Add files using upload-large-folder tool
Browse files- config.json +33 -0
- generation_config.json +7 -0
- global_step5000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step5000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step5000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step5000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step5000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step5000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step5000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step5000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- pytorch_model-00001-of-00013.bin +3 -0
- pytorch_model-00002-of-00013.bin +3 -0
- pytorch_model-00003-of-00013.bin +3 -0
- pytorch_model-00004-of-00013.bin +3 -0
- pytorch_model-00005-of-00013.bin +3 -0
- pytorch_model-00006-of-00013.bin +3 -0
- pytorch_model-00007-of-00013.bin +3 -0
- pytorch_model-00008-of-00013.bin +3 -0
- pytorch_model-00009-of-00013.bin +3 -0
- pytorch_model-00010-of-00013.bin +3 -0
- pytorch_model-00011-of-00013.bin +3 -0
- pytorch_model-00012-of-00013.bin +3 -0
- pytorch_model-00013-of-00013.bin +3 -0
- pytorch_model.bin.index.json +250 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +33 -0
- tokenizer.json +0 -0
- tokenizer_config.json +787 -0
- trainer_state.json +3533 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/shared/ssd/models/phi-4",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Phi3ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"auto_map": {},
|
| 9 |
+
"bos_token_id": 100257,
|
| 10 |
+
"embd_pdrop": 0.0,
|
| 11 |
+
"eos_token_id": 100265,
|
| 12 |
+
"hidden_act": "silu",
|
| 13 |
+
"hidden_size": 5120,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 17920,
|
| 16 |
+
"max_position_embeddings": 16384,
|
| 17 |
+
"model_type": "phi3",
|
| 18 |
+
"num_attention_heads": 40,
|
| 19 |
+
"num_hidden_layers": 40,
|
| 20 |
+
"num_key_value_heads": 10,
|
| 21 |
+
"original_max_position_embeddings": 16384,
|
| 22 |
+
"pad_token_id": 100349,
|
| 23 |
+
"resid_pdrop": 0.0,
|
| 24 |
+
"rms_norm_eps": 1e-05,
|
| 25 |
+
"rope_scaling": null,
|
| 26 |
+
"rope_theta": 250000,
|
| 27 |
+
"sliding_window": null,
|
| 28 |
+
"tie_word_embeddings": false,
|
| 29 |
+
"torch_dtype": "bfloat16",
|
| 30 |
+
"transformers_version": "4.48.3",
|
| 31 |
+
"use_cache": false,
|
| 32 |
+
"vocab_size": 100352
|
| 33 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 100257,
|
| 4 |
+
"eos_token_id": 100265,
|
| 5 |
+
"pad_token_id": 100349,
|
| 6 |
+
"transformers_version": "4.48.3"
|
| 7 |
+
}
|
global_step5000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85f92bf4b4fe0d32f13bebcf24372dbedb5b8a3e8eeeb5f665ec919a0a81159c
|
| 3 |
+
size 43978528138
|
global_step5000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3d2dbb7e0478052d1f0c9dacb0f37c045a62117b36fad19ca267cf254e53eb3
|
| 3 |
+
size 43978528138
|
global_step5000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:712bde7ed0eaa90ce7cd2841a4df5fcf8bbbeb2f62533d7b32a818b52388dce3
|
| 3 |
+
size 43978528138
|
global_step5000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c6e9d5dc092f6f7e2edbb08facd4e92bc1eced0da78ce4c45e132f3a3a2eb81
|
| 3 |
+
size 43978528138
|
global_step5000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9795ed7d3df5a5fdfca558e5e37d290d6eb465c802969d194c2c62e52abe0e77
|
| 3 |
+
size 133173
|
global_step5000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a5ad970458c3ce360ac37d5d8f8db7a6307417aad8c8ecdb1f790b5b876a69c
|
| 3 |
+
size 133173
|
global_step5000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b02780979d77a4fea17e63846d0643a13bb886802e5fe3ec3959ecd4995ad440
|
| 3 |
+
size 133173
|
global_step5000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d743be8067bf14ddf3040b22d7e0f35c25bf6ed0692c24d62e852bac13d91e4f
|
| 3 |
+
size 133173
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step5000
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model-00001-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:55194ca302696ec5b5057a5ea8bf2fd7c7e1ce351c3c8c308a79a990b96f16cb
|
| 3 |
+
size 4886451590
|
pytorch_model-00002-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:05a8eb5e93acbc5ad857abd12cb6441fd6fd3d8cb6bd5ed4286c209079404535
|
| 3 |
+
size 4980866314
|
pytorch_model-00003-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:daa423e7701ce2d456a5cd4a0d2fadccb5af939497aea72531dfb26434165f4c
|
| 3 |
+
size 4718764172
|
pytorch_model-00004-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b6990eb45e7cd872a0a149889d9286c7bb6de1c6f773134a093f33f944e76fb
|
| 3 |
+
size 4823579588
|
pytorch_model-00005-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73591444fea6824ddfb5c0e7e5a5e3ccab48ae3910b9e93cf877ca80a58f12e6
|
| 3 |
+
size 4718764236
|
pytorch_model-00006-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d94035b8024be5a5290b3015d735d87c44a7af746eb13fafb4465f8b7ae354ab
|
| 3 |
+
size 4823579588
|
pytorch_model-00007-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:051181fcede6a0a133f5605dfd9d7c135880aa251d6f20a2b8b91bd9fde80127
|
| 3 |
+
size 4718764236
|
pytorch_model-00008-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9bf524678963363d46561225ac6805e7033b1aa52969ff4efcefcf80d6935b0e
|
| 3 |
+
size 4823579588
|
pytorch_model-00009-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5dba6d7724865f2b64bfd08dc8dd145d5f20f8080742da43c76fb0481f36310c
|
| 3 |
+
size 4718764236
|
pytorch_model-00010-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5cc4fa9e87caaa69db7d5aaffb59a0f4e3d1d78ced4f34658c75727c80ff328
|
| 3 |
+
size 4823579588
|
pytorch_model-00011-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1529fa1e6ebc49262ab9c63cef3c25bcc6d55d79f7de4373e30719cc9cbada8
|
| 3 |
+
size 4718764236
|
pytorch_model-00012-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2369fe70eeb96be659b69dd45e6a282c2299a91d9e3cc01a2f0e3678d922185
|
| 3 |
+
size 3827452188
|
pytorch_model-00013-of-00013.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71bfa50e2b7259cf02cd641ae3dc71bf0c43b3bd03c805079c34af3b6f1e1594
|
| 3 |
+
size 2055210373
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 58638028800
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00013-of-00013.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00013.bin",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 10 |
+
"model.layers.0.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 11 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
| 12 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 13 |
+
"model.layers.0.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 14 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
| 15 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 16 |
+
"model.layers.1.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 17 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
| 18 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 19 |
+
"model.layers.1.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 20 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
| 21 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 22 |
+
"model.layers.10.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 23 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
| 24 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 25 |
+
"model.layers.10.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 26 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
| 27 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 28 |
+
"model.layers.11.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 29 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
| 30 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 31 |
+
"model.layers.11.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 32 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 33 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 34 |
+
"model.layers.12.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 35 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 36 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 37 |
+
"model.layers.12.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 38 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 39 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 40 |
+
"model.layers.13.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 41 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 42 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 43 |
+
"model.layers.13.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 44 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 45 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 46 |
+
"model.layers.14.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 47 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 48 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 49 |
+
"model.layers.14.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 50 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 51 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 52 |
+
"model.layers.15.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 53 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
| 54 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 55 |
+
"model.layers.15.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 56 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
| 57 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 58 |
+
"model.layers.16.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 59 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
| 60 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 61 |
+
"model.layers.16.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
| 62 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
| 63 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 64 |
+
"model.layers.17.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 65 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
| 66 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 67 |
+
"model.layers.17.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 68 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
| 69 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 70 |
+
"model.layers.18.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 71 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
| 72 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 73 |
+
"model.layers.18.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 74 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 75 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 76 |
+
"model.layers.19.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 77 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 78 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 79 |
+
"model.layers.19.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
|
| 80 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
| 81 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 82 |
+
"model.layers.2.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 83 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
| 84 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
|
| 85 |
+
"model.layers.2.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 86 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 87 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 88 |
+
"model.layers.20.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 89 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 90 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 91 |
+
"model.layers.20.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 92 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 93 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 94 |
+
"model.layers.21.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 95 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 96 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 97 |
+
"model.layers.21.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 98 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 99 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 100 |
+
"model.layers.22.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 101 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
| 102 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 103 |
+
"model.layers.22.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 104 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
| 105 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 106 |
+
"model.layers.23.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 107 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
| 108 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 109 |
+
"model.layers.23.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
| 110 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
| 111 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 112 |
+
"model.layers.24.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 113 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
| 114 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 115 |
+
"model.layers.24.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 116 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
| 117 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 118 |
+
"model.layers.25.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 119 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
| 120 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 121 |
+
"model.layers.25.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 122 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 123 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 124 |
+
"model.layers.26.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 125 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 126 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 127 |
+
"model.layers.26.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
|
| 128 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 129 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 130 |
+
"model.layers.27.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 131 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 132 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 133 |
+
"model.layers.27.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 134 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 135 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 136 |
