3537
+ "learning_rate": 4.183908045977012e-06,
3538
+ "loss": 1.0121,
3539
+ "step": 494
3540
+ },
3541
+ {
3542
+ "epoch": 0.5116279069767442,
3543
+ "grad_norm": 1.397196888923645,
3544
+ "learning_rate": 4.181034482758621e-06,
3545
+ "loss": 0.953,
3546
+ "step": 495
3547
+ },
3548
+ {
3549
+ "epoch": 0.5126614987080104,
3550
+ "grad_norm": 1.5293458700180054,
3551
+ "learning_rate": 4.17816091954023e-06,
3552
+ "loss": 0.9612,
3553
+ "step": 496
3554
+ },
3555
+ {
3556
+ "epoch": 0.5136950904392765,
3557
+ "grad_norm": 1.6168063879013062,
3558
+ "learning_rate": 4.1752873563218394e-06,
3559
+ "loss": 0.9967,
3560
+ "step": 497
3561
+ },
3562
+ {
3563
+ "epoch": 0.5147286821705427,
3564
+ "grad_norm": 1.3672846555709839,
3565
+ "learning_rate": 4.1724137931034486e-06,
3566
+ "loss": 0.9388,
3567
+ "step": 498
3568
+ },
3569
+ {
3570
+ "epoch": 0.5157622739018087,
3571
+ "grad_norm": 1.4402540922164917,
3572
+ "learning_rate": 4.169540229885058e-06,
3573
+ "loss": 0.9299,
3574
+ "step": 499
3575
+ },
3576
+ {
3577
+ "epoch": 0.5167958656330749,
3578
+ "grad_norm": 1.5125951766967773,
3579
+ "learning_rate": 4.166666666666667e-06,
3580
+ "loss": 0.9761,
3581
+ "step": 500
3582
+ },
3583
+ {
3584
+ "epoch": 0.5167958656330749,
3585
+ "eval_loss": 1.0677101612091064,
3586
+ "eval_runtime": 52.5704,
3587
+ "eval_samples_per_second": 19.022,
3588
+ "eval_steps_per_second": 0.609,
3589
+ "step": 500
3590
+ }
3591
+ ],
3592
+ "logging_steps": 1,
3593
+ "max_steps": 1934,
3594
+ "num_input_tokens_seen": 0,
3595
+ "num_train_epochs": 2,
3596
+ "save_steps": 500,
3597
+ "stateful_callbacks": {
3598
+ "TrainerControl": {
3599
+ "args": {
3600
+ "should_epoch_stop": false,
3601
+ "should_evaluate": false,
3602
+ "should_log": false,
3603
+ "should_save": true,
3604
+ "should_training_stop": false
3605
+ },
3606
+ "attributes": {}
3607
+ }
3608
+ },
3609
+ "total_flos": 6.87708552822784e+17,
3610
+ "train_batch_size": 2,
3611
+ "trial_name": null,
3612
+ "trial_params": null
3613
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_control_10M_seed0/runs/checkpoint-500/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/4d870a72c656404ee7524163ba996bf55050fff252dfe639a90715a9e2c47dba.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/68127c9bc4fab170f7aaf63d5c7ac9e182afd10b74a1c6bb8025afefc11447cb.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7045cf78c68178b626546982d12b6e9c8e289f1bf1e65c42225ed13e07847180.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7250708a789da850ff40a4a5be335971dfa0d2bd7cba2e9905916dab06744d75.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/7c8139ab9a4e680ff0e9741c678e26c43788abf0.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/83bba6e26639fb152bd0077977cf6ea8312b42a9.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/9b693615965d8548eab4d1dc6bb578aa063e8656e2b9d25125ad5b8c7f59565f.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/c2754167c1cbaf94b9af9c7eb646a2286a596f9ded5e2e3c4c5e6a4464352c9e.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/cbbb3133034e192527e5321b4c679154e4819ab8.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e015e2bc9a26b4e46d77913d8c667608ae7e48aa1eca04af5786c2408f4bc0fa.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/.locks/models--Qwen--Qwen2.5-14B/e7efa1adc8257218813dcb494bb2a3d5775fa268735ab39e5b8119e233c21462.lock ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/adapter_config.json ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/.no_exist/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors ADDED
File without changes
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/7c8139ab9a4e680ff0e9741c678e26c43788abf0 ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00008-of-00008.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00008.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00008.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00008.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00008.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00008.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00008.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00008.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00008.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00008.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00008.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00008.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00008.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00008.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00008.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00008.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00008.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00005-of-00008.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00008.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00008.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00008.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00008.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00008.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00008.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00008.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00006-of-00008.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00006-of-00008.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00008.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00008.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00006-of-00008.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00008.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00008.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00007-of-00008.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00007-of-00008.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00007-of-00008.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00007-of-00008.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00007-of-00008.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00007-of-00008.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00007-of-00008.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00008-of-00008.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00008-of-00008.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00008.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00008.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
584
+ "model.norm.weight": "model-00008-of-00008.safetensors"
585
+ }
586
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/83bba6e26639fb152bd0077977cf6ea8312b42a9 ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 48,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 48,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 131072,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.43.1",
24
+ "use_cache": true,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 152064
27
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/blobs/cbbb3133034e192527e5321b4c679154e4819ab8 ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": false,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.37.0"
7
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ 97e1e76335b7017d8f67c08a19d103c0504298c9
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 48,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 48,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 131072,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.43.1",
24
+ "use_cache": true,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 152064
27
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": false,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.37.0"
7
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/artifacts/models--Qwen--Qwen2.5-14B/snapshots/97e1e76335b7017d8f67c08a19d103c0504298c9/model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00008-of-00008.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00008.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00008.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00008.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00008.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00008.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00008.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00008.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00008.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00008.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00008.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00008.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00008.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00008.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00008.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00008.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00008.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00008.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00008.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00008.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00008.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00008.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00008.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00008.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00008.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00008.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00008.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00008.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00008.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00005-of-00008.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00008.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00008.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00008.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00008.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00008.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00008.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00008.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00008.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00008.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00008.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00008.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00008.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00008.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00006-of-00008.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00005-of-00008.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00005-of-00008.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00005-of-00008.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00006-of-00008.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00008.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00008.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00006-of-00008.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00008.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00008.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00008.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00008.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00008.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00008.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00008.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00007-of-00008.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00006-of-00008.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00006-of-00008.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00006-of-00008.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00006-of-00008.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00007-of-00008.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00007-of-00008.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00007-of-00008.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00007-of-00008.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00007-of-00008.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00007-of-00008.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00007-of-00008.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00008-of-00008.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00008-of-00008.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00007-of-00008.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00007-of-00008.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00007-of-00008.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00007-of-00008.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00007-of-00008.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00008.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00008.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00008.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00008.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00008.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00008.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00008.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00008.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
584
+ "model.norm.weight": "model-00008-of-00008.safetensors"
585
+ }
586
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-14B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 13824,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 48,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 48,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.45.1",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.45.1"
