Xtracta-Qiming commited on
Commit
714ad72
·
verified ·
1 Parent(s): 83b8326

Training in progress, step 10

Browse files
Files changed (5) hide show
  1. README.md +185 -40
  2. adapter_model.safetensors +1 -1
  3. optimizer.pt +1 -1
  4. trainer_state.json +17 -26
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,57 +1,202 @@
1
  ---
2
  base_model: Qwen/Qwen2-VL-2B-Instruct
3
- library_name: transformers
4
- model_name: checkpoint-39
5
- tags:
6
- - generated_from_trainer
7
- - trl
8
- - sft
9
- licence: license
10
  ---
11
 
12
- # Model Card for checkpoint-39
13
 
14
- This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct).
15
- It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
- ## Quick start
18
 
19
- ```python
20
- from transformers import pipeline
21
 
22
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
- generator = pipeline("text-generation", model="Xtracta-Qiming/checkpoint-39", device="cuda")
24
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
- print(output["generated_text"])
26
- ```
27
 
28
- ## Training procedure
29
 
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/xtracta/Damarcode_AB_v1_20241129-gpt-Qwen2VL/runs/1ptflfeo)
31
 
32
- This model was trained with SFT.
33
 
34
- ### Framework versions
35
 
36
- - TRL: 0.13.0.dev0
37
- - Transformers: 4.45.0.dev0
38
- - Pytorch: 2.4.1+cu121
39
- - Datasets: 3.1.0
40
- - Tokenizers: 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- ## Citations
43
 
 
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- Cite TRL as:
47
-
48
- ```bibtex
49
- @misc{vonwerra2022trl,
50
- title = {{TRL: Transformer Reinforcement Learning}},
51
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
- year = 2020,
53
- journal = {GitHub repository},
54
- publisher = {GitHub},
55
- howpublished = {\url{https://github.com/huggingface/trl}}
56
- }
57
- ```
 
1
  ---
2
  base_model: Qwen/Qwen2-VL-2B-Instruct
3
+ library_name: peft
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
11
 
12
+ ## Model Details
 
 
 
 
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
 
111
+ <!-- This should link to a Dataset Card if possible. -->
112
 
113
+ [More Information Needed]
114
 
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
 
202
+ - PEFT 0.13.2
 
 
 
 
 
 
 
 
 
 
 
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a2c240230400858b92c484ca34eb4615ca2828769a9d735f24b8e109d78327e4
3
  size 4372840
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d20796196d2e546c65a73acbd79bebd1af25214425aa84085893ff59db3a7341
3
  size 4372840
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a6b558315ecb33e14d9330ebb5a32b0efe8543b21610d9a461aa39fb57ec9313
3
  size 8812090
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1296667ef5732a5a67eabe48db04755cd7d47c683481032c3d84bb92ff9a3907
3
  size 8812090
trainer_state.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "best_metric": 0.03865480050444603,
3
  "best_model_checkpoint": "/home/paperspace/mmdoc/outputs/Damarcode_AB_v1_20241129_qwen_v2/checkpoint-39/checkpoint-30",
4
  "epoch": 2.8363636363636364,
5
  "eval_steps": 10,
@@ -10,57 +10,48 @@
10
  "log_history": [
11
  {
12
  "epoch": 0.7272727272727273,
13
- "grad_norm": 0.19426245987415314,
14
  "learning_rate": 0.0002,
15
- "loss": 0.0774,
16
  "step": 10
17
  },
18
  {
19
  "epoch": 0.7272727272727273,
20
- "eval_loss": 0.060963425785303116,
21
- "eval_runtime": 21.0525,
22
- "eval_samples_per_second": 0.333,
23
- "eval_steps_per_second": 0.333,
24
  "step": 10
25
  },
26
  {
27
  "epoch": 1.4545454545454546,
28
- "grad_norm": 0.21388182044029236,
29
  "learning_rate": 0.0002,
30
- "loss": 0.04,
31
  "step": 20
32
  },
33
  {
34
  "epoch": 1.4545454545454546,
35
- "eval_loss": 0.0446288101375103,
36
- "eval_runtime": 21.2102,
37
- "eval_samples_per_second": 0.33,
38
- "eval_steps_per_second": 0.33,
39
  "step": 20
40
  },
41
  {
42
  "epoch": 2.1818181818181817,
43
- "grad_norm": 2.1915783882141113,
44
  "learning_rate": 0.0002,
45
- "loss": 0.0591,
46
  "step": 30
47
  },
48
  {
49
  "epoch": 2.1818181818181817,
50
- "eval_loss": 0.03865480050444603,
51
- "eval_runtime": 21.2826,
52
  "eval_samples_per_second": 0.329,
53
  "eval_steps_per_second": 0.329,
54
  "step": 30
55
- },
56
- {
57
- "epoch": 2.8363636363636364,
58
- "step": 39,
59
- "total_flos": 3.417506073386496e+16,
60
- "train_loss": 0.05125234333368448,
61
- "train_runtime": 1358.5629,
62
- "train_samples_per_second": 0.243,
63
- "train_steps_per_second": 0.029
64
  }
65
  ],
66
  "logging_steps": 10,
 
1
  {
2
+ "best_metric": 0.03029637224972248,
3
  "best_model_checkpoint": "/home/paperspace/mmdoc/outputs/Damarcode_AB_v1_20241129_qwen_v2/checkpoint-39/checkpoint-30",
4
  "epoch": 2.8363636363636364,
5
  "eval_steps": 10,
 
10
  "log_history": [
11
  {
12
  "epoch": 0.7272727272727273,
13
+ "grad_norm": 0.10270193964242935,
14
  "learning_rate": 0.0002,
15
+ "loss": 0.0403,
16
  "step": 10
17
  },
18
  {
19
  "epoch": 0.7272727272727273,
20
+ "eval_loss": 0.03421077877283096,
21
+ "eval_runtime": 21.1288,
22
+ "eval_samples_per_second": 0.331,
23
+ "eval_steps_per_second": 0.331,
24
  "step": 10
25
  },
26
  {
27
  "epoch": 1.4545454545454546,
28
+ "grad_norm": 0.15500934422016144,
29
  "learning_rate": 0.0002,
30
+ "loss": 0.0241,
31
  "step": 20
32
  },
33
  {
34
  "epoch": 1.4545454545454546,
35
+ "eval_loss": 0.03104669786989689,
36
+ "eval_runtime": 21.2862,
37
+ "eval_samples_per_second": 0.329,
38
+ "eval_steps_per_second": 0.329,
39
  "step": 20
40
  },
41
  {
42
  "epoch": 2.1818181818181817,
43
+ "grad_norm": 1.0952190160751343,
44
  "learning_rate": 0.0002,
45
+ "loss": 0.0441,
46
  "step": 30
47
  },
48
  {
49
  "epoch": 2.1818181818181817,
50
+ "eval_loss": 0.03029637224972248,
51
+ "eval_runtime": 21.3082,
52
  "eval_samples_per_second": 0.329,
53
  "eval_steps_per_second": 0.329,
54
  "step": 30
 
 
 
 
 
 
 
 
 
55
  }
56
  ],
57
  "logging_steps": 10,
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ff6057c391daaf88be603ae1d276247495e24492476b18d6b50ecfc5b5466f8
3
  size 5624
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bffd6f6353df7969bbb7e4f582257c68974654a8d277ca9722255befe6ee0f34
3
  size 5624