+
"model.layers.28.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 137 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 138 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 139 |
+
"model.layers.28.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 140 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 141 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 142 |
+
"model.layers.29.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 143 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
| 144 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 145 |
+
"model.layers.29.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 146 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
| 147 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 148 |
+
"model.layers.3.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 149 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
| 150 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 151 |
+
"model.layers.3.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 152 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
| 153 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 154 |
+
"model.layers.30.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 155 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
| 156 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 157 |
+
"model.layers.30.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
| 158 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
| 159 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 160 |
+
"model.layers.31.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 161 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
| 162 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 163 |
+
"model.layers.31.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 164 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
| 165 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 166 |
+
"model.layers.32.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 167 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
| 168 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 169 |
+
"model.layers.32.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 170 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 171 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 172 |
+
"model.layers.33.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 173 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 174 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 175 |
+
"model.layers.33.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
|
| 176 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 177 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 178 |
+
"model.layers.34.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 179 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 180 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 181 |
+
"model.layers.34.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 182 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 183 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 184 |
+
"model.layers.35.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 185 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 186 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 187 |
+
"model.layers.35.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 188 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 189 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 190 |
+
"model.layers.36.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 191 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
| 192 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 193 |
+
"model.layers.36.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 194 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
| 195 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 196 |
+
"model.layers.37.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 197 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
| 198 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 199 |
+
"model.layers.37.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
| 200 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
| 201 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 202 |
+
"model.layers.38.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 203 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
| 204 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 205 |
+
"model.layers.38.self_attn.qkv_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 206 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
| 207 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 208 |
+
"model.layers.39.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 209 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
| 210 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 211 |
+
"model.layers.39.self_attn.qkv_proj.weight": "pytorch_model-00012-of-00013.bin",
|
| 212 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
| 213 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 214 |
+
"model.layers.4.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 215 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
| 216 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 217 |
+
"model.layers.4.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 218 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 219 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 220 |
+
"model.layers.5.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 221 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 222 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 223 |
+
"model.layers.5.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
| 224 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 225 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 226 |
+
"model.layers.6.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 227 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 228 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 229 |
+
"model.layers.6.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 230 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 231 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 232 |
+
"model.layers.7.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 233 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 234 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 235 |
+
"model.layers.7.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 236 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 237 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 238 |
+
"model.layers.8.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 239 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
| 240 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 241 |
+
"model.layers.8.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 242 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
| 243 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 244 |
+
"model.layers.9.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
| 245 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
| 246 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 247 |
+
"model.layers.9.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
| 248 |
+
"model.norm.weight": "pytorch_model-00012-of-00013.bin"
|
| 249 |
+
}
|
| 250 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
|
| 3 |
+
size 15024
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4c154b6a63e0b1f98f7d2847944398f99f1657d35e8eddf7fdf0ae2c24b0552
|
| 3 |
+
size 15024
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f784c6a9507b51189f2caffbd178ea9882103b75852e31c15f47fdae6a43af1d
|
| 3 |
+
size 15024
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34b023e05bc2d12b91dc436d4922b990d50ec8dc56d40dc3e36b3bb34fc81341
|
| 3 |
+
size 15024
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1590c1c5090942d2d4d2cecd50f9e37516d1d2b965656284b2785a2acdbeeb5b
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "<|im_end|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
}
|
| 10 |
+
],
|
| 11 |
+
"bos_token": {
|
| 12 |
+
"content": "<|endoftext|>",
|
| 13 |
+
"lstrip": true,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": true,
|
| 16 |
+
"single_word": false
|
| 17 |
+
},
|
| 18 |
+
"eos_token": {
|
| 19 |
+
"content": "<|im_end|>",
|
| 20 |
+
"lstrip": true,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"rstrip": true,
|
| 23 |
+
"single_word": false
|
| 24 |
+
},
|
| 25 |
+
"pad_token": {
|
| 26 |
+
"content": "<|dummy_85|>",
|
| 27 |
+
"lstrip": true,
|
| 28 |
+
"normalized": false,
|
| 29 |
+
"rstrip": true,
|
| 30 |
+
"single_word": false
|
| 31 |
+
},
|
| 32 |
+
"unk_token": "<|endoftext|>"
|
| 33 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"100256": {
|
| 5 |
+
"content": "<|dummy_0|>",
|
| 6 |
+
"lstrip": true,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": true,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"100257": {
|
| 13 |
+
"content": "<|endoftext|>",
|
| 14 |
+
"lstrip": true,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": true,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"100258": {
|
| 21 |
+
"content": "<|fim_prefix|>",
|
| 22 |
+
"lstrip": true,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": true,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"100259": {
|
| 29 |
+
"content": "<|fim_middle|>",
|
| 30 |
+
"lstrip": true,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": true,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"100260": {
|
| 37 |
+
"content": "<|fim_suffix|>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": true,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"100261": {
|
| 45 |
+
"content": "<|dummy_1|>",
|
| 46 |
+
"lstrip": true,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": true,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"100262": {
|
| 53 |
+
"content": "<|dummy_2|>",
|
| 54 |
+
"lstrip": true,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": true,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"100263": {
|
| 61 |
+
"content": "<|dummy_3|>",
|
| 62 |
+
"lstrip": true,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": true,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"100264": {
|
| 69 |
+
"content": "<|im_start|>",
|
| 70 |
+
"lstrip": true,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": true,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"100265": {
|
| 77 |
+
"content": "<|im_end|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"100266": {
|
| 85 |
+
"content": "<|im_sep|>",
|
| 86 |
+
"lstrip": true,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": true,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"100267": {
|
| 93 |
+
"content": "<|dummy_4|>",
|
| 94 |
+
"lstrip": true,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": true,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"100268": {
|
| 101 |
+
"content": "<|dummy_5|>",
|
| 102 |
+
"lstrip": true,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": true,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"100269": {
|
| 109 |
+
"content": "<|dummy_6|>",
|
| 110 |
+
"lstrip": true,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": true,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
},
|
| 116 |
+
"100270": {
|
| 117 |
+
"content": "<|dummy_7|>",
|
| 118 |
+
"lstrip": true,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": true,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": true
|
| 123 |
+
},
|
| 124 |
+
"100271": {
|
| 125 |
+
"content": "<|dummy_8|>",
|
| 126 |
+
"lstrip": true,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": true,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": true
|
| 131 |
+
},
|
| 132 |
+
"100272": {
|
| 133 |
+
"content": "<|dummy_9|>",
|
| 134 |
+
"lstrip": true,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": true,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": true
|
| 139 |
+
},
|
| 140 |
+
"100273": {
|
| 141 |
+
"content": "<|dummy_10|>",
|
| 142 |
+
"lstrip": true,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": true,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": true
|
| 147 |
+
},
|
| 148 |
+
"100274": {
|
| 149 |
+
"content": "<|dummy_11|>",
|
| 150 |
+
"lstrip": true,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": true,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": true
|
| 155 |
+
},
|
| 156 |
+
"100275": {
|
| 157 |
+
"content": "<|dummy_12|>",
|
| 158 |
+
"lstrip": true,
|
| 159 |
+
"normalized": false,
|
| 160 |
+
"rstrip": true,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": true
|
| 163 |
+
},
|
| 164 |
+
"100276": {
|
| 165 |
+
"content": "<|endofprompt|>",
|
| 166 |
+
"lstrip": true,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": true,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": true
|
| 171 |
+
},
|
| 172 |
+
"100277": {
|
| 173 |
+
"content": "<|dummy_13|>",
|
| 174 |
+
"lstrip": true,
|
| 175 |
+
"normalized": false,
|
| 176 |
+
"rstrip": true,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": true
|
| 179 |
+
},
|
| 180 |
+
"100278": {
|
| 181 |
+
"content": "<|dummy_14|>",
|
| 182 |
+
"lstrip": true,
|
| 183 |
+
"normalized": false,
|
| 184 |
+
"rstrip": true,
|
| 185 |
+
"single_word": false,
|
| 186 |
+
"special": true
|
| 187 |
+
},
|
| 188 |
+
"100279": {
|
| 189 |
+
"content": "<|dummy_15|>",
|
| 190 |
+
"lstrip": true,
|
| 191 |
+
"normalized": false,
|
| 192 |
+
"rstrip": true,
|
| 193 |
+
"single_word": false,
|
| 194 |
+
"special": true
|
| 195 |
+
},
|
| 196 |
+
"100280": {
|
| 197 |
+
"content": "<|dummy_16|>",
|
| 198 |
+
"lstrip": true,
|
| 199 |
+
"normalized": false,
|
| 200 |
+
"rstrip": true,
|
| 201 |
+
"single_word": false,
|
| 202 |
+
"special": true
|
| 203 |
+
},
|
| 204 |
+
"100281": {
|
| 205 |
+
"content": "<|dummy_17|>",
|
| 206 |
+
"lstrip": true,
|
| 207 |
+
"normalized": false,
|
| 208 |
+
"rstrip": true,
|
| 209 |
+
"single_word": false,
|
| 210 |
+
"special": true
|
| 211 |
+
},
|
| 212 |
+
"100282": {
|
| 213 |
+
"content": "<|dummy_18|>",
|
| 214 |
+
"lstrip": true,
|
| 215 |
+
"normalized": false,
|
| 216 |
+
"rstrip": true,
|
| 217 |
+
"single_word": false,
|
| 218 |
+