6
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1934
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
584
+ "model.norm.weight": "model-00006-of-00006.safetensors"
585
+ }
586
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-1934/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-14B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 13824,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 48,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 48,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.45.1",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.45.1"
6
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
584
+ "model.norm.weight": "model-00006-of-00006.safetensors"
585
+ }
586
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3613 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5167958656330749,
5
+ "eval_steps": 50,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0010335917312661498,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.7469,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0020671834625322996,
20
+ "grad_norm": 0.0,
21
+ "learning_rate": 0.0,
22
+ "loss": 1.7373,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0031007751937984496,
27
+ "grad_norm": 0.0,
28
+ "learning_rate": 0.0,
29
+ "loss": 1.7672,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.004134366925064599,
34
+ "grad_norm": 0.0,
35
+ "learning_rate": 0.0,
36
+ "loss": 1.7292,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.00516795865633075,
41
+ "grad_norm": 0.0,
42
+ "learning_rate": 0.0,
43
+ "loss": 1.7527,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.006201550387596899,
48
+ "grad_norm": 0.0,
49
+ "learning_rate": 0.0,
50
+ "loss": 1.764,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.007235142118863049,
55
+ "grad_norm": 0.0,
56
+ "learning_rate": 0.0,
57
+ "loss": 1.7631,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.008268733850129198,
62
+ "grad_norm": 0.0,
63
+ "learning_rate": 0.0,
64
+ "loss": 1.743,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.009302325581395349,
69
+ "grad_norm": 0.0,
70
+ "learning_rate": 0.0,
71
+ "loss": 1.7658,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.0103359173126615,
76
+ "grad_norm": 0.0,
77
+ "learning_rate": 0.0,
78
+ "loss": 1.7763,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.011369509043927648,
83
+ "grad_norm": 0.0,
84
+ "learning_rate": 0.0,
85
+ "loss": 1.7739,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.012403100775193798,
90
+ "grad_norm": 0.0,
91
+ "learning_rate": 0.0,
92
+ "loss": 1.7558,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.013436692506459949,
97
+ "grad_norm": 0.0,
98
+ "learning_rate": 0.0,
99
+ "loss": 1.7536,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.014470284237726097,
104
+ "grad_norm": 0.0,
105
+ "learning_rate": 0.0,
106
+ "loss": 1.7285,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.015503875968992248,
111
+ "grad_norm": 0.0,
112
+ "learning_rate": 0.0,
113
+ "loss": 1.7508,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.016537467700258397,
118
+ "grad_norm": 0.0,
119
+ "learning_rate": 0.0,
120
+ "loss": 1.753,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.01757105943152455,
125
+ "grad_norm": 3.294677734375,
126
+ "learning_rate": 2.5773195876288662e-08,
127
+ "loss": 1.7609,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.018604651162790697,
132
+ "grad_norm": 3.3554086685180664,
133
+ "learning_rate": 5.1546391752577325e-08,
134
+ "loss": 1.7881,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.019638242894056846,
139
+ "grad_norm": 2.9532411098480225,
140
+ "learning_rate": 7.731958762886598e-08,
141
+ "loss": 1.7593,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.020671834625323,
146
+ "grad_norm": 2.7428970336914062,
147
+ "learning_rate": 1.0309278350515465e-07,
148
+ "loss": 1.7514,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.021705426356589147,
153
+ "grad_norm": 2.5760021209716797,
154
+ "learning_rate": 1.288659793814433e-07,
155
+ "loss": 1.7519,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.022739018087855296,
160
+ "grad_norm": 3.8851864337921143,
161
+ "learning_rate": 1.5463917525773197e-07,
162
+ "loss": 1.7453,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.023772609819121448,
167
+ "grad_norm": 3.3514232635498047,
168
+ "learning_rate": 1.804123711340206e-07,
169
+ "loss": 1.7524,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.024806201550387597,
174
+ "grad_norm": 3.9262187480926514,
175
+ "learning_rate": 2.061855670103093e-07,
176
+ "loss": 1.7754,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.025839793281653745,
181
+ "grad_norm": 3.5925371646881104,
182
+ "learning_rate": 2.3195876288659797e-07,
183
+ "loss": 1.7711,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.026873385012919897,
188
+ "grad_norm": 3.2370054721832275,
189
+ "learning_rate": 2.577319587628866e-07,
190
+ "loss": 1.7327,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.027906976744186046,
195
+ "grad_norm": 2.7215564250946045,
196
+ "learning_rate": 2.8350515463917527e-07,
197
+ "loss": 1.7457,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.028940568475452195,
202
+ "grad_norm": 3.2791647911071777,
203
+ "learning_rate": 3.0927835051546394e-07,
204
+ "loss": 1.7645,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.029974160206718347,
209
+ "grad_norm": 2.451993942260742,
210
+ "learning_rate": 3.350515463917526e-07,
211
+ "loss": 1.7544,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.031007751937984496,
216
+ "grad_norm": 2.290065288543701,
217
+ "learning_rate": 3.608247422680412e-07,
218
+ "loss": 1.7698,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.03204134366925065,
223
+ "grad_norm": 1.9393961429595947,
224
+ "learning_rate": 3.8659793814432993e-07,
225
+ "loss": 1.7214,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.03307493540051679,
230
+ "grad_norm": 2.158582925796509,
231
+ "learning_rate": 4.123711340206186e-07,
232
+ "loss": 1.7211,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.034108527131782945,
237
+ "grad_norm": 1.6859667301177979,
238
+ "learning_rate": 4.381443298969072e-07,
239
+ "loss": 1.7438,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.0351421188630491,
244
+ "grad_norm": 1.663550615310669,
245
+ "learning_rate": 4.6391752577319593e-07,
246
+ "loss": 1.7394,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.03617571059431524,
251
+ "grad_norm": 1.6059417724609375,
252
+ "learning_rate": 4.896907216494846e-07,
253
+ "loss": 1.7381,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.037209302325581395,
258
+ "grad_norm": 1.9995272159576416,
259
+ "learning_rate": 5.154639175257732e-07,
260
+ "loss": 1.7384,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.03824289405684755,
265
+ "grad_norm": 2.1068830490112305,
266
+ "learning_rate": 5.412371134020619e-07,
267
+ "loss": 1.7148,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.03927648578811369,
272
+ "grad_norm": 1.5573288202285767,
273
+ "learning_rate": 5.670103092783505e-07,
274
+ "loss": 1.6775,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.040310077519379844,
279
+ "grad_norm": 1.5803656578063965,
280
+ "learning_rate": 5.927835051546392e-07,
281
+ "loss": 1.7361,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.041343669250646,
286
+ "grad_norm": 1.535320520401001,
287
+ "learning_rate": 6.185567010309279e-07,
288
+ "loss": 1.7238,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.04237726098191214,
293
+ "grad_norm": 1.4646360874176025,
294
+ "learning_rate": 6.443298969072165e-07,
295
+ "loss": 1.7127,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.043410852713178294,
300
+ "grad_norm": 1.7842413187026978,
301
+ "learning_rate": 6.701030927835052e-07,
302
+ "loss": 1.7335,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.044444444444444446,
307
+ "grad_norm": 1.287598967552185,
308
+ "learning_rate": 6.958762886597939e-07,
309
+ "loss": 1.681,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.04547803617571059,
314
+ "grad_norm": 1.4461113214492798,
315
+ "learning_rate": 7.216494845360824e-07,
316
+ "loss": 1.6995,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.046511627906976744,
321
+ "grad_norm": 1.3189141750335693,
322
+ "learning_rate": 7.474226804123711e-07,
323
+ "loss": 1.6825,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.047545219638242896,
328
+ "grad_norm": 1.305091142654419,
329
+ "learning_rate": 7.731958762886599e-07,
330
+ "loss": 1.6656,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.04857881136950904,
335
+ "grad_norm": 1.203321099281311,
336
+ "learning_rate": 7.989690721649485e-07,
337
+ "loss": 1.6695,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.04961240310077519,
342
+ "grad_norm": 1.3265272378921509,
343
+ "learning_rate": 8.247422680412372e-07,
344
+ "loss": 1.6644,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.050645994832041345,
349
+ "grad_norm": 1.613187313079834,
350
+ "learning_rate": 8.505154639175259e-07,
351
+ "loss": 1.673,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.05167958656330749,
356
+ "grad_norm": 1.8446052074432373,
357
+ "learning_rate": 8.762886597938144e-07,
358
+ "loss": 1.6362,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.05167958656330749,
363
+ "eval_loss": 1.6590594053268433,
364
+ "eval_runtime": 47.8421,
365
+ "eval_samples_per_second": 20.902,
366
+ "eval_steps_per_second": 0.669,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.05271317829457364,
371
+ "grad_norm": 1.5133100748062134,
372
+ "learning_rate": 9.020618556701031e-07,
373
+ "loss": 1.6278,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.053746770025839795,
378
+ "grad_norm": 1.6770209074020386,
379
+ "learning_rate": 9.278350515463919e-07,
380
+ "loss": 1.6379,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.05478036175710594,
385
+ "grad_norm": 1.5879249572753906,
386
+ "learning_rate": 9.536082474226805e-07,
387
+ "loss": 1.6203,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.05581395348837209,
392
+ "grad_norm": 2.090453863143921,
393
+ "learning_rate": 9.793814432989692e-07,
394
+ "loss": 1.6323,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.056847545219638244,
399
+ "grad_norm": 1.4961861371994019,
400
+ "learning_rate": 1.005154639175258e-06,
401
+ "loss": 1.5958,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.05788113695090439,
406
+ "grad_norm": 1.6027110815048218,
407
+ "learning_rate": 1.0309278350515464e-06,
408
+ "loss": 1.5987,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.05891472868217054,
413
+ "grad_norm": 1.8416661024093628,
414
+ "learning_rate": 1.0567010309278351e-06,
415
+ "loss": 1.5536,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.059948320413436694,
420
+ "grad_norm": 1.5269109010696411,
421
+ "learning_rate": 1.0824742268041239e-06,
422
+ "loss": 1.5569,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.06098191214470284,
427
+ "grad_norm": 1.7397830486297607,
428
+ "learning_rate": 1.1082474226804124e-06,
429
+ "loss": 1.5512,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.06201550387596899,
434
+ "grad_norm": 1.7923859357833862,
435
+ "learning_rate": 1.134020618556701e-06,
436
+ "loss": 1.5562,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.06304909560723514,
441
+ "grad_norm": 1.4901388883590698,
442
+ "learning_rate": 1.1597938144329898e-06,
443
+ "loss": 1.5431,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.0640826873385013,
448
+ "grad_norm": 1.6800209283828735,
449
+ "learning_rate": 1.1855670103092783e-06,
450
+ "loss": 1.5266,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.06511627906976744,
455
+ "grad_norm": 1.9110485315322876,
456
+ "learning_rate": 1.211340206185567e-06,
457
+ "loss": 1.5346,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.06614987080103359,
462
+ "grad_norm": 2.066371440887451,
463
+ "learning_rate": 1.2371134020618557e-06,
464
+ "loss": 1.5244,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.06718346253229975,
469
+ "grad_norm": 1.4916744232177734,
470
+ "learning_rate": 1.2628865979381445e-06,
471
+ "loss": 1.516,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.06821705426356589,
476
+ "grad_norm": 1.6237688064575195,
477
+ "learning_rate": 1.288659793814433e-06,
478
+ "loss": 1.5123,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.06925064599483204,
483
+ "grad_norm": 1.643630027770996,
484
+ "learning_rate": 1.314432989690722e-06,
485
+ "loss": 1.4794,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.0702842377260982,
490
+ "grad_norm": 1.4067258834838867,
491
+ "learning_rate": 1.3402061855670104e-06,
492
+ "loss": 1.4954,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.07131782945736434,
497
+ "grad_norm": 1.4735355377197266,
498
+ "learning_rate": 1.365979381443299e-06,
499
+ "loss": 1.4949,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.07235142118863049,
504
+ "grad_norm": 1.4811455011367798,
505
+ "learning_rate": 1.3917525773195878e-06,
506
+ "loss": 1.5264,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.07338501291989664,
511
+ "grad_norm": 1.1310720443725586,
512
+ "learning_rate": 1.4175257731958764e-06,
513
+ "loss": 1.5018,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.07441860465116279,
518
+ "grad_norm": 1.6779255867004395,
519
+ "learning_rate": 1.4432989690721649e-06,
520
+ "loss": 1.4662,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.07545219638242893,