"special": true
|
| 219 |
+
},
|
| 220 |
+
"100283": {
|
| 221 |
+
"content": "<|dummy_19|>",
|
| 222 |
+
"lstrip": true,
|
| 223 |
+
"normalized": false,
|
| 224 |
+
"rstrip": true,
|
| 225 |
+
"single_word": false,
|
| 226 |
+
"special": true
|
| 227 |
+
},
|
| 228 |
+
"100284": {
|
| 229 |
+
"content": "<|dummy_20|>",
|
| 230 |
+
"lstrip": true,
|
| 231 |
+
"normalized": false,
|
| 232 |
+
"rstrip": true,
|
| 233 |
+
"single_word": false,
|
| 234 |
+
"special": true
|
| 235 |
+
},
|
| 236 |
+
"100285": {
|
| 237 |
+
"content": "<|dummy_21|>",
|
| 238 |
+
"lstrip": true,
|
| 239 |
+
"normalized": false,
|
| 240 |
+
"rstrip": true,
|
| 241 |
+
"single_word": false,
|
| 242 |
+
"special": true
|
| 243 |
+
},
|
| 244 |
+
"100286": {
|
| 245 |
+
"content": "<|dummy_22|>",
|
| 246 |
+
"lstrip": true,
|
| 247 |
+
"normalized": false,
|
| 248 |
+
"rstrip": true,
|
| 249 |
+
"single_word": false,
|
| 250 |
+
"special": true
|
| 251 |
+
},
|
| 252 |
+
"100287": {
|
| 253 |
+
"content": "<|dummy_23|>",
|
| 254 |
+
"lstrip": true,
|
| 255 |
+
"normalized": false,
|
| 256 |
+
"rstrip": true,
|
| 257 |
+
"single_word": false,
|
| 258 |
+
"special": true
|
| 259 |
+
},
|
| 260 |
+
"100288": {
|
| 261 |
+
"content": "<|dummy_24|>",
|
| 262 |
+
"lstrip": true,
|
| 263 |
+
"normalized": false,
|
| 264 |
+
"rstrip": true,
|
| 265 |
+
"single_word": false,
|
| 266 |
+
"special": true
|
| 267 |
+
},
|
| 268 |
+
"100289": {
|
| 269 |
+
"content": "<|dummy_25|>",
|
| 270 |
+
"lstrip": true,
|
| 271 |
+
"normalized": false,
|
| 272 |
+
"rstrip": true,
|
| 273 |
+
"single_word": false,
|
| 274 |
+
"special": true
|
| 275 |
+
},
|
| 276 |
+
"100290": {
|
| 277 |
+
"content": "<|dummy_26|>",
|
| 278 |
+
"lstrip": true,
|
| 279 |
+
"normalized": false,
|
| 280 |
+
"rstrip": true,
|
| 281 |
+
"single_word": false,
|
| 282 |
+
"special": true
|
| 283 |
+
},
|
| 284 |
+
"100291": {
|
| 285 |
+
"content": "<|dummy_27|>",
|
| 286 |
+
"lstrip": true,
|
| 287 |
+
"normalized": false,
|
| 288 |
+
"rstrip": true,
|
| 289 |
+
"single_word": false,
|
| 290 |
+
"special": true
|
| 291 |
+
},
|
| 292 |
+
"100292": {
|
| 293 |
+
"content": "<|dummy_28|>",
|
| 294 |
+
"lstrip": true,
|
| 295 |
+
"normalized": false,
|
| 296 |
+
"rstrip": true,
|
| 297 |
+
"single_word": false,
|
| 298 |
+
"special": true
|
| 299 |
+
},
|
| 300 |
+
"100293": {
|
| 301 |
+
"content": "<|dummy_29|>",
|
| 302 |
+
"lstrip": true,
|
| 303 |
+
"normalized": false,
|
| 304 |
+
"rstrip": true,
|
| 305 |
+
"single_word": false,
|
| 306 |
+
"special": true
|
| 307 |
+
},
|
| 308 |
+
"100294": {
|
| 309 |
+
"content": "<|dummy_30|>",
|
| 310 |
+
"lstrip": true,
|
| 311 |
+
"normalized": false,
|
| 312 |
+
"rstrip": true,
|
| 313 |
+
"single_word": false,
|
| 314 |
+
"special": true
|
| 315 |
+
},
|
| 316 |
+
"100295": {
|
| 317 |
+
"content": "<|dummy_31|>",
|
| 318 |
+
"lstrip": true,
|
| 319 |
+
"normalized": false,
|
| 320 |
+
"rstrip": true,
|
| 321 |
+
"single_word": false,
|
| 322 |
+
"special": true
|
| 323 |
+
},
|
| 324 |
+
"100296": {
|
| 325 |
+
"content": "<|dummy_32|>",
|
| 326 |
+
"lstrip": true,
|
| 327 |
+
"normalized": false,
|
| 328 |
+
"rstrip": true,
|
| 329 |
+
"single_word": false,
|
| 330 |
+
"special": true
|
| 331 |
+
},
|
| 332 |
+
"100297": {
|
| 333 |
+
"content": "<|dummy_33|>",
|
| 334 |
+
"lstrip": true,
|
| 335 |
+
"normalized": false,
|
| 336 |
+
"rstrip": true,
|
| 337 |
+
"single_word": false,
|
| 338 |
+
"special": true
|
| 339 |
+
},
|
| 340 |
+
"100298": {
|
| 341 |
+
"content": "<|dummy_34|>",
|
| 342 |
+
"lstrip": true,
|
| 343 |
+
"normalized": false,
|
| 344 |
+
"rstrip": true,
|
| 345 |
+
"single_word": false,
|
| 346 |
+
"special": true
|
| 347 |
+
},
|
| 348 |
+
"100299": {
|
| 349 |
+
"content": "<|dummy_35|>",
|
| 350 |
+
"lstrip": true,
|
| 351 |
+
"normalized": false,
|
| 352 |
+
"rstrip": true,
|
| 353 |
+
"single_word": false,
|
| 354 |
+
"special": true
|
| 355 |
+
},
|
| 356 |
+
"100300": {
|
| 357 |
+
"content": "<|dummy_36|>",
|
| 358 |
+
"lstrip": true,
|
| 359 |
+
"normalized": false,
|
| 360 |
+
"rstrip": true,
|
| 361 |
+
"single_word": false,
|
| 362 |
+
"special": true
|
| 363 |
+
},
|
| 364 |
+
"100301": {
|
| 365 |
+
"content": "<|dummy_37|>",
|
| 366 |
+
"lstrip": true,
|
| 367 |
+
"normalized": false,
|
| 368 |
+
"rstrip": true,
|
| 369 |
+
"single_word": false,
|
| 370 |
+
"special": true
|
| 371 |
+
},
|
| 372 |
+
"100302": {
|
| 373 |
+
"content": "<|dummy_38|>",
|
| 374 |
+
"lstrip": true,
|
| 375 |
+
"normalized": false,
|
| 376 |
+
"rstrip": true,
|
| 377 |
+
"single_word": false,
|
| 378 |
+
"special": true
|
| 379 |
+
},
|
| 380 |
+
"100303": {
|
| 381 |
+
"content": "<|dummy_39|>",
|
| 382 |
+
"lstrip": true,
|
| 383 |
+
"normalized": false,
|
| 384 |
+
"rstrip": true,
|
| 385 |
+
"single_word": false,
|
| 386 |
+
"special": true
|
| 387 |
+
},
|
| 388 |
+
"100304": {
|
| 389 |
+
"content": "<|dummy_40|>",
|
| 390 |
+
"lstrip": true,
|
| 391 |
+
"normalized": false,
|
| 392 |
+
"rstrip": true,
|
| 393 |
+
"single_word": false,
|
| 394 |
+
"special": true
|
| 395 |
+
},
|
| 396 |
+
"100305": {
|
| 397 |
+
"content": "<|dummy_41|>",
|
| 398 |
+
"lstrip": true,
|
| 399 |
+
"normalized": false,
|
| 400 |
+
"rstrip": true,
|
| 401 |
+
"single_word": false,
|
| 402 |
+
"special": true
|
| 403 |
+
},
|
| 404 |
+
"100306": {
|
| 405 |
+
"content": "<|dummy_42|>",
|
| 406 |
+
"lstrip": true,
|
| 407 |
+
"normalized": false,
|
| 408 |
+
"rstrip": true,
|
| 409 |
+
"single_word": false,
|
| 410 |
+
"special": true
|
| 411 |
+
},
|
| 412 |
+
"100307": {
|
| 413 |
+
"content": "<|dummy_43|>",
|
| 414 |
+
"lstrip": true,
|
| 415 |
+
"normalized": false,
|
| 416 |
+
"rstrip": true,
|
| 417 |
+
"single_word": false,
|
| 418 |
+
"special": true
|
| 419 |
+
},
|
| 420 |
+
"100308": {
|
| 421 |
+
"content": "<|dummy_44|>",
|
| 422 |
+
"lstrip": true,
|
| 423 |
+
"normalized": false,
|
| 424 |
+
"rstrip": true,
|
| 425 |
+
"single_word": false,
|
| 426 |
+
"special": true
|
| 427 |
+
},
|
| 428 |
+
"100309": {
|
| 429 |
+
"content": "<|dummy_45|>",
|
| 430 |
+
"lstrip": true,
|
| 431 |
+
"normalized": false,
|
| 432 |
+
"rstrip": true,
|
| 433 |
+
"single_word": false,
|
| 434 |
+
"special": true
|
| 435 |
+
},
|
| 436 |
+
"100310": {
|
| 437 |
+
"content": "<|dummy_46|>",
|
| 438 |
+
"lstrip": true,
|
| 439 |
+
"normalized": false,
|
| 440 |
+
"rstrip": true,
|
| 441 |
+
"single_word": false,
|
| 442 |
+
"special": true
|
| 443 |
+
},
|
| 444 |
+
"100311": {
|
| 445 |
+
"content": "<|dummy_47|>",
|
| 446 |
+
"lstrip": true,
|
| 447 |
+
"normalized": false,
|
| 448 |
+
"rstrip": true,
|
| 449 |
+
"single_word": false,
|
| 450 |
+
"special": true
|
| 451 |
+
},
|
| 452 |
+
"100312": {
|
| 453 |
+
"content": "<|dummy_48|>",
|
| 454 |
+
"lstrip": true,
|
| 455 |
+
"normalized": false,
|
| 456 |
+
"rstrip": true,
|
| 457 |
+
"single_word": false,
|
| 458 |
+
"special": true
|
| 459 |
+
},
|
| 460 |
+
"100313": {
|
| 461 |
+
"content": "<|dummy_49|>",
|
| 462 |
+
"lstrip": true,
|
| 463 |
+
"normalized": false,
|
| 464 |
+
"rstrip": true,
|
| 465 |
+
"single_word": false,
|
| 466 |
+
"special": true
|
| 467 |
+
},
|
| 468 |
+
"100314": {
|
| 469 |
+
"content": "<|dummy_50|>",
|
| 470 |
+
"lstrip": true,
|
| 471 |
+
"normalized": false,
|
| 472 |
+
"rstrip": true,
|
| 473 |
+
"single_word": false,
|
| 474 |
+
"special": true
|
| 475 |
+
},
|
| 476 |
+
"100315": {
|
| 477 |
+
"content": "<|dummy_51|>",
|
| 478 |
+
"lstrip": true,
|
| 479 |
+
"normalized": false,
|
| 480 |
+
"rstrip": true,
|
| 481 |
+
"single_word": false,
|
| 482 |
+
"special": true
|
| 483 |
+
},
|
| 484 |
+
"100316": {
|
| 485 |
+
"content": "<|dummy_52|>",
|
| 486 |
+
"lstrip": true,
|
| 487 |
+
"normalized": false,
|
| 488 |
+
"rstrip": true,
|
| 489 |
+
"single_word": false,
|
| 490 |
+
"special": true
|
| 491 |
+
},
|
| 492 |
+
"100317": {
|
| 493 |
+
"content": "<|dummy_53|>",
|
| 494 |
+
"lstrip": true,
|
| 495 |
+
"normalized": false,
|
| 496 |
+
"rstrip": true,
|
| 497 |
+
"single_word": false,
|
| 498 |
+
"special": true
|
| 499 |
+
},
|
| 500 |
+
"100318": {
|
| 501 |
+
"content": "<|dummy_54|>",
|
| 502 |
+
"lstrip": true,
|
| 503 |
+
"normalized": false,
|
| 504 |
+
"rstrip": true,
|
| 505 |
+
"single_word": false,
|
| 506 |
+
"special": true
|
| 507 |
+
},
|
| 508 |
+
"100319": {
|
| 509 |
+
"content": "<|dummy_55|>",
|
| 510 |
+
"lstrip": true,
|
| 511 |
+
"normalized": false,
|
| 512 |
+
"rstrip": true,
|
| 513 |
+
"single_word": false,
|
| 514 |
+
"special": true
|
| 515 |
+
},
|
| 516 |
+
"100320": {
|
| 517 |
+
"content": "<|dummy_56|>",
|
| 518 |
+
"lstrip": true,
|
| 519 |
+
"normalized": false,
|
| 520 |
+
"rstrip": true,
|
| 521 |
+
"single_word": false,
|
| 522 |
+
"special": true
|
| 523 |
+
},
|
| 524 |
+
"100321": {
|
| 525 |
+
"content": "<|dummy_57|>",
|
| 526 |
+
"lstrip": true,
|
| 527 |
+
"normalized": false,
|
| 528 |
+
"rstrip": true,
|
| 529 |
+
"single_word": false,
|
| 530 |
+
"special": true
|
| 531 |
+
},
|
| 532 |
+
"100322": {
|
| 533 |
+
"content": "<|dummy_58|>",
|
| 534 |
+
"lstrip": true,
|
| 535 |
+
"normalized": false,
|
| 536 |
+
"rstrip": true,
|
| 537 |
+
"single_word": false,
|
| 538 |
+
"special": true
|
| 539 |
+
},
|
| 540 |
+
"100323": {
|
| 541 |
+
"content": "<|dummy_59|>",
|
| 542 |
+
"lstrip": true,
|
| 543 |
+
"normalized": false,
|
| 544 |
+
"rstrip": true,
|
| 545 |
+
"single_word": false,
|
| 546 |
+
"special": true
|
| 547 |
+
},
|
| 548 |
+
"100324": {
|
| 549 |
+
"content": "<|dummy_60|>",
|
| 550 |
+
"lstrip": true,
|
| 551 |
+
"normalized": false,
|
| 552 |
+
"rstrip": true,
|
| 553 |
+
"single_word": false,
|
| 554 |
+
"special": true
|
| 555 |
+
},
|
| 556 |
+
"100325": {
|
| 557 |
+
"content": "<|dummy_61|>",
|
| 558 |
+
"lstrip": true,
|
| 559 |
+
"normalized": false,
|
| 560 |
+
"rstrip": true,
|
| 561 |
+
"single_word": false,
|
| 562 |
+
"special": true
|
| 563 |
+
},
|
| 564 |
+
"100326": {
|
| 565 |
+
"content": "<|dummy_62|>",
|
| 566 |
+
"lstrip": true,
|
| 567 |
+
"normalized": false,
|
| 568 |
+
"rstrip": true,
|
| 569 |
+
"single_word": false,
|
| 570 |
+
"special": true
|
| 571 |
+
},
|
| 572 |
+
"100327": {
|
| 573 |
+
"content": "<|dummy_63|>",
|
| 574 |
+
"lstrip": true,
|
| 575 |
+
"normalized": false,
|
| 576 |
+
"rstrip": true,
|
| 577 |
+
"single_word": false,
|
| 578 |
+
"special": true
|
| 579 |
+
},
|
| 580 |
+
"100328": {
|
| 581 |
+
"content": "<|dummy_64|>",
|
| 582 |
+
"lstrip": true,
|
| 583 |
+
"normalized": false,
|
| 584 |
+
"rstrip": true,
|
| 585 |
+
"single_word": false,
|
| 586 |
+
"special": true
|
| 587 |
+
},
|
| 588 |
+
"100329": {
|
| 589 |
+
"content": "<|dummy_65|>",
|
| 590 |
+
"lstrip": true,
|
| 591 |
+
"normalized": false,
|
| 592 |
+
"rstrip": true,
|
| 593 |
+
"single_word": false,
|
| 594 |
+
"special": true
|
| 595 |
+
},
|
| 596 |
+
"100330": {
|
| 597 |
+
"content": "<|dummy_66|>",
|
| 598 |
+
"lstrip": true,
|
| 599 |
+
"normalized": false,
|
| 600 |
+
"rstrip": true,
|
| 601 |
+
"single_word": false,
|
| 602 |
+
"special": true
|
| 603 |
+
},
|
| 604 |
+
"100331": {
|
| 605 |
+
"content": "<|dummy_67|>",
|
| 606 |
+
"lstrip": true,
|
| 607 |
+
"normalized": false,
|
| 608 |
+
"rstrip": true,
|
| 609 |
+
"single_word": false,
|
| 610 |
+
"special": true
|
| 611 |
+
},
|
| 612 |
+
"100332": {
|
| 613 |
+
"content": "<|dummy_68|>",
|
| 614 |
+
"lstrip": true,
|
| 615 |
+
"normalized": false,
|
| 616 |
+
"rstrip": true,
|
| 617 |
+
"single_word": false,
|
| 618 |
+
"special": true
|
| 619 |
+
},
|
| 620 |
+
"100333": {
|
| 621 |
+
"content": "<|dummy_69|>",
|
| 622 |
+
"lstrip": true,
|
| 623 |
+
"normalized": false,
|
| 624 |
+
"rstrip": true,
|
| 625 |
+
"single_word": false,
|
| 626 |
+
"special": true
|
| 627 |
+
},
|
| 628 |
+
"100334": {
|
| 629 |
+
"content": "<|dummy_70|>",
|
| 630 |
+
"lstrip": true,
|
| 631 |
+
"normalized": false,
|
| 632 |
+
"rstrip": true,
|
| 633 |
+
"single_word": false,
|
| 634 |
+
"special": true
|
| 635 |
+
},
|
| 636 |
+
"100335": {
|
| 637 |
+
"content": "<|dummy_71|>",
|
| 638 |
+
"lstrip": true,
|
| 639 |
+
"normalized": false,
|
| 640 |
+
"rstrip": true,
|
| 641 |
+
"single_word": false,
|
| 642 |
+
"special": true
|
| 643 |
+
},
|
| 644 |
+
"100336": {
|
| 645 |
+
"content": "<|dummy_72|>",
|
| 646 |
+
"lstrip": true,
|
| 647 |
+
"normalized": false,
|
| 648 |
+
"rstrip": true,
|
| 649 |
+
"single_word": false,
|
| 650 |
+
"special": true
|
| 651 |
+
},
|
| 652 |
+
"100337": {
|
| 653 |
+
"content": "<|dummy_73|>",
|
| 654 |
+
"lstrip": true,
|
| 655 |
+
"normalized": false,
|
| 656 |
+
"rstrip": true,
|
| 657 |
+
"single_word": false,
|
| 658 |
+
"special": true
|
| 659 |
+
},
|
| 660 |
+
"100338": {
|
| 661 |
+
"content": "<|dummy_74|>",
|
| 662 |
+
"lstrip": true,
|
| 663 |
+
"normalized": false,
|
| 664 |
+
"rstrip": true,
|
| 665 |
+
"single_word": false,
|
| 666 |
+
"special": true
|
| 667 |
+
},
|
| 668 |
+
"100339": {
|
| 669 |
+
"content": "<|dummy_75|>",
|
| 670 |
+
"lstrip": true,
|
| 671 |
+
"normalized": false,
|
| 672 |
+
"rstrip": true,
|
| 673 |
+
"single_word": false,
|
| 674 |
+
"special": true
|
| 675 |
+
},
|
| 676 |
+
"100340": {
|
| 677 |
+
"content": "<|dummy_76|>",
|
| 678 |
+
"lstrip": true,
|
| 679 |
+
"normalized": false,
|
| 680 |
+
"rstrip": true,
|
| 681 |
+
"single_word": false,
|
| 682 |
+
"special": true
|
| 683 |
+
},
|
| 684 |
+
"100341": {
|
| 685 |
+
"content": "<|dummy_77|>",
|
| 686 |
+
"lstrip": true,
|
| 687 |
+
"normalized": false,
|
| 688 |
+
"rstrip": true,
|
| 689 |
+
"single_word": false,
|
| 690 |
+
"special": true
|
| 691 |
+
},
|
| 692 |
+
"100342": {
|
| 693 |
+
"content": "<|dummy_78|>",
|
| 694 |
+
"lstrip": true,
|
| 695 |
+
"normalized": false,
|
| 696 |
+
"rstrip": true,
|
| 697 |
+
"single_word": false,
|
| 698 |
+
"special": true
|
| 699 |
+
},
|
| 700 |
+
"100343": {
|
| 701 |
+
"content": "<|dummy_79|>",
|
| 702 |
+
"lstrip": true,
|
| 703 |
+
"normalized": false,
|
| 704 |
+
"rstrip": true,
|
| 705 |
+
"single_word": false,
|
| 706 |
+
"special": true
|
| 707 |
+
},
|
| 708 |
+
"100344": {
|
| 709 |
+
"content": "<|dummy_80|>",
|
| 710 |
+
"lstrip": true,
|
| 711 |
+
"normalized": false,
|
| 712 |
+
"rstrip": true,
|
| 713 |
+
"single_word": false,
|
| 714 |
+
"special": true
|
| 715 |
+
},
|
| 716 |
+
"100345": {
|
| 717 |
+
"content": "<|dummy_81|>",
|
| 718 |
+
"lstrip": true,
|
| 719 |
+
"normalized": false,
|
| 720 |
+
"rstrip": true,
|
| 721 |
+
"single_word": false,
|
| 722 |
+
"special": true
|
| 723 |
+
},
|
| 724 |
+
"100346": {
|
| 725 |
+
"content": "<|dummy_82|>",
|
| 726 |
+
"lstrip": true,
|
| 727 |
+
"normalized": false,
|
| 728 |
+
"rstrip": true,
|
| 729 |
+
"single_word": false,
|
| 730 |
+
"special": true
|
| 731 |
+
},
|
| 732 |
+
"100347": {
|
| 733 |
+
"content": "<|dummy_83|>",
|
| 734 |
+
"lstrip": true,
|
| 735 |
+
"normalized": false,
|
| 736 |
+
"rstrip": true,
|
| 737 |
+
"single_word": false,
|
| 738 |
+
"special": true
|
| 739 |
+
},
|
| 740 |
+
"100348": {
|
| 741 |
+
"content": "<|dummy_84|>",
|
| 742 |
+
"lstrip": true,
|
| 743 |
+
"normalized": false,
|
| 744 |
+
"rstrip": true,
|
| 745 |
+
"single_word": false,
|
| 746 |
+
"special": true
|
| 747 |
+
},
|
| 748 |
+
"100349": {
|
| 749 |
+
"content": "<|dummy_85|>",
|
| 750 |
+
"lstrip": true,
|
| 751 |
+
"normalized": false,
|
| 752 |
+
"rstrip": true,
|
| 753 |
+
"single_word": false,
|
| 754 |
+
"special": true
|
| 755 |
+
},
|
| 756 |
+
"100350": {
|
| 757 |
+
"content": "<|dummy_86|>",
|
| 758 |
+
"lstrip": true,
|
| 759 |
+
"normalized": false,
|
| 760 |
+
"rstrip": true,
|
| 761 |
+
"single_word": false,
|
| 762 |
+
"special": true
|
| 763 |
+
},
|
| 764 |
+
"100351": {
|
| 765 |
+
"content": "<|dummy_87|>",
|
| 766 |
+
"lstrip": true,
|
| 767 |
+
"normalized": false,
|
| 768 |
+
"rstrip": true,
|
| 769 |
+
"single_word": false,
|
| 770 |
+
"special": true
|
| 771 |
+
}
|
| 772 |
+
},
|
| 773 |
+
"additional_special_tokens": [
|
| 774 |
+
"<|im_end|>"
|
| 775 |
+
],
|
| 776 |
+
"bos_token": "<|endoftext|>",
|
| 777 |
+
"chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'assistant') %}{{'<|im_start|>assistant<|im_sep|>' + message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant<|im_sep|>' }}{% endif %}",
|
| 778 |
+
"clean_up_tokenization_spaces": false,
|
| 779 |
+
"eos_token": "<|im_end|>",
|
| 780 |
+
"extra_special_tokens": {},
|
| 781 |
+
"model_max_length": 16384,
|
| 782 |
+
"pad_token": "<|dummy_85|>",
|
| 783 |
+
"padding_side": "right",
|
| 784 |
+
"split_special_tokens": false,
|
| 785 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 786 |
+
"unk_token": "<|endoftext|>"
|
| 787 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,3533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.6020469596628537,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 5000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0012040939193257074,
|
| 13 |
+
"grad_norm": 2.0694425106048584,
|
| 14 |
+
"learning_rate": 1.2033694344163658e-08,
|
| 15 |
+
"loss": 0.6897,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.002408187838651415,
|
| 20 |
+
"grad_norm": 2.151496171951294,
|
| 21 |
+
"learning_rate": 2.4067388688327316e-08,
|
| 22 |
+
"loss": 0.6787,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.003612281757977122,
|
| 27 |
+
"grad_norm": 2.640268564224243,
|
| 28 |
+
"learning_rate": 3.610108303249097e-08,
|
| 29 |
+
"loss": 0.6639,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.00481637567730283,
|
| 34 |
+
"grad_norm": 2.6572210788726807,
|
| 35 |
+
"learning_rate": 4.813477737665463e-08,
|
| 36 |
+
"loss": 0.7152,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.006020469596628537,
|
| 41 |
+
"grad_norm": 1.7933714389801025,
|
| 42 |
+
"learning_rate": 6.016847172081829e-08,
|
| 43 |
+
"loss": 0.6503,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.007224563515954244,
|
| 48 |
+
"grad_norm": 2.3688879013061523,
|
| 49 |
+
"learning_rate": 7.220216606498194e-08,
|
| 50 |
+
"loss": 0.6827,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.008428657435279952,
|
| 55 |
+
"grad_norm": 2.220139265060425,
|
| 56 |
+
"learning_rate": 8.42358604091456e-08,
|
| 57 |
+
"loss": 0.6443,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.00963275135460566,
|
| 62 |
+
"grad_norm": 2.4725093841552734,
|
| 63 |
+
"learning_rate": 9.626955475330927e-08,
|
| 64 |
+
"loss": 0.6681,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.010836845273931367,
|
| 69 |
+
"grad_norm": 1.4149224758148193,
|
| 70 |
+
"learning_rate": 1.0830324909747292e-07,
|
| 71 |
+
"loss": 0.5592,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.012040939193257074,
|
| 76 |
+
"grad_norm": 0.9355699419975281,
|
| 77 |
+
"learning_rate": 1.2033694344163658e-07,
|
| 78 |
+
"loss": 0.5802,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.013245033112582781,
|
| 83 |
+
"grad_norm": 1.0211461782455444,
|
| 84 |
+
"learning_rate": 1.3237063778580024e-07,
|
| 85 |
+
"loss": 0.5589,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.014449127031908489,
|
| 90 |
+
"grad_norm": 1.0006492137908936,
|
| 91 |
+
"learning_rate": 1.4440433212996388e-07,
|
| 92 |
+
"loss": 0.5421,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.015653220951234198,
|
| 97 |
+
"grad_norm": 0.8444674015045166,
|
| 98 |
+
"learning_rate": 1.5643802647412754e-07,
|
| 99 |
+
"loss": 0.5079,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.016857314870559904,
|
| 104 |
+
"grad_norm": 0.7920398712158203,
|
| 105 |
+
"learning_rate": 1.684717208182912e-07,
|
| 106 |
+
"loss": 0.4898,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.018061408789885613,
|
| 111 |
+
"grad_norm": 0.6817948818206787,
|
| 112 |
+
"learning_rate": 1.8050541516245487e-07,
|
| 113 |
+
"loss": 0.4645,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.01926550270921132,
|
| 118 |
+
"grad_norm": 0.9353106021881104,
|
| 119 |
+
"learning_rate": 1.9253910950661853e-07,
|
| 120 |
+
"loss": 0.485,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.020469596628537028,
|
| 125 |
+
"grad_norm": 0.6695616841316223,
|
| 126 |
+
"learning_rate": 2.045728038507822e-07,
|
| 127 |
+
"loss": 0.4647,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.021673690547862733,
|
| 132 |
+
"grad_norm": 0.6993837952613831,
|
| 133 |
+
"learning_rate": 2.1660649819494583e-07,
|
| 134 |
+
"loss": 0.4378,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.022877784467188442,
|
| 139 |
+
"grad_norm": 0.7333642244338989,
|
| 140 |
+
"learning_rate": 2.286401925391095e-07,
|
| 141 |
+
"loss": 0.4288,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.024081878386514148,
|
| 146 |
+
"grad_norm": 0.707914412021637,
|
| 147 |
+
"learning_rate": 2.4067388688327316e-07,
|
| 148 |
+
"loss": 0.4601,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.025285972305839857,
|
| 153 |
+
"grad_norm": 0.7626605033874512,
|
| 154 |
+
"learning_rate": 2.527075812274368e-07,
|
| 155 |
+
"loss": 0.4454,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.026490066225165563,
|
| 160 |
+
"grad_norm": 1.2267224788665771,
|
| 161 |
+
"learning_rate": 2.647412755716005e-07,
|
| 162 |
+
"loss": 0.4398,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.027694160144491272,
|
| 167 |
+
"grad_norm": 0.7376552224159241,
|
| 168 |
+
"learning_rate": 2.767749699157641e-07,
|
| 169 |
+
"loss": 0.4275,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.028898254063816978,
|
| 174 |
+
"grad_norm": 0.7109339237213135,
|
| 175 |
+
"learning_rate": 2.8880866425992776e-07,
|
| 176 |
+
"loss": 0.3996,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.030102347983142687,
|
| 181 |
+
"grad_norm": 0.6406791806221008,
|
| 182 |
+
"learning_rate": 3.008423586040915e-07,
|
| 183 |
+
"loss": 0.4337,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.031306441902468396,
|
| 188 |
+
"grad_norm": 0.6780328154563904,
|
| 189 |
+
"learning_rate": 3.128760529482551e-07,
|
| 190 |
+
"loss": 0.4296,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.0325105358217941,
|
| 195 |
+
"grad_norm": 0.5574681162834167,
|
| 196 |
+
"learning_rate": 3.2490974729241875e-07,
|
| 197 |
+
"loss": 0.4123,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.03371462974111981,
|
| 202 |
+
"grad_norm": 0.6190093755722046,
|
| 203 |
+
"learning_rate": 3.369434416365824e-07,
|
| 204 |
+
"loss": 0.3959,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.034918723660445516,
|
| 209 |
+
"grad_norm": 0.6488677859306335,
|
| 210 |
+
"learning_rate": 3.4897713598074607e-07,
|
| 211 |
+
"loss": 0.3883,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.036122817579771226,
|
| 216 |
+
"grad_norm": 0.6014848351478577,
|
| 217 |
+
"learning_rate": 3.6101083032490974e-07,
|
| 218 |
+
"loss": 0.4222,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.03732691149909693,
|
| 223 |
+
"grad_norm": 0.5347362160682678,
|
| 224 |
+
"learning_rate": 3.730445246690734e-07,
|
| 225 |
+
"loss": 0.3929,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.03853100541842264,
|
| 230 |
+
"grad_norm": 1.4445090293884277,
|
| 231 |
+
"learning_rate": 3.8507821901323706e-07,
|
| 232 |
+
"loss": 0.3798,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.039735099337748346,
|
| 237 |
+
"grad_norm": 0.6319730877876282,
|
| 238 |
+
"learning_rate": 3.9711191335740067e-07,
|
| 239 |
+
"loss": 0.386,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.040939193257074055,
|
| 244 |
+
"grad_norm": 0.9257851243019104,
|
| 245 |
+
"learning_rate": 4.091456077015644e-07,
|
| 246 |
+
"loss": 0.393,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.04214328717639976,
|
| 251 |
+
"grad_norm": 0.5936801433563232,
|
| 252 |
+
"learning_rate": 4.2117930204572805e-07,
|
| 253 |
+
"loss": 0.3912,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.04334738109572547,
|
| 258 |
+
"grad_norm": 0.686888575553894,
|
| 259 |
+
"learning_rate": 4.3321299638989166e-07,
|
| 260 |
+
"loss": 0.4015,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.044551475015051176,
|
| 265 |
+
"grad_norm": 0.5986278653144836,
|
| 266 |
+
"learning_rate": 4.452466907340554e-07,
|
| 267 |
+
"loss": 0.3622,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.045755568934376885,
|
| 272 |
+
"grad_norm": 0.5603286623954773,
|
| 273 |
+
"learning_rate": 4.57280385078219e-07,
|
| 274 |
+
"loss": 0.3774,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.04695966285370259,
|
| 279 |
+
"grad_norm": 1.2507776021957397,
|
| 280 |
+
"learning_rate": 4.6931407942238265e-07,
|
| 281 |
+
"loss": 0.3681,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.048163756773028296,
|
| 286 |
+
"grad_norm": 0.5886845588684082,
|
| 287 |
+
"learning_rate": 4.813477737665463e-07,
|
| 288 |
+
"loss": 0.371,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.049367850692354005,
|
| 293 |
+
"grad_norm": 0.5690301656723022,
|
| 294 |
+
"learning_rate": 4.9338146811071e-07,
|
| 295 |
+
"loss": 0.3454,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.050571944611679714,
|
| 300 |
+
"grad_norm": 0.6363804340362549,
|
| 301 |
+
"learning_rate": 5.054151624548736e-07,
|
| 302 |
+
"loss": 0.3477,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.05177603853100542,
|
| 307 |
+
"grad_norm": 0.49289166927337646,
|
| 308 |
+
"learning_rate": 5.174488567990373e-07,
|
| 309 |
+
"loss": 0.352,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.052980132450331126,
|
| 314 |
+
"grad_norm": 0.5901724696159363,
|
| 315 |
+
"learning_rate": 5.29482551143201e-07,
|
| 316 |
+
"loss": 0.3514,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.054184226369656835,
|
| 321 |
+
"grad_norm": 0.6019484996795654,
|
| 322 |
+
"learning_rate": 5.415162454873646e-07,
|
| 323 |
+
"loss": 0.3713,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.055388320288982544,
|
| 328 |
+
"grad_norm": 0.5057175755500793,
|
| 329 |
+
"learning_rate": 5.535499398315282e-07,
|
| 330 |
+
"loss": 0.3346,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.056592414208308246,
|
| 335 |
+
"grad_norm": 0.4834252893924713,
|
| 336 |
+
"learning_rate": 5.655836341756919e-07,
|
| 337 |
+
"loss": 0.3638,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.057796508127633955,
|
| 342 |
+
"grad_norm": 0.6098750233650208,
|
| 343 |
+
"learning_rate": 5.776173285198555e-07,
|
| 344 |
+
"loss": 0.3622,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.059000602046959665,
|
| 349 |
+
"grad_norm": 0.6201721429824829,
|
| 350 |
+
"learning_rate": 5.896510228640193e-07,
|
| 351 |
+
"loss": 0.3329,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.060204695966285374,
|
| 356 |
+
"grad_norm": 0.7006021738052368,
|
| 357 |
+
"learning_rate": 6.01684717208183e-07,
|
| 358 |
+
"loss": 0.3487,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.061408789885611076,
|
| 363 |
+
"grad_norm": 0.708990216255188,
|
| 364 |
+
"learning_rate": 6.137184115523465e-07,
|
| 365 |
+
"loss": 0.3448,
|
| 366 |
+
"step": 510
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.06261288380493679,
|
| 370 |
+
"grad_norm": 0.7767229676246643,
|
| 371 |
+
"learning_rate": 6.257521058965102e-07,
|
| 372 |
+
"loss": 0.3751,
|
| 373 |
+
"step": 520
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.0638169777242625,
|
| 377 |
+
"grad_norm": 0.6051218509674072,
|
| 378 |
+
"learning_rate": 6.377858002406738e-07,
|
| 379 |
+
"loss": 0.3502,
|
| 380 |
+
"step": 530
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.0650210716435882,
|
| 384 |
+
"grad_norm": 0.7111226916313171,
|
| 385 |
+
"learning_rate": 6.498194945848375e-07,
|
| 386 |
+
"loss": 0.3625,
|
| 387 |
+
"step": 540
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.06622516556291391,
|
| 391 |
+
"grad_norm": 0.7441733479499817,
|
| 392 |
+
"learning_rate": 6.618531889290013e-07,
|
| 393 |
+
"loss": 0.3269,
|
| 394 |
+
"step": 550
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.06742925948223961,
|
| 398 |
+
"grad_norm": 0.6909326910972595,
|
| 399 |
+
"learning_rate": 6.738868832731648e-07,
|
| 400 |
+
"loss": 0.3302,
|
| 401 |
+
"step": 560
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.06863335340156532,
|
| 405 |
+
"grad_norm": 0.7504749298095703,
|
| 406 |
+
"learning_rate": 6.859205776173285e-07,
|
| 407 |
+
"loss": 0.3425,
|
| 408 |
+
"step": 570
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.06983744732089103,
|
| 412 |
+
"grad_norm": 0.5878099799156189,
|
| 413 |
+
"learning_rate": 6.979542719614921e-07,
|
| 414 |
+
"loss": 0.3504,
|
| 415 |
+
"step": 580
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.07104154124021674,
|
| 419 |
+
"grad_norm": 0.5515761971473694,
|
| 420 |
+
"learning_rate": 7.099879663056558e-07,
|
| 421 |
+
"loss": 0.3409,
|
| 422 |
+
"step": 590
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.07224563515954245,
|
| 426 |
+
"grad_norm": 0.57797771692276,
|
| 427 |
+
"learning_rate": 7.220216606498195e-07,
|
| 428 |
+
"loss": 0.3416,
|
| 429 |
+
"step": 600
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.07344972907886815,