525
+ "grad_norm": 1.1733572483062744,
526
+ "learning_rate": 1.4690721649484538e-06,
527
+ "loss": 1.4903,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.0764857881136951,
532
+ "grad_norm": 1.7176299095153809,
533
+ "learning_rate": 1.4948453608247423e-06,
534
+ "loss": 1.4544,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.07751937984496124,
539
+ "grad_norm": 1.333526849746704,
540
+ "learning_rate": 1.520618556701031e-06,
541
+ "loss": 1.4476,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.07855297157622738,
546
+ "grad_norm": 1.4169801473617554,
547
+ "learning_rate": 1.5463917525773197e-06,
548
+ "loss": 1.5011,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.07958656330749354,
553
+ "grad_norm": 1.4367135763168335,
554
+ "learning_rate": 1.5721649484536082e-06,
555
+ "loss": 1.4157,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.08062015503875969,
560
+ "grad_norm": 1.4957133531570435,
561
+ "learning_rate": 1.597938144329897e-06,
562
+ "loss": 1.4575,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.08165374677002583,
567
+ "grad_norm": 1.357630729675293,
568
+ "learning_rate": 1.6237113402061857e-06,
569
+ "loss": 1.4428,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.082687338501292,
574
+ "grad_norm": 1.884421706199646,
575
+ "learning_rate": 1.6494845360824744e-06,
576
+ "loss": 1.4447,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.08372093023255814,
581
+ "grad_norm": 1.6526613235473633,
582
+ "learning_rate": 1.675257731958763e-06,
583
+ "loss": 1.4589,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.08475452196382428,
588
+ "grad_norm": 1.6600714921951294,
589
+ "learning_rate": 1.7010309278350518e-06,
590
+ "loss": 1.4118,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.08578811369509044,
595
+ "grad_norm": 1.6676090955734253,
596
+ "learning_rate": 1.7268041237113403e-06,
597
+ "loss": 1.419,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.08682170542635659,
602
+ "grad_norm": 1.312245488166809,
603
+ "learning_rate": 1.7525773195876288e-06,
604
+ "loss": 1.4401,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.08785529715762273,
609
+ "grad_norm": 1.5149967670440674,
610
+ "learning_rate": 1.7783505154639178e-06,
611
+ "loss": 1.4079,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.08888888888888889,
616
+ "grad_norm": 1.487531065940857,
617
+ "learning_rate": 1.8041237113402063e-06,
618
+ "loss": 1.4028,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.08992248062015504,
623
+ "grad_norm": 1.6969867944717407,
624
+ "learning_rate": 1.8298969072164948e-06,
625
+ "loss": 1.4423,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.09095607235142118,
630
+ "grad_norm": 1.786713719367981,
631
+ "learning_rate": 1.8556701030927837e-06,
632
+ "loss": 1.4331,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.09198966408268734,
637
+ "grad_norm": 1.43896484375,
638
+ "learning_rate": 1.8814432989690722e-06,
639
+ "loss": 1.4063,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.09302325581395349,
644
+ "grad_norm": 2.0026865005493164,
645
+ "learning_rate": 1.907216494845361e-06,
646
+ "loss": 1.3993,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.09405684754521963,
651
+ "grad_norm": 1.7065625190734863,
652
+ "learning_rate": 1.9329896907216497e-06,
653
+ "loss": 1.4029,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.09509043927648579,
658
+ "grad_norm": 1.3610997200012207,
659
+ "learning_rate": 1.9587628865979384e-06,
660
+ "loss": 1.4246,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.09612403100775194,
665
+ "grad_norm": 1.799842357635498,
666
+ "learning_rate": 1.9845360824742267e-06,
667
+ "loss": 1.4015,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.09715762273901808,
672
+ "grad_norm": 1.0985530614852905,
673
+ "learning_rate": 2.010309278350516e-06,
674
+ "loss": 1.4481,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.09819121447028424,
679
+ "grad_norm": 1.4739775657653809,
680
+ "learning_rate": 2.036082474226804e-06,
681
+ "loss": 1.4271,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.09922480620155039,
686
+ "grad_norm": 1.3937931060791016,
687
+ "learning_rate": 2.061855670103093e-06,
688
+ "loss": 1.4002,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.10025839793281653,
693
+ "grad_norm": 1.3285835981369019,
694
+ "learning_rate": 2.0876288659793816e-06,
695
+ "loss": 1.4201,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.10129198966408269,
700
+ "grad_norm": 1.7354886531829834,
701
+ "learning_rate": 2.1134020618556703e-06,
702
+ "loss": 1.3842,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.10232558139534884,
707
+ "grad_norm": 1.8828879594802856,
708
+ "learning_rate": 2.139175257731959e-06,
709
+ "loss": 1.3836,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.10335917312661498,
714
+ "grad_norm": 1.6674432754516602,
715
+ "learning_rate": 2.1649484536082477e-06,
716
+ "loss": 1.3623,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.10335917312661498,
721
+ "eval_loss": 1.4376535415649414,
722
+ "eval_runtime": 47.7079,
723
+ "eval_samples_per_second": 20.961,
724
+ "eval_steps_per_second": 0.671,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.10439276485788114,
729
+ "grad_norm": 1.6396552324295044,
730
+ "learning_rate": 2.1907216494845364e-06,
731
+ "loss": 1.4139,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.10542635658914729,
736
+ "grad_norm": 1.4648929834365845,
737
+ "learning_rate": 2.2164948453608247e-06,
738
+ "loss": 1.3518,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.10645994832041343,
743
+ "grad_norm": 1.3640034198760986,
744
+ "learning_rate": 2.242268041237114e-06,
745
+ "loss": 1.368,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.10749354005167959,
750
+ "grad_norm": 1.8199163675308228,
751
+ "learning_rate": 2.268041237113402e-06,
752
+ "loss": 1.3712,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.10852713178294573,
757
+ "grad_norm": 1.469482421875,
758
+ "learning_rate": 2.293814432989691e-06,
759
+ "loss": 1.4095,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.10956072351421188,
764
+ "grad_norm": 1.8030418157577515,
765
+ "learning_rate": 2.3195876288659796e-06,
766
+ "loss": 1.3821,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.11059431524547804,
771
+ "grad_norm": 1.5513843297958374,
772
+ "learning_rate": 2.3453608247422683e-06,
773
+ "loss": 1.3813,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.11162790697674418,
778
+ "grad_norm": 1.3880162239074707,
779
+ "learning_rate": 2.3711340206185566e-06,
780
+ "loss": 1.3776,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.11266149870801033,
785
+ "grad_norm": 1.77285897731781,
786
+ "learning_rate": 2.3969072164948458e-06,
787
+ "loss": 1.4228,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.11369509043927649,
792
+ "grad_norm": 1.7808395624160767,
793
+ "learning_rate": 2.422680412371134e-06,
794
+ "loss": 1.331,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.11472868217054263,
799
+ "grad_norm": 1.3493247032165527,
800
+ "learning_rate": 2.4484536082474228e-06,
801
+ "loss": 1.3437,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.11576227390180878,
806
+ "grad_norm": 1.8478275537490845,
807
+ "learning_rate": 2.4742268041237115e-06,
808
+ "loss": 1.3572,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.11679586563307494,
813
+ "grad_norm": 1.654219627380371,
814
+ "learning_rate": 2.5e-06,
815
+ "loss": 1.3514,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.11782945736434108,
820
+ "grad_norm": 2.001561164855957,
821
+ "learning_rate": 2.525773195876289e-06,
822
+ "loss": 1.3659,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.11886304909560723,
827
+ "grad_norm": 1.4977449178695679,
828
+ "learning_rate": 2.5515463917525772e-06,
829
+ "loss": 1.3793,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.11989664082687339,
834
+ "grad_norm": 1.5144399404525757,
835
+ "learning_rate": 2.577319587628866e-06,
836
+ "loss": 1.2933,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.12093023255813953,
841
+ "grad_norm": 1.8202881813049316,
842
+ "learning_rate": 2.603092783505155e-06,
843
+ "loss": 1.3358,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.12196382428940568,
848
+ "grad_norm": 1.6713426113128662,
849
+ "learning_rate": 2.628865979381444e-06,
850
+ "loss": 1.3282,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.12299741602067184,
855
+ "grad_norm": 1.6758774518966675,
856
+ "learning_rate": 2.654639175257732e-06,
857
+ "loss": 1.3103,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.12403100775193798,
862
+ "grad_norm": 1.8854079246520996,
863
+ "learning_rate": 2.680412371134021e-06,
864
+ "loss": 1.3777,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.12506459948320414,
869
+ "grad_norm": 1.1594630479812622,
870
+ "learning_rate": 2.7061855670103095e-06,
871
+ "loss": 1.3589,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.12609819121447027,
876
+ "grad_norm": 1.8433988094329834,
877
+ "learning_rate": 2.731958762886598e-06,
878
+ "loss": 1.3359,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.12713178294573643,
883
+ "grad_norm": 1.655373454093933,
884
+ "learning_rate": 2.757731958762887e-06,
885
+ "loss": 1.3365,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.1281653746770026,
890
+ "grad_norm": 1.3723413944244385,
891
+ "learning_rate": 2.7835051546391757e-06,
892
+ "loss": 1.3367,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.12919896640826872,
897
+ "grad_norm": 1.4864723682403564,
898
+ "learning_rate": 2.809278350515464e-06,
899
+ "loss": 1.3313,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.13023255813953488,
904
+ "grad_norm": 1.9312248229980469,
905
+ "learning_rate": 2.8350515463917527e-06,
906
+ "loss": 1.3337,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.13126614987080104,
911
+ "grad_norm": 1.6836023330688477,
912
+ "learning_rate": 2.8608247422680414e-06,
913
+ "loss": 1.3325,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.13229974160206717,
918
+ "grad_norm": 1.4429219961166382,
919
+ "learning_rate": 2.8865979381443297e-06,
920
+ "loss": 1.3339,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.13333333333333333,
925
+ "grad_norm": 1.8328365087509155,
926
+ "learning_rate": 2.912371134020619e-06,
927
+ "loss": 1.3535,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.1343669250645995,
932
+ "grad_norm": 1.6869714260101318,
933
+ "learning_rate": 2.9381443298969076e-06,
934
+ "loss": 1.3563,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.13540051679586562,
939
+ "grad_norm": 1.8647464513778687,
940
+ "learning_rate": 2.9639175257731963e-06,
941
+ "loss": 1.3431,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.13643410852713178,
946
+ "grad_norm": 1.4633586406707764,
947
+ "learning_rate": 2.9896907216494846e-06,
948
+ "loss": 1.2775,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.13746770025839794,
953
+ "grad_norm": 1.5387791395187378,
954
+ "learning_rate": 3.0154639175257733e-06,
955
+ "loss": 1.3375,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.13850129198966407,
960
+ "grad_norm": 1.6977742910385132,
961
+ "learning_rate": 3.041237113402062e-06,
962
+ "loss": 1.2724,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.13953488372093023,
967
+ "grad_norm": 1.8981420993804932,
968
+ "learning_rate": 3.067010309278351e-06,
969
+ "loss": 1.3518,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.1405684754521964,
974
+ "grad_norm": 1.464303731918335,
975
+ "learning_rate": 3.0927835051546395e-06,
976
+ "loss": 1.3253,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.14160206718346252,
981
+ "grad_norm": 1.4378321170806885,
982
+ "learning_rate": 3.118556701030928e-06,
983
+ "loss": 1.3194,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.14263565891472868,
988
+ "grad_norm": 1.4051882028579712,
989
+ "learning_rate": 3.1443298969072165e-06,
990
+ "loss": 1.3438,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.14366925064599484,
995
+ "grad_norm": 1.4659231901168823,
996
+ "learning_rate": 3.170103092783505e-06,
997
+ "loss": 1.2855,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.14470284237726097,
1002
+ "grad_norm": 1.6398965120315552,
1003
+ "learning_rate": 3.195876288659794e-06,
1004
+ "loss": 1.2988,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.14573643410852713,
1009
+ "grad_norm": 2.1323349475860596,
1010
+ "learning_rate": 3.221649484536083e-06,
1011
+ "loss": 1.3068,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.1467700258397933,
1016
+ "grad_norm": 2.074308395385742,
1017
+ "learning_rate": 3.2474226804123714e-06,
1018
+ "loss": 1.3142,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.14780361757105942,
1023
+ "grad_norm": 1.7479180097579956,
1024
+ "learning_rate": 3.27319587628866e-06,
1025
+ "loss": 1.3224,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.14883720930232558,
1030
+ "grad_norm": 1.8256514072418213,
1031
+ "learning_rate": 3.298969072164949e-06,
1032
+ "loss": 1.3094,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.14987080103359174,
1037
+ "grad_norm": 1.4079580307006836,
1038
+ "learning_rate": 3.324742268041237e-06,
1039
+ "loss": 1.3256,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.15090439276485787,
1044
+ "grad_norm": 1.598493218421936,
1045
+ "learning_rate": 3.350515463917526e-06,
1046
+ "loss": 1.2855,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.15193798449612403,
1051
+ "grad_norm": 1.4292045831680298,
1052
+ "learning_rate": 3.376288659793815e-06,
1053
+ "loss": 1.3048,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.1529715762273902,
1058
+ "grad_norm": 1.9614964723587036,
1059
+ "learning_rate": 3.4020618556701037e-06,
1060
+ "loss": 1.3054,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.15400516795865632,
1065
+ "grad_norm": 1.69972562789917,
1066
+ "learning_rate": 3.427835051546392e-06,
1067
+ "loss": 1.2852,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.15503875968992248,
1072
+ "grad_norm": 1.5941336154937744,
1073
+ "learning_rate": 3.4536082474226807e-06,
1074
+ "loss": 1.3247,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.15503875968992248,
1079
+ "eval_loss": 1.3614064455032349,
1080
+ "eval_runtime": 47.8004,
1081
+ "eval_samples_per_second": 20.92,
1082
+ "eval_steps_per_second": 0.669,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.15607235142118864,
1087
+ "grad_norm": 1.6188396215438843,
1088
+ "learning_rate": 3.4793814432989694e-06,
1089
+ "loss": 1.3306,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.15710594315245477,
1094
+ "grad_norm": 1.3866245746612549,
1095
+ "learning_rate": 3.5051546391752577e-06,
1096
+ "loss": 1.3161,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.15813953488372093,
1101
+ "grad_norm": 1.398223876953125,
1102
+ "learning_rate": 3.530927835051547e-06,
1103
+ "loss": 1.3426,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.1591731266149871,
1108
+ "grad_norm": 1.534954309463501,
1109
+ "learning_rate": 3.5567010309278356e-06,
1110
+ "loss": 1.3304,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 0.16020671834625322,
1115
+ "grad_norm": 1.5275781154632568,
1116
+ "learning_rate": 3.582474226804124e-06,
1117
+ "loss": 1.3096,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 0.16124031007751938,
1122
+ "grad_norm": 1.5809870958328247,
1123
+ "learning_rate": 3.6082474226804126e-06,
1124
+ "loss": 1.3282,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 0.16227390180878554,
1129
+ "grad_norm": 1.591422200202942,
1130
+ "learning_rate": 3.6340206185567013e-06,
1131
+ "loss": 1.3345,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 0.16330749354005167,
1136
+ "grad_norm": 1.3441708087921143,
1137
+ "learning_rate": 3.6597938144329896e-06,
1138
+ "loss": 1.3405,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 0.16434108527131783,
1143
+ "grad_norm": 1.5876100063323975,
1144
+ "learning_rate": 3.6855670103092787e-06,
1145
+ "loss": 1.3257,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 0.165374677002584,
1150
+ "grad_norm": 1.5338858366012573,
1151
+ "learning_rate": 3.7113402061855674e-06,
1152
+ "loss": 1.3119,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 0.16640826873385012,
1157
+ "grad_norm": 1.53935968875885,
1158
+ "learning_rate": 3.737113402061856e-06,
1159
+ "loss": 1.2604,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 0.16744186046511628,
1164
+ "grad_norm": 1.5869868993759155,
1165
+ "learning_rate": 3.7628865979381445e-06,
1166
+ "loss": 1.3016,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 0.16847545219638244,
1171
+ "grad_norm": 1.5249017477035522,
1172
+ "learning_rate": 3.788659793814433e-06,
1173
+ "loss": 1.3451,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 0.16950904392764857,
1178
+ "grad_norm": 1.4573460817337036,
1179
+ "learning_rate": 3.814432989690722e-06,
1180
+ "loss": 1.3037,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.17054263565891473,
1185
+ "grad_norm": 1.6344059705734253,
1186
+ "learning_rate": 3.840206185567011e-06,
1187
+ "loss": 1.2918,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.17157622739018089,
1192
+ "grad_norm": 1.7674674987792969,
1193
+ "learning_rate": 3.865979381443299e-06,
1194
+ "loss": 1.2699,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.17260981912144702,
1199
+ "grad_norm": 1.7461512088775635,
1200
+ "learning_rate": 3.891752577319588e-06,
1201
+ "loss": 1.3533,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.17364341085271318,
1206
+ "grad_norm": 2.285831928253174,
1207
+ "learning_rate": 3.917525773195877e-06,
1208
+ "loss": 1.2838,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.17467700258397933,
1213
+ "grad_norm": 1.5369038581848145,
1214
+ "learning_rate": 3.9432989690721655e-06,
1215
+ "loss": 1.2687,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.17571059431524547,
1220
+ "grad_norm": 1.6334905624389648,
1221
+ "learning_rate": 3.969072164948453e-06,
1222
+ "loss": 1.2232,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.17674418604651163,
1227
+ "grad_norm": 1.7678533792495728,
1228
+ "learning_rate": 3.994845360824743e-06,
1229
+ "loss": 1.3065,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.17777777777777778,
1234
+ "grad_norm": 1.4618134498596191,
1235
+ "learning_rate": 4.020618556701032e-06,
1236
+ "loss": 1.2914,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.17881136950904392,
1241
+ "grad_norm": 1.7900431156158447,
1242
+ "learning_rate": 4.04639175257732e-06,
1243
+ "loss": 1.2476,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.17984496124031008,
1248
+ "grad_norm": 1.708790898323059,
1249
+ "learning_rate": 4.072164948453608e-06,
1250
+ "loss": 1.308,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.18087855297157623,
1255
+ "grad_norm": 1.3655714988708496,
1256
+ "learning_rate": 4.097938144329897e-06,
1257
+ "loss": 1.2606,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.18191214470284237,
1262
+ "grad_norm": 1.6430952548980713,
1263
+ "learning_rate": 4.123711340206186e-06,
1264
+ "loss": 1.2688,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.18294573643410852,
1269
+ "grad_norm": 1.5826959609985352,
1270
+ "learning_rate": 4.149484536082475e-06,
1271
+ "loss": 1.2699,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.18397932816537468,
1276
+ "grad_norm": 1.387715458869934,
1277
+ "learning_rate": 4.175257731958763e-06,
1278
+ "loss": 1.283,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.18501291989664082,
1283
+ "grad_norm": 1.6880526542663574,
1284
+ "learning_rate": 4.201030927835052e-06,
1285
+ "loss": 1.261,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.18604651162790697,
1290
+ "grad_norm": 1.5378423929214478,
1291
+ "learning_rate": 4.2268041237113405e-06,
1292
+ "loss": 1.2676,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.18708010335917313,
1297
+ "grad_norm": 1.5375232696533203,
1298
+ "learning_rate": 4.252577319587629e-06,
1299
+ "loss": 1.2835,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.18811369509043926,
1304
+ "grad_norm": 1.546204686164856,
1305
+ "learning_rate": 4.278350515463918e-06,
1306
+ "loss": 1.2545,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.18914728682170542,
1311
+ "grad_norm": 1.3169488906860352,
1312
+ "learning_rate": 4.304123711340207e-06,
1313
+ "loss": 1.2659,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.19018087855297158,
1318
+ "grad_norm": 1.4601619243621826,
1319
+ "learning_rate": 4.329896907216495e-06,
1320
+ "loss": 1.3015,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.19121447028423771,
1325
+ "grad_norm": 1.3422333002090454,
1326
+ "learning_rate": 4.355670103092784e-06,
1327
+ "loss": 1.2648,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.19224806201550387,
1332
+ "grad_norm": 1.3259650468826294,
1333
+ "learning_rate": 4.381443298969073e-06,
1334
+ "loss": 1.2831,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.19328165374677003,
1339
+ "grad_norm": 1.3927111625671387,
1340
+ "learning_rate": 4.407216494845361e-06,
1341
+ "loss": 1.2696,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.19431524547803616,
1346
+ "grad_norm": 1.364329218864441,
1347
+ "learning_rate": 4.4329896907216494e-06,
1348
+ "loss": 1.2598,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.19534883720930232,
1353
+ "grad_norm": 1.2551934719085693,
1354
+ "learning_rate": 4.458762886597939e-06,
1355
+ "loss": 1.2769,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.19638242894056848,
1360
+ "grad_norm": 1.4062399864196777,
1361
+ "learning_rate": 4.484536082474228e-06,
1362
+ "loss": 1.2705,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.1974160206718346,
1367
+ "grad_norm": 1.4035496711730957,
1368
+ "learning_rate": 4.510309278350516e-06,
1369
+ "loss": 1.2825,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.19844961240310077,
1374
+ "grad_norm": 1.700435757637024,
1375
+ "learning_rate": 4.536082474226804e-06,
1376
+ "loss": 1.2663,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.19948320413436693,
1381
+ "grad_norm": 1.2739704847335815,
1382
+ "learning_rate": 4.561855670103093e-06,
1383
+ "loss": 1.3095,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.20051679586563306,
1388
+ "grad_norm": 1.2628998756408691,
1389
+ "learning_rate": 4.587628865979382e-06,
1390
+ "loss": 1.2704,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.20155038759689922,
1395
+ "grad_norm": 1.533562421798706,
1396
+ "learning_rate": 4.6134020618556705e-06,
1397
+ "loss": 1.2326,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.20258397932816538,
1402
+ "grad_norm": 1.5663373470306396,
1403
+ "learning_rate": 4.639175257731959e-06,
1404
+ "loss": 1.2809,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.2036175710594315,
1409
+ "grad_norm": 1.2257280349731445,
1410
+ "learning_rate": 4.664948453608248e-06,
1411
+ "loss": 1.2824,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.20465116279069767,
1416
+ "grad_norm": 1.496186375617981,
1417
+ "learning_rate": 4.690721649484537e-06,
1418
+ "loss": 1.2628,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.20568475452196383,
1423
+ "grad_norm": 1.5209540128707886,
1424
+ "learning_rate": 4.716494845360825e-06,
1425
+ "loss": 1.3015,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.20671834625322996,
1430
+ "grad_norm": 1.2988780736923218,
1431
+ "learning_rate": 4.742268041237113e-06,
1432
+ "loss": 1.252,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.20671834625322996,
1437
+ "eval_loss": 1.3255563974380493,
1438
+ "eval_runtime": 47.8452,
1439
+ "eval_samples_per_second": 20.901,
1440
+ "eval_steps_per_second": 0.669,
1441
+ "step": 200
1442
+ },
1443
+ {
1444
+ "epoch": 0.20775193798449612,
1445
+ "grad_norm": 1.4737480878829956,
1446
+ "learning_rate": 4.768041237113403e-06,
1447
+ "loss": 1.2308,
1448
+ "step": 201
1449
+ },
1450
+ {
1451
+ "epoch": 0.20878552971576228,
1452
+ "grad_norm": 1.4353716373443604,
1453
+ "learning_rate": 4.7938144329896915e-06,
1454
+ "loss": 1.2578,
1455
+ "step": 202
1456
+ },
1457
+ {
1458
+ "epoch": 0.2098191214470284,
1459
+ "grad_norm": 1.1848849058151245,
1460
+ "learning_rate": 4.81958762886598e-06,
1461
+ "loss": 1.2498,
1462
+ "step": 203
1463
+ },
1464
+ {
1465
+ "epoch": 0.21085271317829457,
1466
+ "grad_norm": 1.3247244358062744,
1467
+ "learning_rate": 4.845360824742268e-06,
1468
+ "loss": 1.2619,
1469
+ "step": 204
1470
+ },
1471
+ {
1472
+ "epoch": 0.21188630490956073,
1473
+ "grad_norm": 1.4854295253753662,
1474
+ "learning_rate": 4.871134020618557e-06,
1475
+ "loss": 1.2536,
1476
+ "step": 205
1477
+ },
1478
+ {
1479
+ "epoch": 0.21291989664082686,
1480
+ "grad_norm": 1.5427430868148804,
1481
+ "learning_rate": 4.8969072164948455e-06,
1482
+ "loss": 1.2727,
1483
+ "step": 206
1484
+ },
1485
+ {
1486
+ "epoch": 0.21395348837209302,
1487
+ "grad_norm": 1.1259032487869263,
1488
+ "learning_rate": 4.922680412371135e-06,
1489
+ "loss": 1.2364,
1490
+ "step": 207
1491
+ },
1492
+ {
1493
+ "epoch": 0.21498708010335918,
1494
+ "grad_norm": 1.374849557876587,
1495
+ "learning_rate": 4.948453608247423e-06,
1496
+ "loss": 1.2621,
1497
+ "step": 208
1498
+ },
1499
+ {
1500
+ "epoch": 0.2160206718346253,
1501
+ "grad_norm": 1.654929518699646,
1502
+ "learning_rate": 4.974226804123712e-06,
1503
+ "loss": 1.1872,
1504
+ "step": 209
1505
+ },
1506
+ {
1507
+ "epoch": 0.21705426356589147,
1508
+ "grad_norm": 1.6211646795272827,
1509
+ "learning_rate": 5e-06,
1510
+ "loss": 1.2585,
1511
+ "step": 210
1512
+ },
1513
+ {
1514
+ "epoch": 0.21808785529715763,
1515
+ "grad_norm": 1.4611238241195679,
1516
+ "learning_rate": 4.9971264367816096e-06,
1517
+ "loss": 1.2399,
1518
+ "step": 211
1519
+ },
1520
+ {
1521
+ "epoch": 0.21912144702842376,
1522
+ "grad_norm": 1.6246379613876343,
1523
+ "learning_rate": 4.994252873563219e-06,
1524
+ "loss": 1.2592,
1525
+ "step": 212
1526
+ },
1527
+ {
1528
+ "epoch": 0.22015503875968992,
1529
+ "grad_norm": 1.5218091011047363,
1530
+ "learning_rate": 4.991379310344828e-06,
1531
+ "loss": 1.2377,
1532
+ "step": 213
1533
+ },
1534
+ {
1535
+ "epoch": 0.22118863049095608,
1536
+ "grad_norm": 1.5748738050460815,
1537
+ "learning_rate": 4.988505747126437e-06,
1538
+ "loss": 1.2072,
1539
+ "step": 214
1540
+ },
1541
+ {
1542
+ "epoch": 0.2222222222222222,
1543
+ "grad_norm": 1.63685142993927,
1544
+ "learning_rate": 4.985632183908046e-06,
1545
+ "loss": 1.3142,
1546
+ "step": 215
1547
+ },
1548
+ {
1549
+ "epoch": 0.22325581395348837,
1550
+ "grad_norm": 1.6139878034591675,
1551
+ "learning_rate": 4.982758620689655e-06,
1552
+ "loss": 1.2459,
1553
+ "step": 216
1554
+ },
1555
+ {
1556
+ "epoch": 0.22428940568475453,
1557
+ "grad_norm": 1.648569941520691,
1558
+ "learning_rate": 4.9798850574712644e-06,
1559
+ "loss": 1.2329,
1560
+ "step": 217
1561
+ },
1562
+ {
1563
+ "epoch": 0.22532299741602066,
1564
+ "grad_norm": 1.466662883758545,
1565
+ "learning_rate": 4.977011494252874e-06,