|
| 433 |
+
"grad_norm": 0.4524708390235901,
|
| 434 |
+
"learning_rate": 7.34055354993983e-07,
|
| 435 |
+
"loss": 0.3581,
|
| 436 |
+
"step": 610
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.07465382299819386,
|
| 440 |
+
"grad_norm": 0.718927800655365,
|
| 441 |
+
"learning_rate": 7.460890493381468e-07,
|
| 442 |
+
"loss": 0.3609,
|
| 443 |
+
"step": 620
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.07585791691751957,
|
| 447 |
+
"grad_norm": 0.5666077733039856,
|
| 448 |
+
"learning_rate": 7.581227436823105e-07,
|
| 449 |
+
"loss": 0.335,
|
| 450 |
+
"step": 630
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.07706201083684527,
|
| 454 |
+
"grad_norm": 0.5896601676940918,
|
| 455 |
+
"learning_rate": 7.701564380264741e-07,
|
| 456 |
+
"loss": 0.3274,
|
| 457 |
+
"step": 640
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.07826610475617098,
|
| 461 |
+
"grad_norm": 0.6044319868087769,
|
| 462 |
+
"learning_rate": 7.821901323706378e-07,
|
| 463 |
+
"loss": 0.3407,
|
| 464 |
+
"step": 650
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.07947019867549669,
|
| 468 |
+
"grad_norm": 0.6831541061401367,
|
| 469 |
+
"learning_rate": 7.942238267148013e-07,
|
| 470 |
+
"loss": 0.3333,
|
| 471 |
+
"step": 660
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.0806742925948224,
|
| 475 |
+
"grad_norm": 0.7124572396278381,
|
| 476 |
+
"learning_rate": 8.06257521058965e-07,
|
| 477 |
+
"loss": 0.3326,
|
| 478 |
+
"step": 670
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.08187838651414811,
|
| 482 |
+
"grad_norm": 0.732711136341095,
|
| 483 |
+
"learning_rate": 8.182912154031288e-07,
|
| 484 |
+
"loss": 0.3487,
|
| 485 |
+
"step": 680
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.08308248043347381,
|
| 489 |
+
"grad_norm": 0.7555579543113708,
|
| 490 |
+
"learning_rate": 8.303249097472924e-07,
|
| 491 |
+
"loss": 0.3218,
|
| 492 |
+
"step": 690
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.08428657435279951,
|
| 496 |
+
"grad_norm": 0.7618419528007507,
|
| 497 |
+
"learning_rate": 8.423586040914561e-07,
|
| 498 |
+
"loss": 0.3231,
|
| 499 |
+
"step": 700
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.08549066827212523,
|
| 503 |
+
"grad_norm": 0.7383216023445129,
|
| 504 |
+
"learning_rate": 8.543922984356197e-07,
|
| 505 |
+
"loss": 0.3218,
|
| 506 |
+
"step": 710
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.08669476219145093,
|
| 510 |
+
"grad_norm": 0.5902182459831238,
|
| 511 |
+
"learning_rate": 8.664259927797833e-07,
|
| 512 |
+
"loss": 0.3367,
|
| 513 |
+
"step": 720
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.08789885611077664,
|
| 517 |
+
"grad_norm": 0.6107906103134155,
|
| 518 |
+
"learning_rate": 8.78459687123947e-07,
|
| 519 |
+
"loss": 0.3331,
|
| 520 |
+
"step": 730
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.08910295003010235,
|
| 524 |
+
"grad_norm": 0.7179387211799622,
|
| 525 |
+
"learning_rate": 8.904933814681108e-07,
|
| 526 |
+
"loss": 0.3347,
|
| 527 |
+
"step": 740
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.09030704394942805,
|
| 531 |
+
"grad_norm": 0.8263080716133118,
|
| 532 |
+
"learning_rate": 9.025270758122743e-07,
|
| 533 |
+
"loss": 0.3247,
|
| 534 |
+
"step": 750
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.09151113786875377,
|
| 538 |
+
"grad_norm": 0.8549688458442688,
|
| 539 |
+
"learning_rate": 9.14560770156438e-07,
|
| 540 |
+
"loss": 0.3239,
|
| 541 |
+
"step": 760
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.09271523178807947,
|
| 545 |
+
"grad_norm": 0.6674267053604126,
|
| 546 |
+
"learning_rate": 9.265944645006016e-07,
|
| 547 |
+
"loss": 0.333,
|
| 548 |
+
"step": 770
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.09391932570740517,
|
| 552 |
+
"grad_norm": 0.5892189741134644,
|
| 553 |
+
"learning_rate": 9.386281588447653e-07,
|
| 554 |
+
"loss": 0.322,
|
| 555 |
+
"step": 780
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.09512341962673089,
|
| 559 |
+
"grad_norm": 0.7087513208389282,
|
| 560 |
+
"learning_rate": 9.50661853188929e-07,
|
| 561 |
+
"loss": 0.327,
|
| 562 |
+
"step": 790
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.09632751354605659,
|
| 566 |
+
"grad_norm": 0.6016402840614319,
|
| 567 |
+
"learning_rate": 9.626955475330926e-07,
|
| 568 |
+
"loss": 0.3255,
|
| 569 |
+
"step": 800
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.0975316074653823,
|
| 573 |
+
"grad_norm": 0.5783524513244629,
|
| 574 |
+
"learning_rate": 9.747292418772562e-07,
|
| 575 |
+
"loss": 0.3128,
|
| 576 |
+
"step": 810
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.09873570138470801,
|
| 580 |
+
"grad_norm": 0.6049711108207703,
|
| 581 |
+
"learning_rate": 9.8676293622142e-07,
|
| 582 |
+
"loss": 0.3257,
|
| 583 |
+
"step": 820
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.09993979530403371,
|
| 587 |
+
"grad_norm": 0.6259274482727051,
|
| 588 |
+
"learning_rate": 9.987966305655835e-07,
|
| 589 |
+
"loss": 0.3318,
|
| 590 |
+
"step": 830
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.10114388922335943,
|
| 594 |
+
"grad_norm": 0.5331777930259705,
|
| 595 |
+
"learning_rate": 9.999964221834556e-07,
|
| 596 |
+
"loss": 0.3133,
|
| 597 |
+
"step": 840
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.10234798314268513,
|
| 601 |
+
"grad_norm": 0.5190764665603638,
|
| 602 |
+
"learning_rate": 9.999840544882987e-07,
|
| 603 |
+
"loss": 0.3349,
|
| 604 |
+
"step": 850
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.10355207706201083,
|
| 608 |
+
"grad_norm": 0.5867928862571716,
|
| 609 |
+
"learning_rate": 9.99962852962418e-07,
|
| 610 |
+
"loss": 0.3252,
|
| 611 |
+
"step": 860
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.10475617098133655,
|
| 615 |
+
"grad_norm": 0.7667666673660278,
|
| 616 |
+
"learning_rate": 9.999328179804064e-07,
|
| 617 |
+
"loss": 0.3269,
|
| 618 |
+
"step": 870
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.10596026490066225,
|
| 622 |
+
"grad_norm": 0.5684708952903748,
|
| 623 |
+
"learning_rate": 9.998939500729291e-07,
|
| 624 |
+
"loss": 0.3204,
|
| 625 |
+
"step": 880
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.10716435881998795,
|
| 629 |
+
"grad_norm": 0.5369793772697449,
|
| 630 |
+
"learning_rate": 9.99846249926713e-07,
|
| 631 |
+
"loss": 0.2997,
|
| 632 |
+
"step": 890
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.10836845273931367,
|
| 636 |
+
"grad_norm": 0.5773791074752808,
|
| 637 |
+
"learning_rate": 9.997897183845347e-07,
|
| 638 |
+
"loss": 0.3147,
|
| 639 |
+
"step": 900
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.10957254665863937,
|
| 643 |
+
"grad_norm": 0.571826159954071,
|
| 644 |
+
"learning_rate": 9.997243564452064e-07,
|
| 645 |
+
"loss": 0.32,
|
| 646 |
+
"step": 910
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.11077664057796509,
|
| 650 |
+
"grad_norm": 0.420244961977005,
|
| 651 |
+
"learning_rate": 9.996501652635578e-07,
|
| 652 |
+
"loss": 0.3141,
|
| 653 |
+
"step": 920
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.11198073449729079,
|
| 657 |
+
"grad_norm": 0.5253920555114746,
|
| 658 |
+
"learning_rate": 9.99567146150415e-07,
|
| 659 |
+
"loss": 0.3201,
|
| 660 |
+
"step": 930
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.11318482841661649,
|
| 664 |
+
"grad_norm": 0.49279969930648804,
|
| 665 |
+
"learning_rate": 9.994753005725785e-07,
|
| 666 |
+
"loss": 0.3076,
|
| 667 |
+
"step": 940
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.11438892233594221,
|
| 671 |
+
"grad_norm": 0.6114805936813354,
|
| 672 |
+
"learning_rate": 9.993746301527965e-07,
|
| 673 |
+
"loss": 0.3209,
|
| 674 |
+
"step": 950
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.11559301625526791,
|
| 678 |
+
"grad_norm": 1.6514418125152588,
|
| 679 |
+
"learning_rate": 9.99265136669737e-07,
|
| 680 |
+
"loss": 0.319,
|
| 681 |
+
"step": 960
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.11679711017459361,
|
| 685 |
+
"grad_norm": 0.6415925621986389,
|
| 686 |
+
"learning_rate": 9.99146822057955e-07,
|
| 687 |
+
"loss": 0.3268,
|
| 688 |
+
"step": 970
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.11800120409391933,
|
| 692 |
+
"grad_norm": 0.5680079460144043,
|
| 693 |
+
"learning_rate": 9.990196884078599e-07,
|
| 694 |
+
"loss": 0.3139,
|
| 695 |
+
"step": 980
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.11920529801324503,
|
| 699 |
+
"grad_norm": 0.715497612953186,
|
| 700 |
+
"learning_rate": 9.988837379656778e-07,
|
| 701 |
+
"loss": 0.3143,
|
| 702 |
+
"step": 990
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.12040939193257075,
|
| 706 |
+
"grad_norm": 0.6379466652870178,
|
| 707 |
+
"learning_rate": 9.987389731334112e-07,
|
| 708 |
+
"loss": 0.3037,
|
| 709 |
+
"step": 1000
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.12161348585189645,
|
| 713 |
+
"grad_norm": 0.5227240920066833,
|
| 714 |
+
"learning_rate": 9.985853964687985e-07,
|
| 715 |
+
"loss": 0.3202,
|
| 716 |
+
"step": 1010
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.12281757977122215,
|
| 720 |
+
"grad_norm": 0.5148226022720337,
|
| 721 |
+
"learning_rate": 9.984230106852658e-07,
|
| 722 |
+
"loss": 0.3089,
|
| 723 |
+
"step": 1020
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.12402167369054787,
|
| 727 |
+
"grad_norm": 0.8337252140045166,
|
| 728 |
+
"learning_rate": 9.982518186518824e-07,
|
| 729 |
+
"loss": 0.3093,
|
| 730 |
+
"step": 1030
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.12522576760987358,
|
| 734 |
+
"grad_norm": 0.5874176621437073,
|
| 735 |
+
"learning_rate": 9.980718233933072e-07,
|
| 736 |
+
"loss": 0.3257,
|
| 737 |
+
"step": 1040
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.12642986152919927,
|
| 741 |
+
"grad_norm": 0.6203235983848572,
|
| 742 |
+
"learning_rate": 9.978830280897373e-07,
|
| 743 |
+
"loss": 0.3094,
|
| 744 |
+
"step": 1050
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.127633955448525,
|
| 748 |
+
"grad_norm": 0.7386701107025146,
|
| 749 |
+
"learning_rate": 9.976854360768501e-07,
|
| 750 |
+
"loss": 0.3283,
|
| 751 |
+
"step": 1060
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.1288380493678507,
|
| 755 |
+
"grad_norm": 0.7480394244194031,
|
| 756 |
+
"learning_rate": 9.97479050845746e-07,
|
| 757 |
+
"loss": 0.322,
|
| 758 |
+
"step": 1070
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.1300421432871764,
|
| 762 |
+
"grad_norm": 0.6779530048370361,
|
| 763 |
+
"learning_rate": 9.97263876042886e-07,
|
| 764 |
+
"loss": 0.3263,
|
| 765 |
+
"step": 1080
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.1312462372065021,
|
| 769 |
+
"grad_norm": 1.0457607507705688,
|
| 770 |
+
"learning_rate": 9.970399154700262e-07,
|
| 771 |
+
"loss": 0.324,
|
| 772 |
+
"step": 1090
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.13245033112582782,
|
| 776 |
+
"grad_norm": 0.4574492871761322,
|
| 777 |
+
"learning_rate": 9.96807173084153e-07,
|
| 778 |
+
"loss": 0.3033,
|
| 779 |
+
"step": 1100
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.1336544250451535,
|
| 783 |
+
"grad_norm": 0.4800940454006195,
|
| 784 |
+
"learning_rate": 9.965656529974108e-07,
|
| 785 |
+
"loss": 0.3076,
|
| 786 |
+
"step": 1110
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.13485851896447923,
|
| 790 |
+
"grad_norm": 0.5336936116218567,
|
| 791 |
+
"learning_rate": 9.96315359477031e-07,
|
| 792 |
+
"loss": 0.3029,
|
| 793 |
+
"step": 1120
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.13606261288380495,
|
| 797 |
+
"grad_norm": 0.9403670430183411,
|
| 798 |
+
"learning_rate": 9.960562969452559e-07,
|
| 799 |
+
"loss": 0.3019,
|
| 800 |
+
"step": 1130
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.13726670680313063,
|
| 804 |
+
"grad_norm": 0.6152085661888123,
|
| 805 |
+
"learning_rate": 9.957884699792604e-07,
|
| 806 |
+
"loss": 0.3051,
|
| 807 |
+
"step": 1140
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.13847080072245635,
|
| 811 |
+
"grad_norm": 0.7313536405563354,
|
| 812 |
+
"learning_rate": 9.955118833110716e-07,
|
| 813 |
+
"loss": 0.3137,
|
| 814 |
+
"step": 1150
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.13967489464178207,
|
| 818 |
+
"grad_norm": 0.47397103905677795,
|
| 819 |
+
"learning_rate": 9.95226541827485e-07,
|
| 820 |
+
"loss": 0.3214,
|
| 821 |
+
"step": 1160
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.14087898856110775,
|
| 825 |
+
"grad_norm": 0.4812333881855011,
|
| 826 |
+
"learning_rate": 9.949324505699782e-07,
|
| 827 |
+
"loss": 0.3164,
|
| 828 |
+
"step": 1170
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.14208308248043347,
|
| 832 |
+
"grad_norm": 0.6729305386543274,
|
| 833 |
+
"learning_rate": 9.946296147346215e-07,
|
| 834 |
+
"loss": 0.2946,
|
| 835 |
+
"step": 1180
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.1432871763997592,
|
| 839 |
+
"grad_norm": 0.6568790078163147,
|
| 840 |
+
"learning_rate": 9.943180396719867e-07,
|
| 841 |
+
"loss": 0.2929,
|
| 842 |
+
"step": 1190
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.1444912703190849,
|
| 846 |
+
"grad_norm": 0.5633556842803955,
|
| 847 |
+
"learning_rate": 9.939977308870518e-07,
|
| 848 |
+
"loss": 0.3073,
|
| 849 |
+
"step": 1200
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.1456953642384106,
|
| 853 |
+
"grad_norm": 1.1128957271575928,
|
| 854 |
+
"learning_rate": 9.936686940391048e-07,
|
| 855 |
+
"loss": 0.3264,
|
| 856 |
+
"step": 1210
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.1468994581577363,
|
| 860 |
+
"grad_norm": 0.5192599892616272,
|
| 861 |
+
"learning_rate": 9.933309349416428e-07,
|
| 862 |
+
"loss": 0.3064,
|
| 863 |
+
"step": 1220
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.14810355207706202,
|
| 867 |
+
"grad_norm": 0.49194392561912537,
|
| 868 |
+
"learning_rate": 9.92984459562269e-07,
|
| 869 |
+
"loss": 0.302,
|
| 870 |
+
"step": 1230
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.1493076459963877,
|
| 874 |
+
"grad_norm": 0.5606468915939331,
|
| 875 |
+
"learning_rate": 9.926292740225888e-07,
|
| 876 |
+
"loss": 0.3037,
|
| 877 |
+
"step": 1240
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.15051173991571343,
|
| 881 |
+
"grad_norm": 0.544266939163208,
|
| 882 |
+
"learning_rate": 9.922653845981e-07,
|
| 883 |
+
"loss": 0.3025,
|
| 884 |
+
"step": 1250
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.15171583383503914,
|