1566
+ "loss": 1.2421,
1567
+ "step": 218
1568
+ },
1569
+ {
1570
+ "epoch": 0.22635658914728682,
1571
+ "grad_norm": 1.519354224205017,
1572
+ "learning_rate": 4.9741379310344836e-06,
1573
+ "loss": 1.2964,
1574
+ "step": 219
1575
+ },
1576
+ {
1577
+ "epoch": 0.22739018087855298,
1578
+ "grad_norm": 1.6441487073898315,
1579
+ "learning_rate": 4.971264367816092e-06,
1580
+ "loss": 1.2484,
1581
+ "step": 220
1582
+ },
1583
+ {
1584
+ "epoch": 0.2284237726098191,
1585
+ "grad_norm": 1.721964955329895,
1586
+ "learning_rate": 4.968390804597701e-06,
1587
+ "loss": 1.2443,
1588
+ "step": 221
1589
+ },
1590
+ {
1591
+ "epoch": 0.22945736434108527,
1592
+ "grad_norm": 1.6697990894317627,
1593
+ "learning_rate": 4.965517241379311e-06,
1594
+ "loss": 1.2183,
1595
+ "step": 222
1596
+ },
1597
+ {
1598
+ "epoch": 0.23049095607235143,
1599
+ "grad_norm": 1.4707998037338257,
1600
+ "learning_rate": 4.96264367816092e-06,
1601
+ "loss": 1.2766,
1602
+ "step": 223
1603
+ },
1604
+ {
1605
+ "epoch": 0.23152454780361756,
1606
+ "grad_norm": 1.960856556892395,
1607
+ "learning_rate": 4.959770114942529e-06,
1608
+ "loss": 1.2288,
1609
+ "step": 224
1610
+ },
1611
+ {
1612
+ "epoch": 0.23255813953488372,
1613
+ "grad_norm": 1.502487063407898,
1614
+ "learning_rate": 4.9568965517241384e-06,
1615
+ "loss": 1.2393,
1616
+ "step": 225
1617
+ },
1618
+ {
1619
+ "epoch": 0.23359173126614988,
1620
+ "grad_norm": 1.2606749534606934,
1621
+ "learning_rate": 4.9540229885057476e-06,
1622
+ "loss": 1.2697,
1623
+ "step": 226
1624
+ },
1625
+ {
1626
+ "epoch": 0.234625322997416,
1627
+ "grad_norm": 1.9564929008483887,
1628
+ "learning_rate": 4.951149425287357e-06,
1629
+ "loss": 1.272,
1630
+ "step": 227
1631
+ },
1632
+ {
1633
+ "epoch": 0.23565891472868217,
1634
+ "grad_norm": 1.5385324954986572,
1635
+ "learning_rate": 4.948275862068966e-06,
1636
+ "loss": 1.2819,
1637
+ "step": 228
1638
+ },
1639
+ {
1640
+ "epoch": 0.23669250645994833,
1641
+ "grad_norm": 1.234011173248291,
1642
+ "learning_rate": 4.945402298850575e-06,
1643
+ "loss": 1.2597,
1644
+ "step": 229
1645
+ },
1646
+ {
1647
+ "epoch": 0.23772609819121446,
1648
+ "grad_norm": 1.3302147388458252,
1649
+ "learning_rate": 4.942528735632184e-06,
1650
+ "loss": 1.2118,
1651
+ "step": 230
1652
+ },
1653
+ {
1654
+ "epoch": 0.23875968992248062,
1655
+ "grad_norm": 2.138888359069824,
1656
+ "learning_rate": 4.939655172413793e-06,
1657
+ "loss": 1.2479,
1658
+ "step": 231
1659
+ },
1660
+ {
1661
+ "epoch": 0.23979328165374678,
1662
+ "grad_norm": 1.4027204513549805,
1663
+ "learning_rate": 4.936781609195403e-06,
1664
+ "loss": 1.2577,
1665
+ "step": 232
1666
+ },
1667
+ {
1668
+ "epoch": 0.2408268733850129,
1669
+ "grad_norm": 1.064552664756775,
1670
+ "learning_rate": 4.933908045977012e-06,
1671
+ "loss": 1.1917,
1672
+ "step": 233
1673
+ },
1674
+ {
1675
+ "epoch": 0.24186046511627907,
1676
+ "grad_norm": 1.5456916093826294,
1677
+ "learning_rate": 4.931034482758621e-06,
1678
+ "loss": 1.2093,
1679
+ "step": 234
1680
+ },
1681
+ {
1682
+ "epoch": 0.24289405684754523,
1683
+ "grad_norm": 1.4663442373275757,
1684
+ "learning_rate": 4.92816091954023e-06,
1685
+ "loss": 1.2396,
1686
+ "step": 235
1687
+ },
1688
+ {
1689
+ "epoch": 0.24392764857881136,
1690
+ "grad_norm": 1.4049909114837646,
1691
+ "learning_rate": 4.92528735632184e-06,
1692
+ "loss": 1.1883,
1693
+ "step": 236
1694
+ },
1695
+ {
1696
+ "epoch": 0.24496124031007752,
1697
+ "grad_norm": 1.4005986452102661,
1698
+ "learning_rate": 4.922413793103449e-06,
1699
+ "loss": 1.2572,
1700
+ "step": 237
1701
+ },
1702
+ {
1703
+ "epoch": 0.24599483204134368,
1704
+ "grad_norm": 1.2783763408660889,
1705
+ "learning_rate": 4.919540229885058e-06,
1706
+ "loss": 1.2346,
1707
+ "step": 238
1708
+ },
1709
+ {
1710
+ "epoch": 0.2470284237726098,
1711
+ "grad_norm": 1.2429497241973877,
1712
+ "learning_rate": 4.9166666666666665e-06,
1713
+ "loss": 1.212,
1714
+ "step": 239
1715
+ },
1716
+ {
1717
+ "epoch": 0.24806201550387597,
1718
+ "grad_norm": 1.2838530540466309,
1719
+ "learning_rate": 4.9137931034482765e-06,
1720
+ "loss": 1.2769,
1721
+ "step": 240
1722
+ },
1723
+ {
1724
+ "epoch": 0.24909560723514212,
1725
+ "grad_norm": 1.1848785877227783,
1726
+ "learning_rate": 4.910919540229886e-06,
1727
+ "loss": 1.2526,
1728
+ "step": 241
1729
+ },
1730
+ {
1731
+ "epoch": 0.2501291989664083,
1732
+ "grad_norm": 1.5733468532562256,
1733
+ "learning_rate": 4.908045977011495e-06,
1734
+ "loss": 1.2647,
1735
+ "step": 242
1736
+ },
1737
+ {
1738
+ "epoch": 0.25116279069767444,
1739
+ "grad_norm": 1.34541916847229,
1740
+ "learning_rate": 4.905172413793104e-06,
1741
+ "loss": 1.2421,
1742
+ "step": 243
1743
+ },
1744
+ {
1745
+ "epoch": 0.25219638242894055,
1746
+ "grad_norm": 1.6279263496398926,
1747
+ "learning_rate": 4.902298850574713e-06,
1748
+ "loss": 1.2265,
1749
+ "step": 244
1750
+ },
1751
+ {
1752
+ "epoch": 0.2532299741602067,
1753
+ "grad_norm": 1.5125291347503662,
1754
+ "learning_rate": 4.899425287356322e-06,
1755
+ "loss": 1.2141,
1756
+ "step": 245
1757
+ },
1758
+ {
1759
+ "epoch": 0.25426356589147286,
1760
+ "grad_norm": 1.299894094467163,
1761
+ "learning_rate": 4.896551724137931e-06,
1762
+ "loss": 1.2097,
1763
+ "step": 246
1764
+ },
1765
+ {
1766
+ "epoch": 0.255297157622739,
1767
+ "grad_norm": 1.3731844425201416,
1768
+ "learning_rate": 4.8936781609195405e-06,
1769
+ "loss": 1.2145,
1770
+ "step": 247
1771
+ },
1772
+ {
1773
+ "epoch": 0.2563307493540052,
1774
+ "grad_norm": 1.651253581047058,
1775
+ "learning_rate": 4.89080459770115e-06,
1776
+ "loss": 1.1912,
1777
+ "step": 248
1778
+ },
1779
+ {
1780
+ "epoch": 0.25736434108527134,
1781
+ "grad_norm": 1.1746879816055298,
1782
+ "learning_rate": 4.887931034482759e-06,
1783
+ "loss": 1.2435,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 0.25839793281653745,
1788
+ "grad_norm": 1.2900166511535645,
1789
+ "learning_rate": 4.885057471264369e-06,
1790
+ "loss": 1.2003,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 0.25839793281653745,
1795
+ "eval_loss": 1.301725149154663,
1796
+ "eval_runtime": 48.0635,
1797
+ "eval_samples_per_second": 20.806,
1798
+ "eval_steps_per_second": 0.666,
1799
+ "step": 250
1800
+ },
1801
+ {
1802
+ "epoch": 0.2594315245478036,
1803
+ "grad_norm": 1.1423178911209106,
1804
+ "learning_rate": 4.882183908045978e-06,
1805
+ "loss": 1.1974,
1806
+ "step": 251
1807
+ },
1808
+ {
1809
+ "epoch": 0.26046511627906976,
1810
+ "grad_norm": 1.1432229280471802,
1811
+ "learning_rate": 4.879310344827586e-06,
1812
+ "loss": 1.2064,
1813
+ "step": 252
1814
+ },
1815
+ {
1816
+ "epoch": 0.2614987080103359,
1817
+ "grad_norm": 1.3829426765441895,
1818
+ "learning_rate": 4.876436781609195e-06,
1819
+ "loss": 1.2864,
1820
+ "step": 253
1821
+ },
1822
+ {
1823
+ "epoch": 0.2625322997416021,
1824
+ "grad_norm": 1.2096635103225708,
1825
+ "learning_rate": 4.873563218390805e-06,
1826
+ "loss": 1.1898,
1827
+ "step": 254
1828
+ },
1829
+ {
1830
+ "epoch": 0.26356589147286824,
1831
+ "grad_norm": 1.4689451456069946,
1832
+ "learning_rate": 4.8706896551724145e-06,
1833
+ "loss": 1.2606,
1834
+ "step": 255
1835
+ },
1836
+ {
1837
+ "epoch": 0.26459948320413434,
1838
+ "grad_norm": 1.1531693935394287,
1839
+ "learning_rate": 4.867816091954024e-06,
1840
+ "loss": 1.2303,
1841
+ "step": 256
1842
+ },
1843
+ {
1844
+ "epoch": 0.2656330749354005,
1845
+ "grad_norm": 1.7083535194396973,
1846
+ "learning_rate": 4.864942528735633e-06,
1847
+ "loss": 1.2353,
1848
+ "step": 257
1849
+ },
1850
+ {
1851
+ "epoch": 0.26666666666666666,
1852
+ "grad_norm": 1.3419526815414429,
1853
+ "learning_rate": 4.862068965517242e-06,
1854
+ "loss": 1.2303,
1855
+ "step": 258
1856
+ },
1857
+ {
1858
+ "epoch": 0.2677002583979328,
1859
+ "grad_norm": 1.5559792518615723,
1860
+ "learning_rate": 4.859195402298851e-06,
1861
+ "loss": 1.2542,
1862
+ "step": 259
1863
+ },
1864
+ {
1865
+ "epoch": 0.268733850129199,
1866
+ "grad_norm": 1.5590232610702515,
1867
+ "learning_rate": 4.85632183908046e-06,
1868
+ "loss": 1.2268,
1869
+ "step": 260
1870
+ },
1871
+ {
1872
+ "epoch": 0.26976744186046514,
1873
+ "grad_norm": 1.3497662544250488,
1874
+ "learning_rate": 4.853448275862069e-06,
1875
+ "loss": 1.2335,
1876
+ "step": 261
1877
+ },
1878
+ {
1879
+ "epoch": 0.27080103359173124,
1880
+ "grad_norm": 1.4309333562850952,
1881
+ "learning_rate": 4.8505747126436785e-06,
1882
+ "loss": 1.2248,
1883
+ "step": 262
1884
+ },
1885
+ {
1886
+ "epoch": 0.2718346253229974,
1887
+ "grad_norm": 1.1154677867889404,
1888
+ "learning_rate": 4.847701149425288e-06,
1889
+ "loss": 1.2418,
1890
+ "step": 263
1891
+ },
1892
+ {
1893
+ "epoch": 0.27286821705426356,
1894
+ "grad_norm": 1.1973319053649902,
1895
+ "learning_rate": 4.844827586206897e-06,
1896
+ "loss": 1.2194,
1897
+ "step": 264
1898
+ },
1899
+ {
1900
+ "epoch": 0.2739018087855297,
1901
+ "grad_norm": 1.5104105472564697,
1902
+ "learning_rate": 4.841954022988506e-06,
1903
+ "loss": 1.2697,
1904
+ "step": 265
1905
+ },
1906
+ {
1907
+ "epoch": 0.2749354005167959,
1908
+ "grad_norm": 1.4947834014892578,
1909
+ "learning_rate": 4.839080459770115e-06,
1910
+ "loss": 1.2369,
1911
+ "step": 266
1912
+ },
1913
+ {
1914
+ "epoch": 0.27596899224806204,
1915
+ "grad_norm": 1.555356502532959,
1916
+ "learning_rate": 4.836206896551724e-06,
1917
+ "loss": 1.2403,
1918
+ "step": 267
1919
+ },
1920
+ {
1921
+ "epoch": 0.27700258397932814,
1922
+ "grad_norm": 1.5942518711090088,
1923
+ "learning_rate": 4.833333333333333e-06,
1924
+ "loss": 1.2013,
1925
+ "step": 268
1926
+ },
1927
+ {
1928
+ "epoch": 0.2780361757105943,
1929
+ "grad_norm": 1.271295189857483,
1930
+ "learning_rate": 4.830459770114943e-06,
1931
+ "loss": 1.2265,
1932
+ "step": 269
1933
+ },
1934
+ {
1935
+ "epoch": 0.27906976744186046,
1936
+ "grad_norm": 1.4804733991622925,
1937
+ "learning_rate": 4.8275862068965525e-06,
1938
+ "loss": 1.2424,
1939
+ "step": 270
1940
+ },
1941
+ {
1942
+ "epoch": 0.2801033591731266,
1943
+ "grad_norm": 1.6949542760849,
1944
+ "learning_rate": 4.824712643678161e-06,
1945
+ "loss": 1.2162,
1946
+ "step": 271
1947
+ },
1948
+ {
1949
+ "epoch": 0.2811369509043928,
1950
+ "grad_norm": 1.4015085697174072,
1951
+ "learning_rate": 4.82183908045977e-06,
1952
+ "loss": 1.2009,
1953
+ "step": 272
1954
+ },
1955
+ {
1956
+ "epoch": 0.28217054263565894,
1957
+ "grad_norm": 1.3916239738464355,
1958
+ "learning_rate": 4.81896551724138e-06,
1959
+ "loss": 1.2221,
1960
+ "step": 273
1961
+ },
1962
+ {
1963
+ "epoch": 0.28320413436692504,
1964
+ "grad_norm": 1.4600123167037964,
1965
+ "learning_rate": 4.816091954022989e-06,
1966
+ "loss": 1.238,
1967
+ "step": 274
1968
+ },
1969
+ {
1970
+ "epoch": 0.2842377260981912,
1971
+ "grad_norm": 1.1622064113616943,
1972
+ "learning_rate": 4.813218390804598e-06,
1973
+ "loss": 1.2032,
1974
+ "step": 275
1975
+ },
1976
+ {
1977
+ "epoch": 0.28527131782945736,
1978
+ "grad_norm": 1.3175055980682373,
1979
+ "learning_rate": 4.810344827586207e-06,
1980
+ "loss": 1.2241,
1981
+ "step": 276
1982
+ },
1983
+ {
1984
+ "epoch": 0.2863049095607235,
1985
+ "grad_norm": 1.3803074359893799,
1986
+ "learning_rate": 4.8074712643678165e-06,
1987
+ "loss": 1.2347,
1988
+ "step": 277
1989
+ },
1990
+ {
1991
+ "epoch": 0.2873385012919897,
1992
+ "grad_norm": 1.5483407974243164,
1993
+ "learning_rate": 4.804597701149426e-06,
1994
+ "loss": 1.2314,
1995
+ "step": 278
1996
+ },
1997
+ {
1998
+ "epoch": 0.28837209302325584,
1999
+ "grad_norm": 1.2761492729187012,
2000
+ "learning_rate": 4.801724137931035e-06,
2001
+ "loss": 1.2209,
2002
+ "step": 279
2003
+ },
2004
+ {
2005
+ "epoch": 0.28940568475452194,
2006
+ "grad_norm": 1.266837477684021,
2007
+ "learning_rate": 4.798850574712644e-06,
2008
+ "loss": 1.2235,
2009
+ "step": 280
2010
+ },
2011
+ {
2012
+ "epoch": 0.2904392764857881,
2013
+ "grad_norm": 1.2987629175186157,
2014
+ "learning_rate": 4.795977011494253e-06,
2015
+ "loss": 1.2239,
2016
+ "step": 281
2017
+ },
2018
+ {
2019
+ "epoch": 0.29147286821705426,
2020
+ "grad_norm": 1.4991391897201538,
2021
+ "learning_rate": 4.793103448275862e-06,
2022
+ "loss": 1.2396,
2023
+ "step": 282
2024
+ },
2025
+ {
2026
+ "epoch": 0.2925064599483204,
2027
+ "grad_norm": 1.325391173362732,
2028
+ "learning_rate": 4.790229885057472e-06,
2029
+ "loss": 1.2246,
2030
+ "step": 283
2031
+ },
2032
+ {
2033
+ "epoch": 0.2935400516795866,
2034
+ "grad_norm": 1.5597681999206543,
2035
+ "learning_rate": 4.7873563218390805e-06,
2036
+ "loss": 1.1917,
2037
+ "step": 284
2038
+ },
2039
+ {
2040
+ "epoch": 0.29457364341085274,
2041
+ "grad_norm": 1.1909379959106445,
2042
+ "learning_rate": 4.78448275862069e-06,
2043
+ "loss": 1.2133,
2044
+ "step": 285
2045
+ },
2046
+ {
2047
+ "epoch": 0.29560723514211884,
2048
+ "grad_norm": 1.2589330673217773,
2049
+ "learning_rate": 4.781609195402299e-06,
2050
+ "loss": 1.2324,
2051
+ "step": 286
2052
+ },
2053
+ {
2054
+ "epoch": 0.296640826873385,
2055
+ "grad_norm": 1.5300198793411255,
2056
+ "learning_rate": 4.778735632183909e-06,
2057
+ "loss": 1.215,
2058
+ "step": 287
2059
+ },
2060
+ {
2061
+ "epoch": 0.29767441860465116,
2062
+ "grad_norm": 1.285587191581726,
2063
+ "learning_rate": 4.775862068965518e-06,
2064
+ "loss": 1.2817,
2065
+ "step": 288
2066
+ },
2067
+ {
2068
+ "epoch": 0.2987080103359173,
2069
+ "grad_norm": 1.579711675643921,
2070
+ "learning_rate": 4.772988505747127e-06,
2071
+ "loss": 1.206,
2072
+ "step": 289
2073
+ },
2074
+ {
2075
+ "epoch": 0.2997416020671835,
2076
+ "grad_norm": 1.2438337802886963,
2077
+ "learning_rate": 4.770114942528735e-06,
2078
+ "loss": 1.2162,