| 888 |
+
"grad_norm": 1.0137197971343994,
|
| 889 |
+
"learning_rate": 9.918927977180826e-07,
|
| 890 |
+
"loss": 0.2998,
|
| 891 |
+
"step": 1260
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.15291992775436483,
|
| 895 |
+
"grad_norm": 0.4881134629249573,
|
| 896 |
+
"learning_rate": 9.91511519965486e-07,
|
| 897 |
+
"loss": 0.2975,
|
| 898 |
+
"step": 1270
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.15412402167369055,
|
| 902 |
+
"grad_norm": 0.4854426383972168,
|
| 903 |
+
"learning_rate": 9.911215580768106e-07,
|
| 904 |
+
"loss": 0.3109,
|
| 905 |
+
"step": 1280
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.15532811559301626,
|
| 909 |
+
"grad_norm": 0.5056730508804321,
|
| 910 |
+
"learning_rate": 9.90722918941991e-07,
|
| 911 |
+
"loss": 0.3121,
|
| 912 |
+
"step": 1290
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.15653220951234195,
|
| 916 |
+
"grad_norm": 0.5286668539047241,
|
| 917 |
+
"learning_rate": 9.903156096042734e-07,
|
| 918 |
+
"loss": 0.2982,
|
| 919 |
+
"step": 1300
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.15773630343166767,
|
| 923 |
+
"grad_norm": 0.5490984916687012,
|
| 924 |
+
"learning_rate": 9.898996372600903e-07,
|
| 925 |
+
"loss": 0.3115,
|
| 926 |
+
"step": 1310
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.15894039735099338,
|
| 930 |
+
"grad_norm": 0.614521861076355,
|
| 931 |
+
"learning_rate": 9.894750092589349e-07,
|
| 932 |
+
"loss": 0.2985,
|
| 933 |
+
"step": 1320
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.16014449127031907,
|
| 937 |
+
"grad_norm": 0.5678403973579407,
|
| 938 |
+
"learning_rate": 9.8904173310323e-07,
|
| 939 |
+
"loss": 0.3046,
|
| 940 |
+
"step": 1330
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.1613485851896448,
|
| 944 |
+
"grad_norm": 0.5179656147956848,
|
| 945 |
+
"learning_rate": 9.885998164481966e-07,
|
| 946 |
+
"loss": 0.3053,
|
| 947 |
+
"step": 1340
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.1625526791089705,
|
| 951 |
+
"grad_norm": 0.526849091053009,
|
| 952 |
+
"learning_rate": 9.881492671017172e-07,
|
| 953 |
+
"loss": 0.3143,
|
| 954 |
+
"step": 1350
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.16375677302829622,
|
| 958 |
+
"grad_norm": 0.5683344006538391,
|
| 959 |
+
"learning_rate": 9.876900930241991e-07,
|
| 960 |
+
"loss": 0.3031,
|
| 961 |
+
"step": 1360
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.1649608669476219,
|
| 965 |
+
"grad_norm": 0.5243839621543884,
|
| 966 |
+
"learning_rate": 9.872223023284333e-07,
|
| 967 |
+
"loss": 0.312,
|
| 968 |
+
"step": 1370
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.16616496086694763,
|
| 972 |
+
"grad_norm": 0.5260365605354309,
|
| 973 |
+
"learning_rate": 9.867459032794508e-07,
|
| 974 |
+
"loss": 0.3037,
|
| 975 |
+
"step": 1380
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.16736905478627334,
|
| 979 |
+
"grad_norm": 0.4755154252052307,
|
| 980 |
+
"learning_rate": 9.86260904294377e-07,
|
| 981 |
+
"loss": 0.2916,
|
| 982 |
+
"step": 1390
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.16857314870559903,
|
| 986 |
+
"grad_norm": 0.5555715560913086,
|
| 987 |
+
"learning_rate": 9.857673139422833e-07,
|
| 988 |
+
"loss": 0.3135,
|
| 989 |
+
"step": 1400
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.16977724262492475,
|
| 993 |
+
"grad_norm": 0.5810279250144958,
|
| 994 |
+
"learning_rate": 9.85265140944035e-07,
|
| 995 |
+
"loss": 0.3104,
|
| 996 |
+
"step": 1410
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.17098133654425046,
|
| 1000 |
+
"grad_norm": 0.48022618889808655,
|
| 1001 |
+
"learning_rate": 9.847543941721379e-07,
|
| 1002 |
+
"loss": 0.3022,
|
| 1003 |
+
"step": 1420
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.17218543046357615,
|
| 1007 |
+
"grad_norm": 0.5191965103149414,
|
| 1008 |
+
"learning_rate": 9.842350826505802e-07,
|
| 1009 |
+
"loss": 0.3018,
|
| 1010 |
+
"step": 1430
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.17338952438290187,
|
| 1014 |
+
"grad_norm": 1.2972302436828613,
|
| 1015 |
+
"learning_rate": 9.837072155546753e-07,
|
| 1016 |
+
"loss": 0.3026,
|
| 1017 |
+
"step": 1440
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.17459361830222758,
|
| 1021 |
+
"grad_norm": 0.47315987944602966,
|
| 1022 |
+
"learning_rate": 9.831708022108972e-07,
|
| 1023 |
+
"loss": 0.311,
|
| 1024 |
+
"step": 1450
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.17579771222155327,
|
| 1028 |
+
"grad_norm": 0.5953189134597778,
|
| 1029 |
+
"learning_rate": 9.826258520967177e-07,
|
| 1030 |
+
"loss": 0.3071,
|
| 1031 |
+
"step": 1460
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.177001806140879,
|
| 1035 |
+
"grad_norm": 0.5407562851905823,
|
| 1036 |
+
"learning_rate": 9.820723748404382e-07,
|
| 1037 |
+
"loss": 0.31,
|
| 1038 |
+
"step": 1470
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.1782059000602047,
|
| 1042 |
+
"grad_norm": 0.5249618291854858,
|
| 1043 |
+
"learning_rate": 9.815103802210193e-07,
|
| 1044 |
+
"loss": 0.2898,
|
| 1045 |
+
"step": 1480
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.1794099939795304,
|
| 1049 |
+
"grad_norm": 0.5347439646720886,
|
| 1050 |
+
"learning_rate": 9.80939878167908e-07,
|
| 1051 |
+
"loss": 0.2944,
|
| 1052 |
+
"step": 1490
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.1806140878988561,
|
| 1056 |
+
"grad_norm": 0.49509304761886597,
|
| 1057 |
+
"learning_rate": 9.80360878760863e-07,
|
| 1058 |
+
"loss": 0.3073,
|
| 1059 |
+
"step": 1500
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.18181818181818182,
|
| 1063 |
+
"grad_norm": 0.5182557106018066,
|
| 1064 |
+
"learning_rate": 9.79773392229776e-07,
|
| 1065 |
+
"loss": 0.3092,
|
| 1066 |
+
"step": 1510
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.18302227573750754,
|
| 1070 |
+
"grad_norm": 0.5343918204307556,
|
| 1071 |
+
"learning_rate": 9.79177428954492e-07,
|
| 1072 |
+
"loss": 0.3058,
|
| 1073 |
+
"step": 1520
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.18422636965683323,
|
| 1077 |
+
"grad_norm": 0.42448320984840393,
|
| 1078 |
+
"learning_rate": 9.785729994646228e-07,
|
| 1079 |
+
"loss": 0.2966,
|
| 1080 |
+
"step": 1530
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.18543046357615894,
|
| 1084 |
+
"grad_norm": 0.514305055141449,
|
| 1085 |
+
"learning_rate": 9.779601144393655e-07,
|
| 1086 |
+
"loss": 0.3063,
|
| 1087 |
+
"step": 1540
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.18663455749548466,
|
| 1091 |
+
"grad_norm": 0.559808075428009,
|
| 1092 |
+
"learning_rate": 9.773387847073102e-07,
|
| 1093 |
+
"loss": 0.3103,
|
| 1094 |
+
"step": 1550
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.18783865141481035,
|
| 1098 |
+
"grad_norm": 0.5099034905433655,
|
| 1099 |
+
"learning_rate": 9.767090212462506e-07,
|
| 1100 |
+
"loss": 0.3045,
|
| 1101 |
+
"step": 1560
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.18904274533413606,
|
| 1105 |
+
"grad_norm": 0.5309582352638245,
|
| 1106 |
+
"learning_rate": 9.76070835182989e-07,
|
| 1107 |
+
"loss": 0.3198,
|
| 1108 |
+
"step": 1570
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.19024683925346178,
|
| 1112 |
+
"grad_norm": 0.5174340605735779,
|
| 1113 |
+
"learning_rate": 9.754242377931402e-07,
|
| 1114 |
+
"loss": 0.3019,
|
| 1115 |
+
"step": 1580
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 0.19145093317278747,
|
| 1119 |
+
"grad_norm": 0.47818174958229065,
|
| 1120 |
+
"learning_rate": 9.747692405009327e-07,
|
| 1121 |
+
"loss": 0.2885,
|
| 1122 |
+
"step": 1590
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.19265502709211318,
|
| 1126 |
+
"grad_norm": 0.4435511529445648,
|
| 1127 |
+
"learning_rate": 9.741058548790055e-07,
|
| 1128 |
+
"loss": 0.2716,
|
| 1129 |
+
"step": 1600
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 0.1938591210114389,
|
| 1133 |
+
"grad_norm": 0.47226864099502563,
|
| 1134 |
+
"learning_rate": 9.734340926482052e-07,
|
| 1135 |
+
"loss": 0.2911,
|
| 1136 |
+
"step": 1610
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 0.1950632149307646,
|
| 1140 |
+
"grad_norm": 0.4990203082561493,
|
| 1141 |
+
"learning_rate": 9.72753965677378e-07,
|
| 1142 |
+
"loss": 0.3119,
|
| 1143 |
+
"step": 1620
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.1962673088500903,
|
| 1147 |
+
"grad_norm": 0.6255252957344055,
|
| 1148 |
+
"learning_rate": 9.7206548598316e-07,
|
| 1149 |
+
"loss": 0.2902,
|
| 1150 |
+
"step": 1630
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 0.19747140276941602,
|
| 1154 |
+
"grad_norm": 0.5827116370201111,
|
| 1155 |
+
"learning_rate": 9.713686657297655e-07,
|
| 1156 |
+
"loss": 0.3079,
|
| 1157 |
+
"step": 1640
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 0.1986754966887417,
|
| 1161 |
+
"grad_norm": 0.5475650429725647,
|
| 1162 |
+
"learning_rate": 9.706635172287715e-07,
|
| 1163 |
+
"loss": 0.3095,
|
| 1164 |
+
"step": 1650
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 0.19987959060806743,
|
| 1168 |
+
"grad_norm": 0.674460768699646,
|
| 1169 |
+
"learning_rate": 9.699500529389001e-07,
|
| 1170 |
+
"loss": 0.2953,
|
| 1171 |
+
"step": 1660
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.20108368452739314,
|
| 1175 |
+
"grad_norm": 0.5000407695770264,
|
| 1176 |
+
"learning_rate": 9.692282854657989e-07,
|
| 1177 |
+
"loss": 0.3055,
|
| 1178 |
+
"step": 1670
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.20228777844671886,
|
| 1182 |
+
"grad_norm": 0.5063086748123169,
|
| 1183 |
+
"learning_rate": 9.684982275618178e-07,
|
| 1184 |
+
"loss": 0.2952,
|
| 1185 |
+
"step": 1680
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.20349187236604455,
|
| 1189 |
+
"grad_norm": 0.6266674399375916,
|
| 1190 |
+
"learning_rate": 9.677598921257842e-07,
|
| 1191 |
+
"loss": 0.3028,
|
| 1192 |
+
"step": 1690
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.20469596628537026,
|
| 1196 |
+
"grad_norm": 1.3428351879119873,
|
| 1197 |
+
"learning_rate": 9.67013292202775e-07,
|
| 1198 |
+
"loss": 0.3165,
|
| 1199 |
+
"step": 1700
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 0.20590006020469598,
|
| 1203 |
+
"grad_norm": 0.6307231187820435,
|
| 1204 |
+
"learning_rate": 9.66258440983885e-07,
|
| 1205 |
+
"loss": 0.3112,
|
| 1206 |
+
"step": 1710
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 0.20710415412402167,
|
| 1210 |
+
"grad_norm": 0.5176913738250732,
|
| 1211 |
+
"learning_rate": 9.654953518059953e-07,
|
| 1212 |
+
"loss": 0.3042,
|
| 1213 |
+
"step": 1720
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 0.20830824804334738,
|
| 1217 |
+
"grad_norm": 0.4618211090564728,
|
| 1218 |
+
"learning_rate": 9.647240381515376e-07,
|
| 1219 |
+
"loss": 0.3107,
|
| 1220 |
+
"step": 1730
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 0.2095123419626731,
|
| 1224 |
+
"grad_norm": 0.4354129135608673,
|
| 1225 |
+
"learning_rate": 9.639445136482546e-07,
|
| 1226 |
+
"loss": 0.2932,
|
| 1227 |
+
"step": 1740
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.2107164358819988,
|
| 1231 |
+
"grad_norm": 0.6150096654891968,
|
| 1232 |
+
"learning_rate": 9.631567920689607e-07,
|
| 1233 |
+
"loss": 0.2898,
|
| 1234 |
+
"step": 1750
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.2119205298013245,
|
| 1238 |
+
"grad_norm": 0.4629852771759033,
|
| 1239 |
+
"learning_rate": 9.623608873312979e-07,
|
| 1240 |
+
"loss": 0.2969,
|
| 1241 |
+
"step": 1760
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 0.21312462372065022,
|
| 1245 |
+
"grad_norm": 0.4912186563014984,
|
| 1246 |
+
"learning_rate": 9.615568134974902e-07,
|
| 1247 |
+
"loss": 0.3037,
|
| 1248 |
+
"step": 1770
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 0.2143287176399759,
|
| 1252 |
+
"grad_norm": 0.5452593564987183,
|
| 1253 |
+
"learning_rate": 9.607445847740946e-07,
|
| 1254 |
+
"loss": 0.3011,
|
| 1255 |
+
"step": 1780
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 0.21553281155930162,
|
| 1259 |
+
"grad_norm": 0.5524305701255798,
|
| 1260 |
+
"learning_rate": 9.599242155117514e-07,
|
| 1261 |
+
"loss": 0.3056,
|
| 1262 |
+
"step": 1790
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 0.21673690547862734,
|
| 1266 |
+
"grad_norm": 0.4734737277030945,
|
| 1267 |
+
"learning_rate": 9.590957202049288e-07,
|
| 1268 |
+
"loss": 0.2937,
|
| 1269 |
+
"step": 1800
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.21794099939795303,
|
| 1273 |
+
"grad_norm": 0.5050627589225769,
|
| 1274 |
+
"learning_rate": 9.582591134916683e-07,
|
| 1275 |
+
"loss": 0.2964,
|
| 1276 |
+
"step": 1810
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 0.21914509331727874,
|
| 1280 |
+
"grad_norm": 0.5784972310066223,
|
| 1281 |
+
"learning_rate": 9.574144101533258e-07,
|
| 1282 |
+
"loss": 0.3126,
|
| 1283 |
+
"step": 1820
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 0.22034918723660446,
|
| 1287 |
+
"grad_norm": 0.67679762840271,
|
| 1288 |
+
"learning_rate": 9.565616251143093e-07,
|
| 1289 |
+
"loss": 0.2997,
|
| 1290 |
+
"step": 1830
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.22155328115593018,
|
| 1294 |
+
"grad_norm": 0.730844259262085,
|
| 1295 |
+
"learning_rate": 9.55700773441817e-07,
|
| 1296 |
+
"loss": 0.2992,
|
| 1297 |
+
"step": 1840
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 0.22275737507525586,
|
| 1301 |
+
"grad_norm": 0.511701226234436,
|
| 1302 |
+
"learning_rate": 9.5483187034557e-07,
|
| 1303 |
+
"loss": 0.2843,
|
| 1304 |
+
"step": 1850
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 0.22396146899458158,
|
| 1308 |
+
"grad_norm": 0.49653661251068115,
|
| 1309 |
+
"learning_rate": 9.539549311775434e-07,
|
| 1310 |
+
"loss": 0.3003,
|
| 1311 |
+
"step": 1860
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.2251655629139073,
|
| 1315 |
+
"grad_norm": 0.479397714138031,
|
| 1316 |
+
"learning_rate": 9.530699714316955e-07,
|
| 1317 |
+
"loss": 0.3007,
|
| 1318 |
+
"step": 1870
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 0.22636965683323299,
|
| 1322 |
+
"grad_norm": 0.5917854905128479,
|
| 1323 |
+
"learning_rate": 9.521770067436944e-07,
|
| 1324 |
+
"loss": 0.2818,
|
| 1325 |
+
"step": 1880
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 0.2275737507525587,
|
| 1329 |
+
"grad_norm": 0.4750485420227051,
|
| 1330 |
+
"learning_rate": 9.512760528906409e-07,
|
| 1331 |
+
"loss": 0.3107,
|
| 1332 |
+
"step": 1890
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.22877784467188442,
|
| 1336 |
+
"grad_norm": 0.5081465244293213,
|
| 1337 |
+
"learning_rate": 9.503671257907905e-07,
|
| 1338 |
+
"loss": 0.3003,
|
| 1339 |
+
"step": 1900
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 0.2299819385912101,
|
| 1343 |
+
"grad_norm": 0.7816819548606873,
|
| 1344 |
+
"learning_rate": 9.494502415032714e-07,
|
| 1345 |
+
"loss": 0.2898,
|
| 1346 |
+
"step": 1910
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.23118603251053582,
|
| 1350 |
+
"grad_norm": 0.600690484046936,
|
| 1351 |
+
"learning_rate": 9.485254162278013e-07,
|
| 1352 |
+
"loss": 0.2975,
|
| 1353 |
+
"step": 1920
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.23239012642986154,
|
| 1357 |
+
"grad_norm": 0.6016291379928589,
|
| 1358 |
+
"learning_rate": 9.475926663044016e-07,
|
| 1359 |
+
"loss": 0.2895,
|
| 1360 |
+
"step": 1930
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 0.23359422034918723,
|
| 1364 |
+
"grad_norm": 0.5959491729736328,
|
| 1365 |
+
"learning_rate": 9.466520082131074e-07,
|
| 1366 |
+
"loss": 0.293,
|
| 1367 |
+
"step": 1940
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 0.23479831426851294,
|
| 1371 |
+
"grad_norm": 0.5337576270103455,
|
| 1372 |
+
"learning_rate": 9.457034585736776e-07,
|
| 1373 |
+
"loss": 0.2954,
|
| 1374 |
+
"step": 1950
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.23600240818783866,
|
| 1378 |
+
"grad_norm": 0.5701966881752014,
|
| 1379 |
+
"learning_rate": 9.447470341453003e-07,
|
| 1380 |
+
"loss": 0.3016,
|
| 1381 |
+
"step": 1960
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 0.23720650210716435,
|
| 1385 |
+
"grad_norm": 0.48122677206993103,
|
| 1386 |
+
"learning_rate": 9.437827518262976e-07,
|
| 1387 |
+
"loss": 0.2834,
|
| 1388 |
+
"step": 1970
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 0.23841059602649006,
|
| 1392 |
+
"grad_norm": 0.6107509732246399,
|
| 1393 |
+
"learning_rate": 9.428106286538263e-07,
|
| 1394 |
+
"loss": 0.2865,
|
| 1395 |
+
"step": 1980
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.23961468994581578,
|
| 1399 |
+
"grad_norm": 0.4537561237812042,
|
| 1400 |
+
"learning_rate": 9.418306818035773e-07,
|
| 1401 |
+
"loss": 0.2981,
|
| 1402 |
+
"step": 1990
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.2408187838651415,
|
| 1406 |
+
"grad_norm": 0.6205712556838989,
|
| 1407 |
+
"learning_rate": 9.408429285894721e-07,
|
| 1408 |
+
"loss": 0.3099,
|
| 1409 |
+
"step": 2000
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 0.24202287778446718,
|
| 1413 |
+
"grad_norm": 0.4940670132637024,
|
| 1414 |
+
"learning_rate": 9.398473864633564e-07,
|
| 1415 |
+
"loss": 0.2942,
|
| 1416 |
+
"step": 2010
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 0.2432269717037929,
|
| 1420 |
+
"grad_norm": 0.45464888215065,
|
| 1421 |
+
"learning_rate": 9.388440730146923e-07,
|
| 1422 |
+
"loss": 0.2875,
|
| 1423 |
+
"step": 2020
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"epoch": 0.24443106562311862,
|
| 1427 |
+
"grad_norm": 0.4339371919631958,
|
| 1428 |
+
"learning_rate": 9.378330059702479e-07,
|
| 1429 |
+
"loss": 0.284,
|
| 1430 |
+
"step": 2030
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 0.2456351595424443,
|
| 1434 |
+
"grad_norm": 0.6798887848854065,
|
| 1435 |
+
"learning_rate": 9.368142031937826e-07,
|
| 1436 |
+
"loss": 0.3079,
|
| 1437 |
+
"step": 2040
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 0.24683925346177002,
|
| 1441 |
+
"grad_norm": 0.504805326461792,
|
| 1442 |
+
"learning_rate": 9.357876826857334e-07,
|
| 1443 |
+
"loss": 0.2942,
|
| 1444 |
+
"step": 2050
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"epoch": 0.24804334738109574,
|
| 1448 |
+
"grad_norm": 1.0256134271621704,
|
| 1449 |
+
"learning_rate": 9.347534625828955e-07,
|
| 1450 |
+
"loss": 0.2958,
|
| 1451 |
+
"step": 2060
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 0.24924744130042142,
|
| 1455 |
+
"grad_norm": 0.7034043073654175,
|
| 1456 |
+
"learning_rate": 9.337115611581019e-07,
|
| 1457 |
+
"loss": 0.2977,
|
| 1458 |
+
"step": 2070
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.25045153521974717,
|
| 1462 |
+
"grad_norm": 0.6767880916595459,
|
| 1463 |
+
"learning_rate": 9.326619968199016e-07,
|
| 1464 |
+
"loss": 0.2843,
|
| 1465 |
+
"step": 2080
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 0.25165562913907286,
|
| 1469 |
+
"grad_norm": 0.5257042050361633,
|
| 1470 |
+
"learning_rate": 9.316047881122334e-07,
|
| 1471 |
+
"loss": 0.2869,
|
| 1472 |
+
"step": 2090
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 0.25285972305839854,
|
| 1476 |
+
"grad_norm": 0.5919986963272095,
|
| 1477 |
+
"learning_rate": 9.305399537140983e-07,
|
| 1478 |
+
"loss": 0.3009,
|
| 1479 |
+
"step": 2100
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 0.2540638169777243,
|
| 1483 |
+
"grad_norm": 0.5936114192008972,
|
| 1484 |
+
"learning_rate": 9.294675124392302e-07,
|
| 1485 |
+
"loss": 0.2863,
|
| 1486 |
+
"step": 2110
|
| 1487 |
+
},
|
| 1488 |
+
{
|
| 1489 |
+
"epoch": 0.25526791089705,
|
| 1490 |
+
"grad_norm": 1.1754176616668701,
|
| 1491 |
+
"learning_rate": 9.283874832357625e-07,
|
| 1492 |
+
"loss": 0.2808,
|
| 1493 |
+
"step": 2120
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"epoch": 0.25647200481637566,
|
| 1497 |
+
"grad_norm": 0.6144666075706482,
|
| 1498 |
+
"learning_rate": 9.272998851858943e-07,
|
| 1499 |
+
"loss": 0.2854,
|
| 1500 |
+
"step": 2130
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 0.2576760987357014,
|
| 1504 |
+
"grad_norm": 0.47984328866004944,
|
| 1505 |
+
"learning_rate": 9.262047375055524e-07,
|
| 1506 |
+
"loss": 0.2978,
|
| 1507 |
+
"step": 2140
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"epoch": 0.2588801926550271,
|
| 1511 |
+
"grad_norm": 0.6158226728439331,
|
| 1512 |
+
"learning_rate": 9.251020595440524e-07,
|
| 1513 |
+
"loss": 0.3072,
|
| 1514 |
+
"step": 2150
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 0.2600842865743528,
|
| 1518 |
+
"grad_norm": 0.6357386708259583,
|
| 1519 |
+
"learning_rate": 9.239918707837564e-07,
|
| 1520 |
+
"loss": 0.2927,
|
| 1521 |
+
"step": 2160
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 0.26128838049367853,
|
| 1525 |
+
"grad_norm": 0.6893799901008606,
|
| 1526 |
+
"learning_rate": 9.228741908397293e-07,
|
| 1527 |
+
"loss": 0.2988,
|
| 1528 |
+
"step": 2170
|
| 1529 |
+
},
|
| 1530 |
+
{
|
| 1531 |
+
"epoch": 0.2624924744130042,
|
| 1532 |
+
"grad_norm": 0.5763195157051086,
|
| 1533 |
+
"learning_rate": 9.217490394593914e-07,
|
| 1534 |
+
"loss": 0.3049,
|
| 1535 |
+
"step": 2180
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 0.2636965683323299,
|
| 1539 |
+
"grad_norm": 0.5649781823158264,
|
| 1540 |
+
"learning_rate": 9.206164365221706e-07,
|
| 1541 |
+
"loss": 0.3083,
|
| 1542 |
+
"step": 2190
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 0.26490066225165565,
|
| 1546 |
+
"grad_norm": 0.4519605040550232,
|
| 1547 |
+
"learning_rate": 9.194764020391506e-07,
|
| 1548 |
+
"loss": 0.274,
|
| 1549 |
+
"step": 2200
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 0.26610475617098134,
|
| 1553 |
+
"grad_norm": 0.5203403830528259,
|
| 1554 |
+
"learning_rate": 9.183289561527164e-07,
|
| 1555 |
+
"loss": 0.2823,
|
| 1556 |
+
"step": 2210
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 0.267308850090307,
|
| 1560 |
+
"grad_norm": 0.525934100151062,
|
| 1561 |
+
"learning_rate": 9.171741191362005e-07,
|
| 1562 |
+
"loss": 0.2928,
|
| 1563 |
+
"step": 2220
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 0.26851294400963277,
|
| 1567 |
+
"grad_norm": 0.5151864290237427,
|
| 1568 |
+
"learning_rate": 9.160119113935227e-07,
|
| 1569 |
+
"loss": 0.2914,
|
| 1570 |
+
"step": 2230
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 0.26971703792895846,
|
| 1574 |
+
"grad_norm": 0.663339376449585,
|
| 1575 |
+
"learning_rate": 9.14842353458831e-07,
|
| 1576 |
+
"loss": 0.301,
|
| 1577 |
+
"step": 2240
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 0.27092113184828415,
|
| 1581 |
+
"grad_norm": 0.5526972413063049,
|
| 1582 |
+
"learning_rate": 9.136654659961381e-07,
|
| 1583 |
+
"loss": 0.2931,
|
| 1584 |
+
"step": 2250
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 0.2721252257676099,
|
| 1588 |
+
"grad_norm": 0.6518740057945251,
|
| 1589 |
+
"learning_rate": 9.12481269798956e-07,
|
| 1590 |
+
"loss": 0.2772,
|
| 1591 |
+
"step": 2260
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"epoch": 0.2733293196869356,
|
| 1595 |
+
"grad_norm": 0.5191295742988586,
|
| 1596 |
+
"learning_rate": 9.112897857899298e-07,
|
| 1597 |
+
"loss": 0.2933,
|
| 1598 |
+
"step": 2270
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 0.27453341360626127,
|
| 1602 |
+
"grad_norm": 1.087936282157898,
|
| 1603 |
+
"learning_rate": 9.100910350204669e-07,
|
| 1604 |
+
"loss": 0.2956,
|
| 1605 |
+
"step": 2280
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 0.275737507525587,
|
| 1609 |
+
"grad_norm": 0.5870952010154724,
|
| 1610 |
+
"learning_rate": 9.088850386703653e-07,
|
| 1611 |
+
"loss": 0.2857,
|
| 1612 |
+
"step": 2290
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"epoch": 0.2769416014449127,
|
| 1616 |
+
"grad_norm": 0.5123207569122314,
|
| 1617 |
+
"learning_rate": 9.076718180474399e-07,
|
| 1618 |
+
"loss": 0.3005,
|
| 1619 |
+
"step": 2300
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"epoch": 0.2781456953642384,
|
| 1623 |
+
"grad_norm": 0.47658002376556396,
|
| 1624 |
+
"learning_rate": 9.064513945871457e-07,
|
| 1625 |
+
"loss": 0.2889,
|
| 1626 |
+
"step": 2310
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 0.27934978928356413,
|
| 1630 |
+
"grad_norm": 0.564738929271698,
|
| 1631 |
+
"learning_rate": 9.052237898521984e-07,
|
| 1632 |
+
"loss": 0.2929,
|
| 1633 |
+
"step": 2320
|
| 1634 |
+
},
|
| 1635 |
+
{
|
| 1636 |
+
"epoch": 0.2805538832028898,
|
| 1637 |
+
"grad_norm": 0.47116583585739136,
|
| 1638 |
+
"learning_rate": 9.03989025532195e-07,
|
| 1639 |
+
"loss": 0.2942,
|
| 1640 |
+
"step": 2330
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 0.2817579771222155,
|
| 1644 |
+
"grad_norm": 0.5838178396224976,
|
| 1645 |
+
"learning_rate": 9.027471234432292e-07,
|
| 1646 |
+
"loss": 0.2883,
|
| 1647 |
+
"step": 2340
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 0.28296207104154125,
|
| 1651 |
+
"grad_norm": 0.48679229617118835,
|
| 1652 |
+
"learning_rate": 9.014981055275059e-07,
|
| 1653 |
+
"loss": 0.29,
|
| 1654 |
+
"step": 2350
|
| 1655 |
+
},
|
| 1656 |
+
{
|
| 1657 |
+
"epoch": 0.28416616496086694,
|
| 1658 |
+
"grad_norm": 0.5863898992538452,
|
| 1659 |
+
"learning_rate": 9.00241993852955e-07,
|
| 1660 |
+
"loss": 0.2871,
|
| 1661 |
+
"step": 2360
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"epoch": 0.28537025888019263,
|
| 1665 |
+
"grad_norm": 0.5949921607971191,
|
| 1666 |
+
"learning_rate": 8.989788106128402e-07,
|
| 1667 |
+
"loss": 0.2927,
|
| 1668 |
+
"step": 2370
|
| 1669 |
+
},
|
| 1670 |
+
{
|
| 1671 |
+
"epoch": 0.2865743527995184,
|
| 1672 |
+
"grad_norm": 0.42538484930992126,
|
| 1673 |
+
"learning_rate": 8.977085781253668e-07,
|
| 1674 |
+
"loss": 0.2825,
|
| 1675 |
+
"step": 2380
|
| 1676 |
+
},
|
| 1677 |
+
{
|
| 1678 |
+
"epoch": 0.28777844671884406,
|
| 1679 |
+
"grad_norm": 0.5678000450134277,
|
| 1680 |
+
"learning_rate": 8.964313188332881e-07,
|
| 1681 |
+
"loss": 0.294,
|
| 1682 |
+
"step": 2390
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 0.2889825406381698,
|
| 1686 |
+
"grad_norm": 0.5283777713775635,
|
| 1687 |
+
"learning_rate": 8.951470553035086e-07,
|
| 1688 |
+
"loss": 0.286,
|
| 1689 |
+
"step": 2400
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 0.2901866345574955,
|
| 1693 |
+
"grad_norm": 0.8639681935310364,
|
| 1694 |
+
"learning_rate": 8.938558102266851e-07,
|
| 1695 |
+
"loss": 0.2971,
|
| 1696 |
+
"step": 2410
|
| 1697 |
+
},
|
| 1698 |
+
{
|
| 1699 |
+
"epoch": 0.2913907284768212,
|
| 1700 |
+
"grad_norm": 0.5353107452392578,
|
| 1701 |
+
"learning_rate": 8.925576064168261e-07,
|
| 1702 |
+
"loss": 0.3038,
|
| 1703 |
+
"step": 2420
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"epoch": 0.2925948223961469,
|
| 1707 |
+
"grad_norm": 0.5691916346549988,
|
| 1708 |
+
"learning_rate": 8.912524668108885e-07,
|
| 1709 |
+
"loss": 0.2901,
|
| 1710 |
+
"step": 2430
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 0.2937989163154726,
|
| 1714 |
+
"grad_norm": 0.5999578833580017,
|
| 1715 |
+
"learning_rate": 8.899404144683724e-07,
|
| 1716 |
+
"loss": 0.2864,
|
| 1717 |
+
"step": 2440
|
| 1718 |
+
},
|
| 1719 |
+
{
|
| 1720 |
+
"epoch": 0.2950030102347983,
|
| 1721 |
+
"grad_norm": 0.6660271883010864,
|
| 1722 |
+
"learning_rate": 8.886214725709136e-07,
|
| 1723 |
+
"loss": 0.2866,
|
| 1724 |
+
"step": 2450
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 0.29620710415412405,
|
| 1728 |
+
"grad_norm": 0.5501262545585632,
|
| 1729 |
+
"learning_rate": 8.872956644218742e-07,
|
| 1730 |
+
"loss": 0.2909,
|
| 1731 |
+
"step": 2460
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 0.29741119807344973,
|
| 1735 |
+
"grad_norm": 0.44489532709121704,
|
| 1736 |
+
"learning_rate": 8.859630134459308e-07,
|
| 1737 |
+
"loss": 0.2869,
|
| 1738 |
+
"step": 2470
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"epoch": 0.2986152919927754,
|
| 1742 |
+
"grad_norm": 0.619097113609314,
|
| 1743 |
+
"learning_rate": 8.846235431886604e-07,
|
| 1744 |
+
"loss": 0.2782,
|
| 1745 |
+
"step": 2480
|
| 1746 |
+
},
|
| 1747 |
+
{
|
| 1748 |
+
"epoch": 0.29981938591210117,
|
| 1749 |
+
"grad_norm": 0.49712878465652466,
|
| 1750 |
+
"learning_rate": 8.832772773161251e-07,
|
| 1751 |
+
"loss": 0.2848,
|
| 1752 |
+
"step": 2490
|
| 1753 |
+
},
|
| 1754 |
+
{
|
| 1755 |
+
"epoch": 0.30102347983142685,
|
| 1756 |
+
"grad_norm": 0.46963346004486084,
|
| 1757 |
+
"learning_rate": 8.819242396144529e-07,
|
| 1758 |
+
"loss": 0.2915,
|
| 1759 |
+
"step": 2500
|
| 1760 |
+
},
|
| 1761 |
+
{
|
| 1762 |
+
"epoch": 0.30222757375075254,
|
| 1763 |
+
"grad_norm": 0.5881354212760925,
|
| 1764 |
+
"learning_rate": 8.805644539894181e-07,
|
| 1765 |
+
"loss": 0.2969,
|
| 1766 |
+
"step": 2510
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 0.3034316676700783,
|
| 1770 |
+
"grad_norm": 0.5345028042793274,
|
| 1771 |
+
"learning_rate": 8.791979444660193e-07,
|
| 1772 |
+
"loss": 0.2985,
|
| 1773 |
+
"step": 2520
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 0.304635761589404,