2079
+ "step": 290
2080
+ },
2081
+ {
2082
+ "epoch": 0.30077519379844964,
2083
+ "grad_norm": 1.2078229188919067,
2084
+ "learning_rate": 4.767241379310345e-06,
2085
+ "loss": 1.2262,
2086
+ "step": 291
2087
+ },
2088
+ {
2089
+ "epoch": 0.30180878552971574,
2090
+ "grad_norm": 1.4489924907684326,
2091
+ "learning_rate": 4.7643678160919545e-06,
2092
+ "loss": 1.2028,
2093
+ "step": 292
2094
+ },
2095
+ {
2096
+ "epoch": 0.3028423772609819,
2097
+ "grad_norm": 1.722036600112915,
2098
+ "learning_rate": 4.761494252873564e-06,
2099
+ "loss": 1.2321,
2100
+ "step": 293
2101
+ },
2102
+ {
2103
+ "epoch": 0.30387596899224806,
2104
+ "grad_norm": 1.2497223615646362,
2105
+ "learning_rate": 4.758620689655173e-06,
2106
+ "loss": 1.199,
2107
+ "step": 294
2108
+ },
2109
+ {
2110
+ "epoch": 0.3049095607235142,
2111
+ "grad_norm": 1.1889766454696655,
2112
+ "learning_rate": 4.755747126436782e-06,
2113
+ "loss": 1.2183,
2114
+ "step": 295
2115
+ },
2116
+ {
2117
+ "epoch": 0.3059431524547804,
2118
+ "grad_norm": 1.65548837184906,
2119
+ "learning_rate": 4.752873563218391e-06,
2120
+ "loss": 1.2535,
2121
+ "step": 296
2122
+ },
2123
+ {
2124
+ "epoch": 0.30697674418604654,
2125
+ "grad_norm": 1.7176488637924194,
2126
+ "learning_rate": 4.75e-06,
2127
+ "loss": 1.1354,
2128
+ "step": 297
2129
+ },
2130
+ {
2131
+ "epoch": 0.30801033591731264,
2132
+ "grad_norm": 1.38619863986969,
2133
+ "learning_rate": 4.747126436781609e-06,
2134
+ "loss": 1.2093,
2135
+ "step": 298
2136
+ },
2137
+ {
2138
+ "epoch": 0.3090439276485788,
2139
+ "grad_norm": 1.469096302986145,
2140
+ "learning_rate": 4.7442528735632186e-06,
2141
+ "loss": 1.2218,
2142
+ "step": 299
2143
+ },
2144
+ {
2145
+ "epoch": 0.31007751937984496,
2146
+ "grad_norm": 1.6391884088516235,
2147
+ "learning_rate": 4.741379310344828e-06,
2148
+ "loss": 1.2108,
2149
+ "step": 300
2150
+ },
2151
+ {
2152
+ "epoch": 0.31007751937984496,
2153
+ "eval_loss": 1.2854892015457153,
2154
+ "eval_runtime": 48.1735,
2155
+ "eval_samples_per_second": 20.758,
2156
+ "eval_steps_per_second": 0.664,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 0.3111111111111111,
2161
+ "grad_norm": 1.3288958072662354,
2162
+ "learning_rate": 4.738505747126438e-06,
2163
+ "loss": 1.2059,
2164
+ "step": 301
2165
+ },
2166
+ {
2167
+ "epoch": 0.3121447028423773,
2168
+ "grad_norm": 1.5343891382217407,
2169
+ "learning_rate": 4.735632183908047e-06,
2170
+ "loss": 1.2082,
2171
+ "step": 302
2172
+ },
2173
+ {
2174
+ "epoch": 0.31317829457364343,
2175
+ "grad_norm": 1.6383378505706787,
2176
+ "learning_rate": 4.732758620689655e-06,
2177
+ "loss": 1.2331,
2178
+ "step": 303
2179
+ },
2180
+ {
2181
+ "epoch": 0.31421188630490954,
2182
+ "grad_norm": 1.3862324953079224,
2183
+ "learning_rate": 4.729885057471264e-06,
2184
+ "loss": 1.2412,
2185
+ "step": 304
2186
+ },
2187
+ {
2188
+ "epoch": 0.3152454780361757,
2189
+ "grad_norm": 1.4603716135025024,
2190
+ "learning_rate": 4.727011494252874e-06,
2191
+ "loss": 1.1927,
2192
+ "step": 305
2193
+ },
2194
+ {
2195
+ "epoch": 0.31627906976744186,
2196
+ "grad_norm": 1.2502843141555786,
2197
+ "learning_rate": 4.724137931034483e-06,
2198
+ "loss": 1.2226,
2199
+ "step": 306
2200
+ },
2201
+ {
2202
+ "epoch": 0.317312661498708,
2203
+ "grad_norm": 1.6000148057937622,
2204
+ "learning_rate": 4.7212643678160926e-06,
2205
+ "loss": 1.231,
2206
+ "step": 307
2207
+ },
2208
+ {
2209
+ "epoch": 0.3183462532299742,
2210
+ "grad_norm": 1.4646550416946411,
2211
+ "learning_rate": 4.718390804597702e-06,
2212
+ "loss": 1.2653,
2213
+ "step": 308
2214
+ },
2215
+ {
2216
+ "epoch": 0.31937984496124033,
2217
+ "grad_norm": 1.3548325300216675,
2218
+ "learning_rate": 4.715517241379311e-06,
2219
+ "loss": 1.236,
2220
+ "step": 309
2221
+ },
2222
+ {
2223
+ "epoch": 0.32041343669250644,
2224
+ "grad_norm": 1.4769961833953857,
2225
+ "learning_rate": 4.71264367816092e-06,
2226
+ "loss": 1.209,
2227
+ "step": 310
2228
+ },
2229
+ {
2230
+ "epoch": 0.3214470284237726,
2231
+ "grad_norm": 1.2307313680648804,
2232
+ "learning_rate": 4.709770114942529e-06,
2233
+ "loss": 1.206,
2234
+ "step": 311
2235
+ },
2236
+ {
2237
+ "epoch": 0.32248062015503876,
2238
+ "grad_norm": 1.5612189769744873,
2239
+ "learning_rate": 4.706896551724138e-06,
2240
+ "loss": 1.2272,
2241
+ "step": 312
2242
+ },
2243
+ {
2244
+ "epoch": 0.3235142118863049,
2245
+ "grad_norm": 0.9792500734329224,
2246
+ "learning_rate": 4.7040229885057474e-06,
2247
+ "loss": 1.2404,
2248
+ "step": 313
2249
+ },
2250
+ {
2251
+ "epoch": 0.3245478036175711,
2252
+ "grad_norm": 1.2356388568878174,
2253
+ "learning_rate": 4.7011494252873566e-06,
2254
+ "loss": 1.2453,
2255
+ "step": 314
2256
+ },
2257
+ {
2258
+ "epoch": 0.32558139534883723,
2259
+ "grad_norm": 1.3284534215927124,
2260
+ "learning_rate": 4.698275862068966e-06,
2261
+ "loss": 1.2451,
2262
+ "step": 315
2263
+ },
2264
+ {
2265
+ "epoch": 0.32661498708010334,
2266
+ "grad_norm": 1.2313426733016968,
2267
+ "learning_rate": 4.695402298850575e-06,
2268
+ "loss": 1.2073,
2269
+ "step": 316
2270
+ },
2271
+ {
2272
+ "epoch": 0.3276485788113695,
2273
+ "grad_norm": 1.2018225193023682,
2274
+ "learning_rate": 4.692528735632184e-06,
2275
+ "loss": 1.2499,
2276
+ "step": 317
2277
+ },
2278
+ {
2279
+ "epoch": 0.32868217054263565,
2280
+ "grad_norm": 1.0967109203338623,
2281
+ "learning_rate": 4.689655172413793e-06,
2282
+ "loss": 1.1986,
2283
+ "step": 318
2284
+ },
2285
+ {
2286
+ "epoch": 0.3297157622739018,
2287
+ "grad_norm": 1.2187355756759644,
2288
+ "learning_rate": 4.686781609195402e-06,
2289
+ "loss": 1.2364,
2290
+ "step": 319
2291
+ },
2292
+ {
2293
+ "epoch": 0.330749354005168,
2294
+ "grad_norm": 1.3187403678894043,
2295
+ "learning_rate": 4.683908045977012e-06,
2296
+ "loss": 1.1911,
2297
+ "step": 320
2298
+ },
2299
+ {
2300
+ "epoch": 0.33178294573643413,
2301
+ "grad_norm": 1.2736074924468994,
2302
+ "learning_rate": 4.6810344827586214e-06,
2303
+ "loss": 1.1957,
2304
+ "step": 321
2305
+ },
2306
+ {
2307
+ "epoch": 0.33281653746770024,
2308
+ "grad_norm": 1.3698259592056274,
2309
+ "learning_rate": 4.67816091954023e-06,
2310
+ "loss": 1.1875,
2311
+ "step": 322
2312
+ },
2313
+ {
2314
+ "epoch": 0.3338501291989664,
2315
+ "grad_norm": 1.4535542726516724,
2316
+ "learning_rate": 4.675287356321839e-06,
2317
+ "loss": 1.18,
2318
+ "step": 323
2319
+ },
2320
+ {
2321
+ "epoch": 0.33488372093023255,
2322
+ "grad_norm": 1.2355557680130005,
2323
+ "learning_rate": 4.672413793103449e-06,
2324
+ "loss": 1.237,
2325
+ "step": 324
2326
+ },
2327
+ {
2328
+ "epoch": 0.3359173126614987,
2329
+ "grad_norm": 1.1696377992630005,
2330
+ "learning_rate": 4.669540229885058e-06,
2331
+ "loss": 1.2044,
2332
+ "step": 325
2333
+ },
2334
+ {
2335
+ "epoch": 0.33695090439276487,
2336
+ "grad_norm": 1.768639087677002,
2337
+ "learning_rate": 4.666666666666667e-06,
2338
+ "loss": 1.2423,
2339
+ "step": 326
2340
+ },
2341
+ {
2342
+ "epoch": 0.33798449612403103,
2343
+ "grad_norm": 1.7557653188705444,
2344
+ "learning_rate": 4.663793103448276e-06,
2345
+ "loss": 1.1876,
2346
+ "step": 327
2347
+ },
2348
+ {
2349
+ "epoch": 0.33901808785529713,
2350
+ "grad_norm": 1.2822763919830322,
2351
+ "learning_rate": 4.6609195402298855e-06,
2352
+ "loss": 1.1353,
2353
+ "step": 328
2354
+ },
2355
+ {
2356
+ "epoch": 0.3400516795865633,
2357
+ "grad_norm": 1.4557548761367798,
2358
+ "learning_rate": 4.658045977011495e-06,
2359
+ "loss": 1.1894,
2360
+ "step": 329
2361
+ },
2362
+ {
2363
+ "epoch": 0.34108527131782945,
2364
+ "grad_norm": 1.5415141582489014,
2365
+ "learning_rate": 4.655172413793104e-06,
2366
+ "loss": 1.1799,
2367
+ "step": 330
2368
+ },
2369
+ {
2370
+ "epoch": 0.3421188630490956,
2371
+ "grad_norm": 1.247830867767334,
2372
+ "learning_rate": 4.652298850574713e-06,
2373
+ "loss": 1.2636,
2374
+ "step": 331
2375
+ },
2376
+ {
2377
+ "epoch": 0.34315245478036177,
2378
+ "grad_norm": 1.9219553470611572,
2379
+ "learning_rate": 4.649425287356322e-06,
2380
+ "loss": 1.2055,
2381
+ "step": 332
2382
+ },
2383
+ {
2384
+ "epoch": 0.34418604651162793,
2385
+ "grad_norm": 1.318398356437683,
2386
+ "learning_rate": 4.646551724137931e-06,
2387
+ "loss": 1.2062,
2388
+ "step": 333
2389
+ },
2390
+ {
2391
+ "epoch": 0.34521963824289403,
2392
+ "grad_norm": 1.304222583770752,
2393
+ "learning_rate": 4.643678160919541e-06,
2394
+ "loss": 1.1955,
2395
+ "step": 334
2396
+ },
2397
+ {
2398
+ "epoch": 0.3462532299741602,
2399
+ "grad_norm": 1.1557509899139404,
2400
+ "learning_rate": 4.6408045977011495e-06,
2401
+ "loss": 1.2426,
2402
+ "step": 335
2403
+ },
2404
+ {
2405
+ "epoch": 0.34728682170542635,
2406
+ "grad_norm": 1.3262536525726318,
2407
+ "learning_rate": 4.637931034482759e-06,
2408
+ "loss": 1.1738,
2409
+ "step": 336
2410
+ },
2411
+ {
2412
+ "epoch": 0.3483204134366925,
2413
+ "grad_norm": 1.2595785856246948,
2414
+ "learning_rate": 4.635057471264368e-06,
2415
+ "loss": 1.2302,
2416
+ "step": 337
2417
+ },
2418
+ {
2419
+ "epoch": 0.34935400516795867,
2420
+ "grad_norm": 1.6142576932907104,
2421
+ "learning_rate": 4.632183908045978e-06,
2422
+ "loss": 1.2723,
2423
+ "step": 338
2424
+ },
2425
+ {
2426
+ "epoch": 0.35038759689922483,
2427
+ "grad_norm": 1.139347791671753,
2428
+ "learning_rate": 4.629310344827587e-06,
2429
+ "loss": 1.2137,
2430
+ "step": 339
2431
+ },
2432
+ {
2433
+ "epoch": 0.35142118863049093,
2434
+ "grad_norm": 1.1879801750183105,
2435
+ "learning_rate": 4.626436781609196e-06,
2436
+ "loss": 1.2047,
2437
+ "step": 340
2438
+ },
2439
+ {
2440
+ "epoch": 0.3524547803617571,
2441
+ "grad_norm": 1.2845611572265625,
2442
+ "learning_rate": 4.623563218390805e-06,
2443
+ "loss": 1.2227,
2444
+ "step": 341
2445
+ },
2446
+ {
2447
+ "epoch": 0.35348837209302325,
2448
+ "grad_norm": 1.5612064599990845,
2449
+ "learning_rate": 4.620689655172414e-06,
2450
+ "loss": 1.2102,
2451
+ "step": 342
2452
+ },
2453
+ {
2454
+ "epoch": 0.3545219638242894,
2455
+ "grad_norm": 1.1952980756759644,
2456
+ "learning_rate": 4.6178160919540235e-06,
2457
+ "loss": 1.2232,
2458
+ "step": 343
2459
+ },
2460
+ {
2461
+ "epoch": 0.35555555555555557,
2462
+ "grad_norm": 1.310408592224121,
2463
+ "learning_rate": 4.614942528735633e-06,
2464
+ "loss": 1.2293,
2465
+ "step": 344
2466
+ },
2467
+ {
2468
+ "epoch": 0.35658914728682173,
2469
+ "grad_norm": 1.197373390197754,
2470
+ "learning_rate": 4.612068965517242e-06,
2471
+ "loss": 1.2348,
2472
+ "step": 345
2473
+ },
2474
+ {
2475
+ "epoch": 0.35762273901808783,
2476
+ "grad_norm": 1.1051040887832642,
2477
+ "learning_rate": 4.609195402298851e-06,
2478
+ "loss": 1.1952,
2479
+ "step": 346
2480
+ },
2481
+ {
2482
+ "epoch": 0.358656330749354,
2483
+ "grad_norm": 1.2444984912872314,
2484
+ "learning_rate": 4.60632183908046e-06,
2485
+ "loss": 1.1804,
2486
+ "step": 347
2487
+ },
2488
+ {
2489
+ "epoch": 0.35968992248062015,
2490
+ "grad_norm": 1.3992429971694946,
2491
+ "learning_rate": 4.603448275862069e-06,
2492
+ "loss": 1.2365,
2493
+ "step": 348
2494
+ },
2495
+ {
2496
+ "epoch": 0.3607235142118863,
2497
+ "grad_norm": 1.09051513671875,
2498
+ "learning_rate": 4.600574712643678e-06,
2499
+ "loss": 1.1629,
2500
+ "step": 349
2501
+ },
2502
+ {
2503
+ "epoch": 0.36175710594315247,
2504
+ "grad_norm": 1.7428574562072754,
2505
+ "learning_rate": 4.5977011494252875e-06,
2506
+ "loss": 1.2076,
2507
+ "step": 350
2508
+ },
2509
+ {
2510
+ "epoch": 0.36175710594315247,
2511
+ "eval_loss": 1.2728006839752197,
2512
+ "eval_runtime": 48.2021,
2513
+ "eval_samples_per_second": 20.746,
2514
+ "eval_steps_per_second": 0.664,
2515
+ "step": 350
2516
+ },
2517
+ {
2518
+ "epoch": 0.3627906976744186,
2519
+ "grad_norm": 1.1538360118865967,
2520
+ "learning_rate": 4.594827586206897e-06,
2521
+ "loss": 1.1889,
2522
+ "step": 351
2523
+ },
2524
+ {
2525
+ "epoch": 0.36382428940568473,
2526
+ "grad_norm": 1.1787687540054321,
2527
+ "learning_rate": 4.591954022988507e-06,
2528
+ "loss": 1.2185,
2529
+ "step": 352
2530
+ },
2531
+ {
2532
+ "epoch": 0.3648578811369509,
2533
+ "grad_norm": 1.3935431241989136,
2534
+ "learning_rate": 4.589080459770116e-06,
2535
+ "loss": 1.2258,
2536
+ "step": 353
2537
+ },
2538
+ {
2539
+ "epoch": 0.36589147286821705,
2540
+ "grad_norm": 1.6494699716567993,
2541
+ "learning_rate": 4.586206896551724e-06,
2542
+ "loss": 1.1766,
2543
+ "step": 354
2544
+ },
2545
+ {
2546
+ "epoch": 0.3669250645994832,
2547
+ "grad_norm": 1.6146515607833862,
2548
+ "learning_rate": 4.583333333333333e-06,
2549
+ "loss": 1.2243,
2550
+ "step": 355
2551
+ },
2552
+ {
2553
+ "epoch": 0.36795865633074937,
2554
+ "grad_norm": 1.7873674631118774,
2555
+ "learning_rate": 4.580459770114943e-06,
2556
+ "loss": 1.2206,
2557
+ "step": 356
2558
+ },
2559
+ {
2560
+ "epoch": 0.3689922480620155,
2561
+ "grad_norm": 1.2191059589385986,
2562
+ "learning_rate": 4.577586206896552e-06,
2563
+ "loss": 1.205,
2564
+ "step": 357
2565
+ },
2566
+ {
2567
+ "epoch": 0.37002583979328163,
2568
+ "grad_norm": 1.1856673955917358,
2569
+ "learning_rate": 4.5747126436781615e-06,
2570
+ "loss": 1.1971,
2571
+ "step": 358
2572
+ },
2573
+ {
2574
+ "epoch": 0.3710594315245478,
2575
+ "grad_norm": 1.3208264112472534,
2576
+ "learning_rate": 4.571839080459771e-06,
2577
+ "loss": 1.1928,
2578
+ "step": 359
2579
+ },
2580
+ {
2581
+ "epoch": 0.37209302325581395,
2582
+ "grad_norm": 1.5640398263931274,
2583
+ "learning_rate": 4.56896551724138e-06,
2584
+ "loss": 1.2044,
2585
+ "step": 360
2586
+ },
2587
+ {
2588
+ "epoch": 0.3731266149870801,
2589
+ "grad_norm": 1.401240587234497,
2590
+ "learning_rate": 4.566091954022989e-06,
2591
+ "loss": 1.2301,
2592
+ "step": 361
2593
+ },
2594
+ {
2595
+ "epoch": 0.37416020671834627,
2596
+ "grad_norm": 1.1681466102600098,
2597
+ "learning_rate": 4.563218390804598e-06,
2598
+ "loss": 1.1905,
2599
+ "step": 362
2600
+ },
2601
+ {
2602
+ "epoch": 0.3751937984496124,
2603
+ "grad_norm": 1.317150592803955,
2604
+ "learning_rate": 4.560344827586207e-06,
2605
+ "loss": 1.1847,
2606
+ "step": 363
2607
+ },
2608
+ {
2609
+ "epoch": 0.37622739018087853,
2610
+ "grad_norm": 1.352041244506836,
2611
+ "learning_rate": 4.557471264367816e-06,
2612
+ "loss": 1.2131,
2613
+ "step": 364
2614
+ },
2615
+ {
2616
+ "epoch": 0.3772609819121447,
2617
+ "grad_norm": 1.1713517904281616,
2618
+ "learning_rate": 4.5545977011494255e-06,
2619
+ "loss": 1.2225,
2620
+ "step": 365
2621
+ },
2622
+ {
2623
+ "epoch": 0.37829457364341085,
2624
+ "grad_norm": 1.0403046607971191,
2625
+ "learning_rate": 4.551724137931035e-06,
2626
+ "loss": 1.2035,
2627
+ "step": 366
2628
+ },
2629
+ {
2630
+ "epoch": 0.379328165374677,
2631
+ "grad_norm": 1.5299835205078125,
2632
+ "learning_rate": 4.548850574712644e-06,
2633
+ "loss": 1.2136,
2634
+ "step": 367
2635
+ },
2636
+ {
2637
+ "epoch": 0.38036175710594317,
2638
+ "grad_norm": 1.5781452655792236,
2639
+ "learning_rate": 4.545977011494253e-06,
2640
+ "loss": 1.1985,
2641
+ "step": 368
2642
+ },
2643
+ {
2644
+ "epoch": 0.3813953488372093,
2645
+ "grad_norm": 1.2083759307861328,
2646
+ "learning_rate": 4.543103448275862e-06,
2647
+ "loss": 1.2026,
2648
+ "step": 369
2649
+ },
2650
+ {
2651
+ "epoch": 0.38242894056847543,
2652
+ "grad_norm": 1.3300983905792236,
2653
+ "learning_rate": 4.540229885057471e-06,
2654
+ "loss": 1.1836,
2655
+ "step": 370
2656
+ },
2657
+ {
2658
+ "epoch": 0.3834625322997416,
2659
+ "grad_norm": 1.4870195388793945,
2660
+ "learning_rate": 4.537356321839081e-06,
2661
+ "loss": 1.2231,
2662
+ "step": 371
2663
+ },
2664
+ {
2665
+ "epoch": 0.38449612403100775,
2666
+ "grad_norm": 1.2063935995101929,
2667
+ "learning_rate": 4.53448275862069e-06,
2668
+ "loss": 1.1906,
2669
+ "step": 372
2670
+ },
2671
+ {
2672
+ "epoch": 0.3855297157622739,
2673
+ "grad_norm": 1.3956559896469116,
2674
+ "learning_rate": 4.5316091954022995e-06,
2675
+ "loss": 1.2301,
2676
+ "step": 373
2677
+ },
2678
+ {
2679
+ "epoch": 0.38656330749354006,
2680
+ "grad_norm": 1.1331489086151123,
2681
+ "learning_rate": 4.528735632183908e-06,
2682
+ "loss": 1.2028,
2683
+ "step": 374
2684
+ },
2685
+ {
2686
+ "epoch": 0.3875968992248062,
2687
+ "grad_norm": 1.4904316663742065,
2688
+ "learning_rate": 4.525862068965518e-06,
2689
+ "loss": 1.1915,
2690
+ "step": 375
2691
+ },
2692
+ {
2693
+ "epoch": 0.3886304909560723,
2694
+ "grad_norm": 1.1676017045974731,
2695
+ "learning_rate": 4.522988505747127e-06,
2696
+ "loss": 1.1624,
2697
+ "step": 376
2698
+ },
2699
+ {
2700
+ "epoch": 0.3896640826873385,
2701
+ "grad_norm": 1.2875901460647583,
2702
+ "learning_rate": 4.520114942528736e-06,
2703
+ "loss": 1.2227,
2704
+ "step": 377
2705
+ },
2706
+ {
2707
+ "epoch": 0.39069767441860465,
2708
+ "grad_norm": 1.2845635414123535,
2709
+ "learning_rate": 4.517241379310345e-06,
2710
+ "loss": 1.2218,
2711
+ "step": 378
2712
+ },
2713
+ {
2714
+ "epoch": 0.3917312661498708,
2715
+ "grad_norm": 1.3359668254852295,
2716
+ "learning_rate": 4.514367816091954e-06,
2717
+ "loss": 1.1604,
2718
+ "step": 379
2719
+ },
2720
+ {
2721
+ "epoch": 0.39276485788113696,
2722
+ "grad_norm": 1.3478506803512573,
2723
+ "learning_rate": 4.5114942528735635e-06,
2724
+ "loss": 1.1677,
2725
+ "step": 380
2726
+ },
2727
+ {
2728
+ "epoch": 0.3937984496124031,
2729
+ "grad_norm": 1.0987980365753174,
2730
+ "learning_rate": 4.508620689655173e-06,
2731
+ "loss": 1.1661,
2732
+ "step": 381
2733
+ },
2734
+ {
2735
+ "epoch": 0.3948320413436692,
2736
+ "grad_norm": 1.3515042066574097,
2737
+ "learning_rate": 4.505747126436782e-06,
2738
+ "loss": 1.2192,
2739
+ "step": 382
2740
+ },
2741
+ {
2742
+ "epoch": 0.3958656330749354,
2743
+ "grad_norm": 1.5531221628189087,
2744
+ "learning_rate": 4.502873563218391e-06,
2745
+ "loss": 1.1888,
2746
+ "step": 383
2747
+ },
2748
+ {
2749
+ "epoch": 0.39689922480620154,
2750
+ "grad_norm": 1.011456847190857,
2751
+ "learning_rate": 4.5e-06,
2752
+ "loss": 1.1671,
2753
+ "step": 384
2754
+ },
2755
+ {
2756
+ "epoch": 0.3979328165374677,
2757
+ "grad_norm": 1.3113720417022705,
2758
+ "learning_rate": 4.49712643678161e-06,
2759
+ "loss": 1.1745,
2760
+ "step": 385
2761
+ },
2762
+ {
2763
+ "epoch": 0.39896640826873386,
2764
+ "grad_norm": 1.6751645803451538,
2765
+ "learning_rate": 4.494252873563218e-06,
2766
+ "loss": 1.2111,
2767
+ "step": 386
2768
+ },
2769
+ {
2770
+ "epoch": 0.4,
2771
+ "grad_norm": 1.4498629570007324,
2772
+ "learning_rate": 4.4913793103448275e-06,
2773
+ "loss": 1.2099,
2774
+ "step": 387
2775
+ },
2776
+ {
2777
+ "epoch": 0.4010335917312661,
2778
+ "grad_norm": 1.3328680992126465,
2779
+ "learning_rate": 4.488505747126437e-06,
2780
+ "loss": 1.1965,
2781
+ "step": 388
2782
+ },
2783
+ {
2784
+ "epoch": 0.4020671834625323,
2785
+ "grad_norm": 1.3834558725357056,
2786
+ "learning_rate": 4.485632183908047e-06,
2787
+ "loss": 1.2279,
2788
+ "step": 389
2789
+ },
2790
+ {
2791
+ "epoch": 0.40310077519379844,
2792
+ "grad_norm": 1.228224754333496,
2793
+ "learning_rate": 4.482758620689656e-06,
2794
+ "loss": 1.1387,
2795
+ "step": 390
2796
+ },
2797
+ {
2798
+ "epoch": 0.4041343669250646,
2799
+ "grad_norm": 1.141613245010376,
2800
+ "learning_rate": 4.479885057471265e-06,
2801
+ "loss": 1.2034,
2802
+ "step": 391
2803
+ },
2804
+ {
2805
+ "epoch": 0.40516795865633076,
2806
+ "grad_norm": 1.2839511632919312,
2807
+ "learning_rate": 4.477011494252874e-06,
2808
+ "loss": 1.1951,
2809
+ "step": 392
2810
+ },
2811
+ {
2812
+ "epoch": 0.4062015503875969,
2813
+ "grad_norm": 1.5047776699066162,
2814
+ "learning_rate": 4.474137931034483e-06,
2815
+ "loss": 1.1889,
2816
+ "step": 393
2817
+ },
2818
+ {
2819
+ "epoch": 0.407235142118863,
2820
+ "grad_norm": 1.5040572881698608,
2821
+ "learning_rate": 4.471264367816092e-06,
2822
+ "loss": 1.1624,
2823
+ "step": 394
2824
+ },
2825
+ {
2826
+ "epoch": 0.4082687338501292,
2827
+ "grad_norm": 1.1555923223495483,
2828
+ "learning_rate": 4.4683908045977016e-06,
2829
+ "loss": 1.2081,
2830
+ "step": 395
2831
+ },
2832
+ {
2833
+ "epoch": 0.40930232558139534,
2834
+ "grad_norm": 1.3135583400726318,
2835
+ "learning_rate": 4.465517241379311e-06,
2836
+ "loss": 1.1992,
2837
+ "step": 396
2838
+ },
2839
+ {
2840
+ "epoch": 0.4103359173126615,
2841
+ "grad_norm": 1.0716359615325928,
2842
+ "learning_rate": 4.46264367816092e-06,
2843
+ "loss": 1.1869,
2844
+ "step": 397
2845
+ },
2846
+ {
2847
+ "epoch": 0.41136950904392766,
2848
+ "grad_norm": 1.249202847480774,
2849
+ "learning_rate": 4.459770114942529e-06,
2850
+ "loss": 1.1742,
2851
+ "step": 398
2852
+ },
2853
+ {
2854
+ "epoch": 0.4124031007751938,
2855
+ "grad_norm": 1.2279281616210938,
2856
+ "learning_rate": 4.456896551724138e-06,
2857
+ "loss": 1.1665,
2858
+ "step": 399
2859
+ },
2860
+ {
2861
+ "epoch": 0.4134366925064599,
2862
+ "grad_norm": 0.9841963052749634,
2863
+ "learning_rate": 4.454022988505747e-06,
2864
+ "loss": 1.2191,
2865
+ "step": 400
2866
+ },
2867
+ {
2868
+ "epoch": 0.4134366925064599,
2869
+ "eval_loss": 1.2680693864822388,
2870
+ "eval_runtime": 48.4023,
2871
+ "eval_samples_per_second": 20.66,
2872
+ "eval_steps_per_second": 0.661,
2873
+ "step": 400
2874
+ },
2875
+ {
2876
+ "epoch": 0.4144702842377261,
2877
+ "grad_norm": 1.42137610912323,
2878
+ "learning_rate": 4.4511494252873564e-06,
2879
+ "loss": 1.1756,
2880
+ "step": 401
2881
+ },
2882
+ {
2883
+ "epoch": 0.41550387596899224,
2884
+ "grad_norm": 1.0953741073608398,
2885
+ "learning_rate": 4.4482758620689656e-06,
2886
+ "loss": 1.219,
2887
+ "step": 402
2888
+ },
2889
+ {
2890
+ "epoch": 0.4165374677002584,
2891
+ "grad_norm": 1.101485013961792,
2892
+ "learning_rate": 4.4454022988505756e-06,
2893
+ "loss": 1.1576,
2894
+ "step": 403
2895
+ },
2896
+ {
2897
+ "epoch": 0.41757105943152456,
2898
+ "grad_norm": 1.3133827447891235,
2899
+ "learning_rate": 4.442528735632185e-06,
2900
+ "loss": 1.16,
2901
+ "step": 404
2902
+ },
2903
+ {
2904
+ "epoch": 0.4186046511627907,
2905
+ "grad_norm": 1.1481531858444214,
2906
+ "learning_rate": 4.439655172413794e-06,
2907
+ "loss": 1.1493,
2908
+ "step": 405
2909
+ },
2910
+ {
2911
+ "epoch": 0.4196382428940568,
2912
+ "grad_norm": 1.3434548377990723,
2913
+ "learning_rate": 4.436781609195402e-06,
2914
+ "loss": 1.1506,
2915
+ "step": 406
2916
+ },
2917
+ {
2918
+ "epoch": 0.420671834625323,
2919
+ "grad_norm": 1.102965235710144,
2920
+ "learning_rate": 4.433908045977012e-06,
2921
+ "loss": 1.1446,
2922
+ "step": 407
2923
+ },
2924
+ {
2925
+ "epoch": 0.42170542635658914,
2926
+ "grad_norm": 1.3014981746673584,
2927
+ "learning_rate": 4.431034482758621e-06,
2928
+ "loss": 1.1921,
2929
+ "step": 408
2930
+ },
2931
+ {
2932
+ "epoch": 0.4227390180878553,
2933
+ "grad_norm": 1.3584136962890625,
2934
+ "learning_rate": 4.4281609195402304e-06,
2935
+ "loss": 1.2074,
2936
+ "step": 409
2937
+ },
2938
+ {
2939
+ "epoch": 0.42377260981912146,
2940
+ "grad_norm": 1.6955718994140625,
2941
+ "learning_rate": 4.42528735632184e-06,
2942
+ "loss": 1.2293,
2943
+ "step": 410
2944
+ },
2945
+ {
2946
+ "epoch": 0.4248062015503876,
2947
+ "grad_norm": 1.273550033569336,
2948
+ "learning_rate": 4.422413793103449e-06,
2949
+ "loss": 1.1775,
2950
+ "step": 411
2951
+ },
2952
+ {
2953
+ "epoch": 0.4258397932816537,
2954
+ "grad_norm": 1.1694968938827515,
2955
+ "learning_rate": 4.419540229885058e-06,
2956
+ "loss": 1.1528,
2957
+ "step": 412
2958
+ },
2959
+ {
2960
+ "epoch": 0.4268733850129199,
2961
+ "grad_norm": 1.134385108947754,
2962
+ "learning_rate": 4.416666666666667e-06,
2963
+ "loss": 1.2074,
2964
+ "step": 413
2965
+ },
2966
+ {
2967
+ "epoch": 0.42790697674418604,
2968
+ "grad_norm": 1.3740071058273315,
2969
+ "learning_rate": 4.413793103448276e-06,
2970
+ "loss": 1.1792,
2971
+ "step": 414
2972
+ },
2973
+ {
2974
+ "epoch": 0.4289405684754522,
2975
+ "grad_norm": 1.0105552673339844,
2976
+ "learning_rate": 4.410919540229885e-06,
2977
+ "loss": 1.198,
2978
+ "step": 415
2979
+ },
2980
+ {
2981
+ "epoch": 0.42997416020671836,
2982
+ "grad_norm": 1.2491987943649292,
2983
+ "learning_rate": 4.4080459770114944e-06,
2984
+ "loss": 1.2049,
2985
+ "step": 416
2986
+ },
2987
+ {
2988
+ "epoch": 0.4310077519379845,
2989
+ "grad_norm": 1.2663400173187256,
2990
+ "learning_rate": 4.405172413793104e-06,
2991
+ "loss": 1.2276,
2992
+ "step": 417
2993
+ },
2994
+ {
2995
+ "epoch": 0.4320413436692506,
2996
+ "grad_norm": 1.1918857097625732,
2997
+ "learning_rate": 4.402298850574713e-06,
2998
+ "loss": 1.1922,
2999
+ "step": 418
3000
+ },
3001
+ {
3002
+ "epoch": 0.4330749354005168,
3003
+ "grad_norm": 1.4146064519882202,
3004
+ "learning_rate": 4.399425287356322e-06,
3005
+ "loss": 1.2117,
3006
+ "step": 419
3007
+ },
3008
+ {
3009
+ "epoch": 0.43410852713178294,
3010
+ "grad_norm": 1.4689112901687622,
3011
+ "learning_rate": 4.396551724137931e-06,
3012
+ "loss": 1.1674,
3013
+ "step": 420
3014
+ },
3015
+ {
3016
+ "epoch": 0.4351421188630491,
3017
+ "grad_norm": 1.2137223482131958,
3018
+ "learning_rate": 4.39367816091954e-06,
3019
+ "loss": 1.2254,
3020
+ "step": 421
3021
+ },
3022
+ {
3023
+ "epoch": 0.43617571059431526,
3024
+ "grad_norm": 1.5300006866455078,
3025
+ "learning_rate": 4.39080459770115e-06,
3026
+ "loss": 1.2286,
3027
+ "step": 422
3028
+ },
3029
+ {
3030
+ "epoch": 0.4372093023255814,
3031
+ "grad_norm": 1.0909467935562134,
3032
+ "learning_rate": 4.387931034482759e-06,
3033
+ "loss": 1.2015,
3034
+ "step": 423
3035
+ },
3036
+ {
3037
+ "epoch": 0.4382428940568475,
3038
+ "grad_norm": 1.1437002420425415,
3039
+ "learning_rate": 4.3850574712643685e-06,
3040
+ "loss": 1.1486,
3041
+ "step": 424
3042
+ },
3043
+ {
3044
+ "epoch": 0.4392764857881137,
3045
+ "grad_norm": 1.2198647260665894,
3046
+ "learning_rate": 4.382183908045977e-06,
3047
+ "loss": 1.1961,
3048
+ "step": 425
3049
+ },
3050
+ {
3051
+ "epoch": 0.44031007751937984,
3052
+ "grad_norm": 1.4140639305114746,
3053
+ "learning_rate": 4.379310344827587e-06,
3054
+ "loss": 1.186,
3055
+ "step": 426
3056
+ },
3057
+ {
3058
+ "epoch": 0.441343669250646,
3059
+ "grad_norm": 1.1367213726043701,
3060
+ "learning_rate": 4.376436781609196e-06,
3061
+ "loss": 1.1975,
3062
+ "step": 427
3063
+ },
3064
+ {
3065
+ "epoch": 0.44237726098191216,
3066
+ "grad_norm": 1.3699185848236084,
3067
+ "learning_rate": 4.373563218390805e-06,
3068
+ "loss": 1.2206,
3069
+ "step": 428
3070
+ },
3071
+ {
3072
+ "epoch": 0.4434108527131783,
3073
+ "grad_norm": 1.152096152305603,
3074
+ "learning_rate": 4.370689655172414e-06,
3075
+ "loss": 1.1758,
3076
+ "step": 429
3077
+ },
3078
+ {
3079
+ "epoch": 0.4444444444444444,
3080
+ "grad_norm": 1.2542738914489746,
3081
+ "learning_rate": 4.367816091954023e-06,
3082
+ "loss": 1.1657,
3083
+ "step": 430
3084
+ },
3085
+ {
3086
+ "epoch": 0.4454780361757106,
3087
+ "grad_norm": 1.3231966495513916,
3088
+ "learning_rate": 4.3649425287356325e-06,
3089
+ "loss": 1.1864,
3090
+ "step": 431
3091
+ },
3092
+ {
3093
+ "epoch": 0.44651162790697674,
3094
+ "grad_norm": 1.4225741624832153,
3095
+ "learning_rate": 4.362068965517242e-06,
3096
+ "loss": 1.1983,
3097
+ "step": 432
3098
+ },
3099
+ {
3100
+ "epoch": 0.4475452196382429,
3101
+ "grad_norm": 1.2822364568710327,
3102
+ "learning_rate": 4.359195402298851e-06,
3103
+ "loss": 1.1802,
3104
+ "step": 433
3105
+ },
3106
+ {
3107
+ "epoch": 0.44857881136950906,
3108
+ "grad_norm": 1.3587886095046997,
3109
+ "learning_rate": 4.35632183908046e-06,
3110
+ "loss": 1.1926,
3111
+ "step": 434
3112
+ },
3113
+ {
3114
+ "epoch": 0.4496124031007752,
3115
+ "grad_norm": 1.5335510969161987,
3116
+ "learning_rate": 4.353448275862069e-06,
3117
+ "loss": 1.1817,
3118
+ "step": 435
3119
+ },
3120
+ {
3121
+ "epoch": 0.4506459948320413,
3122
+ "grad_norm": 1.1684523820877075,
3123
+ "learning_rate": 4.350574712643679e-06,
3124
+ "loss": 1.1831,
3125
+ "step": 436
3126
+ },
3127
+ {
3128
+ "epoch": 0.4516795865633075,
3129
+ "grad_norm": 1.1984566450119019,
3130
+ "learning_rate": 4.347701149425288e-06,
3131
+ "loss": 1.1373,
3132
+ "step": 437
3133
+ },
3134
+ {
3135
+ "epoch": 0.45271317829457364,
3136
+ "grad_norm": 1.2617523670196533,
3137
+ "learning_rate": 4.3448275862068965e-06,
3138
+ "loss": 1.1713,
3139
+ "step": 438
3140
+ },
3141
+ {
3142
+ "epoch": 0.4537467700258398,
3143
+ "grad_norm": 1.2004725933074951,
3144
+ "learning_rate": 4.341954022988506e-06,
3145
+ "loss": 1.1768,
3146
+ "step": 439
3147
+ },
3148
+ {
3149
+ "epoch": 0.45478036175710596,
3150
+ "grad_norm": 1.4468493461608887,
3151
+ "learning_rate": 4.339080459770116e-06,
3152
+ "loss": 1.1597,
3153
+ "step": 440
3154
+ },
3155
+ {
3156
+ "epoch": 0.4558139534883721,
3157
+ "grad_norm": 1.1114490032196045,
3158
+ "learning_rate": 4.336206896551725e-06,
3159
+ "loss": 1.1791,
3160
+ "step": 441
3161
+ },
3162
+ {
3163
+ "epoch": 0.4568475452196382,
3164
+ "grad_norm": 1.325484037399292,
3165
+ "learning_rate": 4.333333333333334e-06,
3166
+ "loss": 1.1689,
3167
+ "step": 442
3168
+ },
3169
+ {
3170
+ "epoch": 0.4578811369509044,
3171
+ "grad_norm": 1.3673852682113647,
3172
+ "learning_rate": 4.330459770114943e-06,
3173
+ "loss": 1.173,
3174
+ "step": 443
3175
+ },
3176
+ {
3177
+ "epoch": 0.45891472868217054,
3178
+ "grad_norm": 1.173619031906128,
3179
+ "learning_rate": 4.327586206896552e-06,
3180
+ "loss": 1.1969,
3181
+ "step": 444
3182
+ },
3183
+ {
3184
+ "epoch": 0.4599483204134367,
3185
+ "grad_norm": 1.1025069952011108,
3186
+ "learning_rate": 4.324712643678161e-06,
3187
+ "loss": 1.1858,
3188
+ "step": 445
3189
+ },
3190
+ {
3191
+ "epoch": 0.46098191214470285,
3192
+ "grad_norm": 1.2002084255218506,
3193
+ "learning_rate": 4.3218390804597705e-06,
3194
+ "loss": 1.1835,
3195
+ "step": 446
3196
+ },
3197
+ {
3198
+ "epoch": 0.462015503875969,
3199
+ "grad_norm": 1.1930514574050903,
3200
+ "learning_rate": 4.31896551724138e-06,
3201
+ "loss": 1.1871,
3202
+ "step": 447
3203
+ },
3204
+ {
3205
+ "epoch": 0.4630490956072351,
3206
+ "grad_norm": 1.4340951442718506,
3207
+ "learning_rate": 4.316091954022989e-06,
3208
+ "loss": 1.1525,
3209
+ "step": 448
3210
+ },
3211
+ {
3212
+ "epoch": 0.4640826873385013,
3213
+ "grad_norm": 1.5040807723999023,
3214
+ "learning_rate": 4.313218390804598e-06,
3215
+ "loss": 1.18,
3216
+ "step": 449
3217
+ },
3218
+ {
3219
+ "epoch": 0.46511627906976744,
3220
+ "grad_norm": 1.2207226753234863,
3221
+ "learning_rate": 4.310344827586207e-06,
3222
+ "loss": 1.177,
3223
+ "step": 450
3224
+ },
3225
+ {
3226
+ "epoch": 0.46511627906976744,
3227
+ "eval_loss": 1.2576266527175903,
3228
+ "eval_runtime": 48.4102,
3229
+ "eval_samples_per_second": 20.657,
3230
+ "eval_steps_per_second": 0.661,
3231
+ "step": 450
3232
+ },
3233
+ {
3234
+ "epoch": 0.4661498708010336,
3235
+ "grad_norm": 1.4215892553329468,
3236
+ "learning_rate": 4.307471264367816e-06,
3237
+ "loss": 1.1994,
3238
+ "step": 451
3239
+ },
3240
+ {
3241
+ "epoch": 0.46718346253229975,
3242
+ "grad_norm": 1.152346134185791,
3243
+ "learning_rate": 4.304597701149425e-06,
3244
+ "loss": 1.1397,
3245
+ "step": 452
3246
+ },
3247
+ {
3248
+ "epoch": 0.4682170542635659,
3249
+ "grad_norm": 1.2140494585037231,
3250
+ "learning_rate": 4.3017241379310345e-06,
3251
+ "loss": 1.1908,
3252
+ "step": 453
3253
+ },
3254
+ {
3255
+ "epoch": 0.469250645994832,
3256
+ "grad_norm": 1.2626186609268188,
3257
+ "learning_rate": 4.2988505747126445e-06,
3258
+ "loss": 1.1904,
3259
+ "step": 454
3260
+ },
3261
+ {
3262
+ "epoch": 0.4702842377260982,
3263
+ "grad_norm": 1.5459721088409424,
3264
+ "learning_rate": 4.295977011494254e-06,
3265
+ "loss": 1.1698,
3266
+ "step": 455
3267
+ },
3268
+ {
3269
+ "epoch": 0.47131782945736433,
3270
+ "grad_norm": 1.2738758325576782,
3271
+ "learning_rate": 4.293103448275863e-06,
3272
+ "loss": 1.1824,
3273
+ "step": 456
3274
+ },
3275
+ {
3276
+ "epoch": 0.4723514211886305,
3277
+ "grad_norm": 1.1245863437652588,
3278
+ "learning_rate": 4.290229885057471e-06,
3279
+ "loss": 1.1698,
3280
+ "step": 457
3281
+ },
3282
+ {
3283
+ "epoch": 0.47338501291989665,
3284
+ "grad_norm": 1.2073432207107544,
3285
+ "learning_rate": 4.287356321839081e-06,
3286
+ "loss": 1.132,
3287
+ "step": 458
3288
+ },
3289
+ {
3290
+ "epoch": 0.4744186046511628,
3291
+ "grad_norm": 1.552643060684204,
3292
+ "learning_rate": 4.28448275862069e-06,
3293
+ "loss": 1.2027,
3294
+ "step": 459
3295
+ },
3296
+ {
3297
+ "epoch": 0.4754521963824289,
3298
+ "grad_norm": 1.4971299171447754,
3299
+ "learning_rate": 4.281609195402299e-06,
3300
+ "loss": 1.1758,
3301
+ "step": 460
3302
+ },
3303
+ {
3304
+ "epoch": 0.4764857881136951,
3305
+ "grad_norm": 1.0017420053482056,
3306
+ "learning_rate": 4.2787356321839085e-06,
3307
+ "loss": 1.1464,
3308
+ "step": 461
3309
+ },
3310
+ {
3311
+ "epoch": 0.47751937984496123,
3312
+ "grad_norm": 1.210776925086975,
3313
+ "learning_rate": 4.275862068965518e-06,
3314
+ "loss": 1.1984,
3315
+ "step": 462
3316
+ },
3317
+ {
3318
+ "epoch": 0.4785529715762274,
3319
+ "grad_norm": 1.0808087587356567,
3320
+ "learning_rate": 4.272988505747127e-06,
3321
+ "loss": 1.2179,
3322
+ "step": 463
3323
+ },
3324
+ {
3325
+ "epoch": 0.47958656330749355,
3326
+ "grad_norm": 1.408263921737671,
3327
+ "learning_rate": 4.270114942528736e-06,
3328
+ "loss": 1.1446,
3329
+ "step": 464
3330
+ },
3331
+ {
3332
+ "epoch": 0.4806201550387597,
3333
+ "grad_norm": 1.3446722030639648,
3334
+ "learning_rate": 4.267241379310345e-06,
3335
+ "loss": 1.1894,
3336
+ "step": 465
3337
+ },
3338
+ {
3339
+ "epoch": 0.4816537467700258,
3340
+ "grad_norm": 1.1083803176879883,
3341
+ "learning_rate": 4.264367816091954e-06,
3342
+ "loss": 1.1972,
3343
+ "step": 466
3344
+ },
3345
+ {
3346
+ "epoch": 0.482687338501292,
3347
+ "grad_norm": 1.3985694646835327,
3348
+ "learning_rate": 4.261494252873563e-06,
3349
+ "loss": 1.2348,
3350
+ "step": 467
3351
+ },
3352
+ {
3353
+ "epoch": 0.48372093023255813,
3354
+ "grad_norm": 1.1992748975753784,
3355
+ "learning_rate": 4.2586206896551725e-06,
3356
+ "loss": 1.1702,
3357
+ "step": 468
3358
+ },
3359
+ {
3360
+ "epoch": 0.4847545219638243,
3361
+ "grad_norm": 1.3031333684921265,
3362
+ "learning_rate": 4.2557471264367825e-06,
3363
+ "loss": 1.1977,
3364
+ "step": 469
3365
+ },
3366
+ {
3367
+ "epoch": 0.48578811369509045,
3368
+ "grad_norm": 1.161007285118103,
3369
+ "learning_rate": 4.252873563218391e-06,
3370
+ "loss": 1.1841,
3371
+ "step": 470
3372
+ },
3373
+ {
3374
+ "epoch": 0.4868217054263566,
3375
+ "grad_norm": 1.0703585147857666,
3376
+ "learning_rate": 4.25e-06,
3377
+ "loss": 1.1654,
3378
+ "step": 471
3379
+ },
3380
+ {
3381
+ "epoch": 0.4878552971576227,
3382
+ "grad_norm": 1.2260897159576416,
3383
+ "learning_rate": 4.247126436781609e-06,
3384
+ "loss": 1.1918,
3385
+ "step": 472
3386
+ },
3387
+ {
3388
+ "epoch": 0.4888888888888889,
3389
+ "grad_norm": 1.16552734375,
3390
+ "learning_rate": 4.244252873563219e-06,
3391
+ "loss": 1.1821,
3392
+ "step": 473
3393
+ },
3394
+ {
3395
+ "epoch": 0.48992248062015503,
3396
+ "grad_norm": 1.2570924758911133,
3397
+ "learning_rate": 4.241379310344828e-06,
3398
+ "loss": 1.1526,
3399
+ "step": 474
3400
+ },
3401
+ {
3402
+ "epoch": 0.4909560723514212,
3403
+ "grad_norm": 1.1815022230148315,
3404
+ "learning_rate": 4.238505747126437e-06,
3405
+ "loss": 1.1735,
3406
+ "step": 475
3407
+ },
3408
+ {
3409
+ "epoch": 0.49198966408268735,
3410
+ "grad_norm": 1.4533460140228271,
3411
+ "learning_rate": 4.235632183908046e-06,
3412
+ "loss": 1.1875,
3413
+ "step": 476
3414
+ },
3415
+ {
3416
+ "epoch": 0.4930232558139535,
3417
+ "grad_norm": 1.09726881980896,
3418
+ "learning_rate": 4.232758620689656e-06,
3419
+ "loss": 1.1541,
3420
+ "step": 477
3421
+ },
3422
+ {
3423
+ "epoch": 0.4940568475452196,
3424
+ "grad_norm": 1.1364957094192505,
3425
+ "learning_rate": 4.229885057471265e-06,
3426
+ "loss": 1.1704,
3427
+ "step": 478
3428
+ },
3429
+ {
3430
+ "epoch": 0.49509043927648577,
3431
+ "grad_norm": 1.0956162214279175,
3432
+ "learning_rate": 4.227011494252874e-06,
3433
+ "loss": 1.159,
3434
+ "step": 479
3435
+ },
3436
+ {
3437
+ "epoch": 0.49612403100775193,
3438
+ "grad_norm": 1.3513314723968506,
3439
+ "learning_rate": 4.224137931034483e-06,
3440
+ "loss": 1.1436,
3441
+ "step": 480
3442
+ },
3443
+ {
3444
+ "epoch": 0.4971576227390181,
3445
+ "grad_norm": 1.3028982877731323,
3446
+ "learning_rate": 4.221264367816092e-06,
3447
+ "loss": 1.1976,
3448
+ "step": 481
3449
+ },
3450
+ {
3451
+ "epoch": 0.49819121447028425,
3452
+ "grad_norm": 1.1886882781982422,
3453
+ "learning_rate": 4.218390804597701e-06,
3454
+ "loss": 1.1843,
3455
+ "step": 482
3456
+ },
3457
+ {
3458
+ "epoch": 0.4992248062015504,
3459
+ "grad_norm": 1.1816167831420898,
3460
+ "learning_rate": 4.2155172413793106e-06,
3461
+ "loss": 1.1305,
3462
+ "step": 483
3463
+ },
3464
+ {
3465
+ "epoch": 0.5002583979328166,
3466
+ "grad_norm": 1.1279879808425903,
3467
+ "learning_rate": 4.21264367816092e-06,
3468
+ "loss": 1.1278,
3469
+ "step": 484
3470
+ },
3471
+ {
3472
+ "epoch": 0.5012919896640827,
3473
+ "grad_norm": 1.1833527088165283,
3474
+ "learning_rate": 4.209770114942529e-06,
3475
+ "loss": 1.1395,
3476
+ "step": 485
3477
+ },
3478
+ {
3479
+ "epoch": 0.5023255813953489,
3480
+ "grad_norm": 1.0197025537490845,
3481
+ "learning_rate": 4.206896551724138e-06,
3482
+ "loss": 1.1979,
3483
+ "step": 486
3484
+ },
3485
+ {
3486
+ "epoch": 0.5033591731266149,
3487
+ "grad_norm": 1.1991444826126099,
3488
+ "learning_rate": 4.204022988505748e-06,
3489
+ "loss": 1.1873,
3490
+ "step": 487
3491
+ },
3492
+ {
3493
+ "epoch": 0.5043927648578811,
3494
+ "grad_norm": 1.2488261461257935,
3495
+ "learning_rate": 4.201149425287357e-06,
3496
+ "loss": 1.1615,
3497
+ "step": 488
3498
+ },
3499
+ {
3500
+ "epoch": 0.5054263565891473,
3501
+ "grad_norm": 1.042624592781067,
3502
+ "learning_rate": 4.1982758620689654e-06,
3503
+ "loss": 1.1975,
3504
+ "step": 489
3505
+ },
3506
+ {
3507
+ "epoch": 0.5064599483204134,
3508
+ "grad_norm": 1.2511039972305298,
3509
+ "learning_rate": 4.1954022988505746e-06,
3510
+ "loss": 1.1775,
3511
+ "step": 490
3512
+ },
3513
+ {
3514
+ "epoch": 0.5074935400516796,
3515
+ "grad_norm": 1.2317752838134766,
3516
+ "learning_rate": 4.1925287356321846e-06,
3517
+ "loss": 1.2116,
3518
+ "step": 491
3519
+ },
3520
+ {
3521
+ "epoch": 0.5085271317829457,
3522
+ "grad_norm": 1.1231718063354492,
3523
+ "learning_rate": 4.189655172413794e-06,
3524
+ "loss": 1.1769,
3525
+ "step": 492
3526
+ },
3527
+ {
3528
+ "epoch": 0.5095607235142119,
3529
+ "grad_norm": 1.025221347808838,
3530
+ "learning_rate": 4.186781609195403e-06,
3531
+ "loss": 1.1715,
3532
+ "step": 493
3533
+ },
3534
+ {
3535
+ "epoch": 0.510594315245478,
3536
+ "grad_norm": 1.2898812294006348,
3537
+ "learning_rate": 4.183908045977012e-06,
3538
+ "loss": 1.223,
3539
+ "step": 494
3540
+ },
3541
+ {
3542
+ "epoch": 0.5116279069767442,
3543
+ "grad_norm": 1.2475007772445679,
3544
+ "learning_rate": 4.181034482758621e-06,
3545
+ "loss": 1.167,
3546
+ "step": 495
3547
+ },
3548
+ {
3549
+ "epoch": 0.5126614987080104,
3550
+ "grad_norm": 1.4511774778366089,
3551
+ "learning_rate": 4.17816091954023e-06,
3552
+ "loss": 1.1787,
3553
+ "step": 496
3554
+ },
3555
+ {
3556
+ "epoch": 0.5136950904392765,
3557
+ "grad_norm": 1.3853965997695923,
3558
+ "learning_rate": 4.1752873563218394e-06,
3559
+ "loss": 1.1974,
3560
+ "step": 497
3561
+ },
3562
+ {
3563
+ "epoch": 0.5147286821705427,
3564
+ "grad_norm": 1.340599536895752,
3565
+ "learning_rate": 4.1724137931034486e-06,
3566
+ "loss": 1.1505,
3567
+ "step": 498
3568
+ },
3569
+ {
3570
+ "epoch": 0.5157622739018087,
3571
+ "grad_norm": 1.0093344449996948,
3572
+ "learning_rate": 4.169540229885058e-06,
3573
+ "loss": 1.1297,
3574
+ "step": 499
3575
+ },
3576
+ {
3577
+ "epoch": 0.5167958656330749,
3578
+ "grad_norm": 1.3832353353500366,
3579
+ "learning_rate": 4.166666666666667e-06,
3580
+ "loss": 1.174,
3581
+ "step": 500
3582
+ },
3583
+ {
3584
+ "epoch": 0.5167958656330749,
3585
+ "eval_loss": 1.2501999139785767,
3586
+ "eval_runtime": 48.1533,
3587
+ "eval_samples_per_second": 20.767,
3588
+ "eval_steps_per_second": 0.665,
3589
+ "step": 500
3590
+ }
3591
+ ],
3592
+ "logging_steps": 1,
3593
+ "max_steps": 1934,
3594
+ "num_input_tokens_seen": 0,
3595
+ "num_train_epochs": 2,
3596
+ "save_steps": 500,
3597
+ "stateful_callbacks": {
3598
+ "TrainerControl": {
3599
+ "args": {
3600
+ "should_epoch_stop": false,
3601
+ "should_evaluate": false,
3602
+ "should_log": false,
3603
+ "should_save": true,
3604
+ "should_training_stop": false
3605
+ },
3606
+ "attributes": {}
3607
+ }
3608
+ },
3609
+ "total_flos": 6.87708552822784e+17,
3610
+ "train_batch_size": 2,
3611
+ "trial_name": null,
3612
+ "trial_params": null
3613
+ }
checkpoints/Qwen2.5-14B/babylm_shuffle_deterministic84_10M_seed0/runs/checkpoint-500/vocab.json ADDED
The diff for this file is too large to render. See raw diff