|
| 1777 |
+
"grad_norm": 0.5038124322891235,
|
| 1778 |
+
"learning_rate": 8.778247351880536e-07,
|
| 1779 |
+
"loss": 0.2931,
|
| 1780 |
+
"step": 2530
|
| 1781 |
+
},
|
| 1782 |
+
{
|
| 1783 |
+
"epoch": 0.30583985550872966,
|
| 1784 |
+
"grad_norm": 0.6723479628562927,
|
| 1785 |
+
"learning_rate": 8.764448504176919e-07,
|
| 1786 |
+
"loss": 0.2885,
|
| 1787 |
+
"step": 2540
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"epoch": 0.3070439494280554,
|
| 1791 |
+
"grad_norm": 0.474516361951828,
|
| 1792 |
+
"learning_rate": 8.750583145350483e-07,
|
| 1793 |
+
"loss": 0.2906,
|
| 1794 |
+
"step": 2550
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"epoch": 0.3082480433473811,
|
| 1798 |
+
"grad_norm": 0.509379506111145,
|
| 1799 |
+
"learning_rate": 8.736651520377507e-07,
|
| 1800 |
+
"loss": 0.2874,
|
| 1801 |
+
"step": 2560
|
| 1802 |
+
},
|
| 1803 |
+
{
|
| 1804 |
+
"epoch": 0.3094521372667068,
|
| 1805 |
+
"grad_norm": 0.9317507743835449,
|
| 1806 |
+
"learning_rate": 8.722653875405075e-07,
|
| 1807 |
+
"loss": 0.2891,
|
| 1808 |
+
"step": 2570
|
| 1809 |
+
},
|
| 1810 |
+
{
|
| 1811 |
+
"epoch": 0.3106562311860325,
|
| 1812 |
+
"grad_norm": 0.4634588360786438,
|
| 1813 |
+
"learning_rate": 8.708590457746727e-07,
|
| 1814 |
+
"loss": 0.284,
|
| 1815 |
+
"step": 2580
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 0.3118603251053582,
|
| 1819 |
+
"grad_norm": 0.4674171209335327,
|
| 1820 |
+
"learning_rate": 8.694461515878088e-07,
|
| 1821 |
+
"loss": 0.2851,
|
| 1822 |
+
"step": 2590
|
| 1823 |
+
},
|
| 1824 |
+
{
|
| 1825 |
+
"epoch": 0.3130644190246839,
|
| 1826 |
+
"grad_norm": 0.4606451988220215,
|
| 1827 |
+
"learning_rate": 8.68026729943248e-07,
|
| 1828 |
+
"loss": 0.282,
|
| 1829 |
+
"step": 2600
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"epoch": 0.31426851294400965,
|
| 1833 |
+
"grad_norm": 0.5793256163597107,
|
| 1834 |
+
"learning_rate": 8.666008059196513e-07,
|
| 1835 |
+
"loss": 0.2852,
|
| 1836 |
+
"step": 2610
|
| 1837 |
+
},
|
| 1838 |
+
{
|
| 1839 |
+
"epoch": 0.31547260686333534,
|
| 1840 |
+
"grad_norm": 0.742026686668396,
|
| 1841 |
+
"learning_rate": 8.65168404710565e-07,
|
| 1842 |
+
"loss": 0.2909,
|
| 1843 |
+
"step": 2620
|
| 1844 |
+
},
|
| 1845 |
+
{
|
| 1846 |
+
"epoch": 0.316676700782661,
|
| 1847 |
+
"grad_norm": 0.469868928194046,
|
| 1848 |
+
"learning_rate": 8.637295516239757e-07,
|
| 1849 |
+
"loss": 0.2784,
|
| 1850 |
+
"step": 2630
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 0.31788079470198677,
|
| 1854 |
+
"grad_norm": 0.6895257234573364,
|
| 1855 |
+
"learning_rate": 8.622842720818635e-07,
|
| 1856 |
+
"loss": 0.2849,
|
| 1857 |
+
"step": 2640
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 0.31908488862131246,
|
| 1861 |
+
"grad_norm": 0.6843047142028809,
|
| 1862 |
+
"learning_rate": 8.608325916197524e-07,
|
| 1863 |
+
"loss": 0.2969,
|
| 1864 |
+
"step": 2650
|
| 1865 |
+
},
|
| 1866 |
+
{
|
| 1867 |
+
"epoch": 0.32028898254063815,
|
| 1868 |
+
"grad_norm": 2.822052240371704,
|
| 1869 |
+
"learning_rate": 8.593745358862592e-07,
|
| 1870 |
+
"loss": 0.2954,
|
| 1871 |
+
"step": 2660
|
| 1872 |
+
},
|
| 1873 |
+
{
|
| 1874 |
+
"epoch": 0.3214930764599639,
|
| 1875 |
+
"grad_norm": 0.5745678544044495,
|
| 1876 |
+
"learning_rate": 8.579101306426406e-07,
|
| 1877 |
+
"loss": 0.3005,
|
| 1878 |
+
"step": 2670
|
| 1879 |
+
},
|
| 1880 |
+
{
|
| 1881 |
+
"epoch": 0.3226971703792896,
|
| 1882 |
+
"grad_norm": 0.4625186026096344,
|
| 1883 |
+
"learning_rate": 8.564394017623378e-07,
|
| 1884 |
+
"loss": 0.2889,
|
| 1885 |
+
"step": 2680
|
| 1886 |
+
},
|
| 1887 |
+
{
|
| 1888 |
+
"epoch": 0.32390126429861527,
|
| 1889 |
+
"grad_norm": 0.5813141465187073,
|
| 1890 |
+
"learning_rate": 8.549623752305192e-07,
|
| 1891 |
+
"loss": 0.2926,
|
| 1892 |
+
"step": 2690
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 0.325105358217941,
|
| 1896 |
+
"grad_norm": 0.49706658720970154,
|
| 1897 |
+
"learning_rate": 8.534790771436222e-07,
|
| 1898 |
+
"loss": 0.2884,
|
| 1899 |
+
"step": 2700
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 0.3263094521372667,
|
| 1903 |
+
"grad_norm": 0.5477120280265808,
|
| 1904 |
+
"learning_rate": 8.519895337088907e-07,
|
| 1905 |
+
"loss": 0.2922,
|
| 1906 |
+
"step": 2710
|
| 1907 |
+
},
|
| 1908 |
+
{
|
| 1909 |
+
"epoch": 0.32751354605659244,
|
| 1910 |
+
"grad_norm": 1.157457709312439,
|
| 1911 |
+
"learning_rate": 8.504937712439131e-07,
|
| 1912 |
+
"loss": 0.2699,
|
| 1913 |
+
"step": 2720
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"epoch": 0.32871763997591813,
|
| 1917 |
+
"grad_norm": 0.5263344049453735,
|
| 1918 |
+
"learning_rate": 8.48991816176157e-07,
|
| 1919 |
+
"loss": 0.2888,
|
| 1920 |
+
"step": 2730
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"epoch": 0.3299217338952438,
|
| 1924 |
+
"grad_norm": 0.764481782913208,
|
| 1925 |
+
"learning_rate": 8.474836950425026e-07,
|
| 1926 |
+
"loss": 0.292,
|
| 1927 |
+
"step": 2740
|
| 1928 |
+
},
|
| 1929 |
+
{
|
| 1930 |
+
"epoch": 0.33112582781456956,
|
| 1931 |
+
"grad_norm": 0.5704035758972168,
|
| 1932 |
+
"learning_rate": 8.459694344887731e-07,
|
| 1933 |
+
"loss": 0.2928,
|
| 1934 |
+
"step": 2750
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 0.33232992173389525,
|
| 1938 |
+
"grad_norm": 0.46473219990730286,
|
| 1939 |
+
"learning_rate": 8.444490612692645e-07,
|
| 1940 |
+
"loss": 0.2816,
|
| 1941 |
+
"step": 2760
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 0.33353401565322094,
|
| 1945 |
+
"grad_norm": 0.5250662565231323,
|
| 1946 |
+
"learning_rate": 8.429226022462728e-07,
|
| 1947 |
+
"loss": 0.2881,
|
| 1948 |
+
"step": 2770
|
| 1949 |
+
},
|
| 1950 |
+
{
|
| 1951 |
+
"epoch": 0.3347381095725467,
|
| 1952 |
+
"grad_norm": 0.6085227727890015,
|
| 1953 |
+
"learning_rate": 8.413900843896193e-07,
|
| 1954 |
+
"loss": 0.3122,
|
| 1955 |
+
"step": 2780
|
| 1956 |
+
},
|
| 1957 |
+
{
|
| 1958 |
+
"epoch": 0.33594220349187237,
|
| 1959 |
+
"grad_norm": 0.7203246355056763,
|
| 1960 |
+
"learning_rate": 8.398515347761745e-07,
|
| 1961 |
+
"loss": 0.2911,
|
| 1962 |
+
"step": 2790
|
| 1963 |
+
},
|
| 1964 |
+
{
|
| 1965 |
+
"epoch": 0.33714629741119806,
|
| 1966 |
+
"grad_norm": 0.5305497050285339,
|
| 1967 |
+
"learning_rate": 8.383069805893784e-07,
|
| 1968 |
+
"loss": 0.2888,
|
| 1969 |
+
"step": 2800
|
| 1970 |
+
},
|
| 1971 |
+
{
|
| 1972 |
+
"epoch": 0.3383503913305238,
|
| 1973 |
+
"grad_norm": 0.5452449917793274,
|
| 1974 |
+
"learning_rate": 8.367564491187622e-07,
|
| 1975 |
+
"loss": 0.2866,
|
| 1976 |
+
"step": 2810
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 0.3395544852498495,
|
| 1980 |
+
"grad_norm": 0.4815659523010254,
|
| 1981 |
+
"learning_rate": 8.351999677594645e-07,
|
| 1982 |
+
"loss": 0.2863,
|
| 1983 |
+
"step": 2820
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 0.3407585791691752,
|
| 1987 |
+
"grad_norm": 0.5499128103256226,
|
| 1988 |
+
"learning_rate": 8.336375640117481e-07,
|
| 1989 |
+
"loss": 0.2865,
|
| 1990 |
+
"step": 2830
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"epoch": 0.3419626730885009,
|
| 1994 |
+
"grad_norm": 0.559804379940033,
|
| 1995 |
+
"learning_rate": 8.320692654805136e-07,
|
| 1996 |
+
"loss": 0.2833,
|
| 1997 |
+
"step": 2840
|
| 1998 |
+
},
|
| 1999 |
+
{
|
| 2000 |
+
"epoch": 0.3431667670078266,
|
| 2001 |
+
"grad_norm": 0.5070551633834839,
|
| 2002 |
+
"learning_rate": 8.304950998748124e-07,
|
| 2003 |
+
"loss": 0.2969,
|
| 2004 |
+
"step": 2850
|
| 2005 |
+
},
|
| 2006 |
+
{
|
| 2007 |
+
"epoch": 0.3443708609271523,
|
| 2008 |
+
"grad_norm": 0.5566725730895996,
|
| 2009 |
+
"learning_rate": 8.289150950073564e-07,
|
| 2010 |
+
"loss": 0.2814,
|
| 2011 |
+
"step": 2860
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"epoch": 0.34557495484647804,
|
| 2015 |
+
"grad_norm": 0.5421969890594482,
|
| 2016 |
+
"learning_rate": 8.273292787940268e-07,
|
| 2017 |
+
"loss": 0.2805,
|
| 2018 |
+
"step": 2870
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 0.34677904876580373,
|
| 2022 |
+
"grad_norm": 0.49686506390571594,
|
| 2023 |
+
"learning_rate": 8.257376792533813e-07,
|
| 2024 |
+
"loss": 0.2872,
|
| 2025 |
+
"step": 2880
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"epoch": 0.3479831426851294,
|
| 2029 |
+
"grad_norm": 0.4665164649486542,
|
| 2030 |
+
"learning_rate": 8.241403245061584e-07,
|
| 2031 |
+
"loss": 0.2816,
|
| 2032 |
+
"step": 2890
|
| 2033 |
+
},
|
| 2034 |
+
{
|
| 2035 |
+
"epoch": 0.34918723660445516,
|
| 2036 |
+
"grad_norm": 0.4437556266784668,
|
| 2037 |
+
"learning_rate": 8.225372427747813e-07,
|
| 2038 |
+
"loss": 0.286,
|
| 2039 |
+
"step": 2900
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"epoch": 0.35039133052378085,
|
| 2043 |
+
"grad_norm": 0.5280335545539856,
|
| 2044 |
+
"learning_rate": 8.209284623828583e-07,
|
| 2045 |
+
"loss": 0.2895,
|
| 2046 |
+
"step": 2910
|
| 2047 |
+
},
|
| 2048 |
+
{
|
| 2049 |
+
"epoch": 0.35159542444310654,
|
| 2050 |
+
"grad_norm": 0.5298367142677307,
|
| 2051 |
+
"learning_rate": 8.193140117546832e-07,
|
| 2052 |
+
"loss": 0.282,
|
| 2053 |
+
"step": 2920
|
| 2054 |
+
},
|
| 2055 |
+
{
|
| 2056 |
+
"epoch": 0.3527995183624323,
|
| 2057 |
+
"grad_norm": 0.7123149633407593,
|
| 2058 |
+
"learning_rate": 8.176939194147329e-07,
|
| 2059 |
+
"loss": 0.2841,
|
| 2060 |
+
"step": 2930
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 0.354003612281758,
|
| 2064 |
+
"grad_norm": 0.6565315127372742,
|
| 2065 |
+
"learning_rate": 8.160682139871632e-07,
|
| 2066 |
+
"loss": 0.2793,
|
| 2067 |
+
"step": 2940
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"epoch": 0.35520770620108366,
|
| 2071 |
+
"grad_norm": 0.7005172967910767,
|
| 2072 |
+
"learning_rate": 8.144369241953032e-07,
|
| 2073 |
+
"loss": 0.2854,
|
| 2074 |
+
"step": 2950
|
| 2075 |
+
},
|
| 2076 |
+
{
|
| 2077 |
+
"epoch": 0.3564118001204094,
|
| 2078 |
+
"grad_norm": 0.7468757033348083,
|
| 2079 |
+
"learning_rate": 8.128000788611478e-07,
|
| 2080 |
+
"loss": 0.2992,
|
| 2081 |
+
"step": 2960
|
| 2082 |
+
},
|
| 2083 |
+
{
|
| 2084 |
+
"epoch": 0.3576158940397351,
|
| 2085 |
+
"grad_norm": 0.5055456161499023,
|
| 2086 |
+
"learning_rate": 8.111577069048487e-07,
|
| 2087 |
+
"loss": 0.2979,
|
| 2088 |
+
"step": 2970
|
| 2089 |
+
},
|
| 2090 |
+
{
|
| 2091 |
+
"epoch": 0.3588199879590608,
|
| 2092 |
+
"grad_norm": 0.576806366443634,
|
| 2093 |
+
"learning_rate": 8.095098373442027e-07,
|
| 2094 |
+
"loss": 0.2915,
|
| 2095 |
+
"step": 2980
|
| 2096 |
+
},
|
| 2097 |
+
{
|
| 2098 |
+
"epoch": 0.3600240818783865,
|
| 2099 |
+
"grad_norm": 0.5598990321159363,
|
| 2100 |
+
"learning_rate": 8.078564992941401e-07,
|
| 2101 |
+
"loss": 0.2741,
|
| 2102 |
+
"step": 2990
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 0.3612281757977122,
|
| 2106 |
+
"grad_norm": 0.5614596009254456,
|
| 2107 |
+
"learning_rate": 8.061977219662092e-07,
|
| 2108 |
+
"loss": 0.2913,
|
| 2109 |
+
"step": 3000
|
| 2110 |
+
},
|
| 2111 |
+
{
|
| 2112 |
+
"epoch": 0.3624322697170379,
|
| 2113 |
+
"grad_norm": 0.37974095344543457,
|
| 2114 |
+
"learning_rate": 8.045335346680611e-07,
|
| 2115 |
+
"loss": 0.2787,
|
| 2116 |
+
"step": 3010
|
| 2117 |
+
},
|
| 2118 |
+
{
|
| 2119 |
+
"epoch": 0.36363636363636365,
|
| 2120 |
+
"grad_norm": 0.6439441442489624,
|
| 2121 |
+
"learning_rate": 8.028639668029309e-07,
|
| 2122 |
+
"loss": 0.2868,
|
| 2123 |
+
"step": 3020
|
| 2124 |
+
},
|
| 2125 |
+
{
|
| 2126 |
+
"epoch": 0.36484045755568933,
|
| 2127 |
+
"grad_norm": 0.46323299407958984,
|
| 2128 |
+
"learning_rate": 8.011890478691196e-07,
|
| 2129 |
+
"loss": 0.2831,
|
| 2130 |
+
"step": 3030
|
| 2131 |
+
},
|
| 2132 |
+
{
|
| 2133 |
+
"epoch": 0.3660445514750151,
|
| 2134 |
+
"grad_norm": 0.4963575005531311,
|
| 2135 |
+
"learning_rate": 7.995088074594713e-07,
|
| 2136 |
+
"loss": 0.2782,
|
| 2137 |
+
"step": 3040
|
| 2138 |
+
},
|
| 2139 |
+
{
|
| 2140 |
+
"epoch": 0.36724864539434077,
|
| 2141 |
+
"grad_norm": 0.6179429888725281,
|
| 2142 |
+
"learning_rate": 7.978232752608516e-07,
|
| 2143 |
+
"loss": 0.2703,
|
| 2144 |
+
"step": 3050
|
| 2145 |
+
},
|
| 2146 |
+
{
|
| 2147 |
+
"epoch": 0.36845273931366646,
|
| 2148 |
+
"grad_norm": 0.5127160549163818,
|
| 2149 |
+
"learning_rate": 7.961324810536223e-07,
|
| 2150 |
+
"loss": 0.3007,
|
| 2151 |
+
"step": 3060
|
| 2152 |
+
},
|
| 2153 |
+
{
|
| 2154 |
+
"epoch": 0.3696568332329922,
|
| 2155 |
+
"grad_norm": 0.45177775621414185,
|
| 2156 |
+
"learning_rate": 7.94436454711116e-07,
|
| 2157 |
+
"loss": 0.288,
|
| 2158 |
+
"step": 3070
|
| 2159 |
+
},
|
| 2160 |
+
{
|
| 2161 |
+
"epoch": 0.3708609271523179,
|
| 2162 |
+
"grad_norm": 0.47144508361816406,
|
| 2163 |
+
"learning_rate": 7.927352261991074e-07,
|
| 2164 |
+
"loss": 0.2901,
|
| 2165 |
+
"step": 3080
|
| 2166 |
+
},
|
| 2167 |
+
{
|
| 2168 |
+
"epoch": 0.3720650210716436,
|
| 2169 |
+
"grad_norm": 0.5511527061462402,
|
| 2170 |
+
"learning_rate": 7.910288255752844e-07,
|
| 2171 |
+
"loss": 0.2754,
|
| 2172 |
+
"step": 3090
|
| 2173 |
+
},
|
| 2174 |
+
{
|
| 2175 |
+
"epoch": 0.3732691149909693,
|
| 2176 |
+
"grad_norm": 0.5164305567741394,
|
| 2177 |
+
"learning_rate": 7.893172829887171e-07,
|
| 2178 |
+
"loss": 0.2847,
|
| 2179 |
+
"step": 3100
|
| 2180 |
+
},
|
| 2181 |
+
{
|
| 2182 |
+
"epoch": 0.374473208910295,
|
| 2183 |
+
"grad_norm": 0.5629504919052124,
|
| 2184 |
+
"learning_rate": 7.876006286793251e-07,
|
| 2185 |
+
"loss": 0.2953,
|
| 2186 |
+
"step": 3110
|
| 2187 |
+
},
|
| 2188 |
+
{
|
| 2189 |
+
"epoch": 0.3756773028296207,
|
| 2190 |
+
"grad_norm": 0.513200044631958,
|
| 2191 |
+
"learning_rate": 7.858788929773422e-07,
|
| 2192 |
+
"loss": 0.2702,
|
| 2193 |
+
"step": 3120
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"epoch": 0.37688139674894644,
|
| 2197 |
+
"grad_norm": 0.504371166229248,
|
| 2198 |
+
"learning_rate": 7.841521063027825e-07,
|
| 2199 |
+
"loss": 0.2873,
|
| 2200 |
+
"step": 3130
|
| 2201 |
+
},
|
| 2202 |
+
{
|
| 2203 |
+
"epoch": 0.37808549066827213,
|
| 2204 |
+
"grad_norm": 0.613593578338623,
|
| 2205 |
+
"learning_rate": 7.824202991649013e-07,
|
| 2206 |
+
"loss": 0.27,
|
| 2207 |
+
"step": 3140
|
| 2208 |
+
},
|
| 2209 |
+
{
|
| 2210 |
+
"epoch": 0.3792895845875978,
|
| 2211 |
+
"grad_norm": 0.7345304489135742,
|
| 2212 |
+
"learning_rate": 7.806835021616564e-07,
|
| 2213 |
+
"loss": 0.2895,
|
| 2214 |
+
"step": 3150
|
| 2215 |
+
},
|
| 2216 |
+
{
|
| 2217 |
+
"epoch": 0.38049367850692356,
|
| 2218 |
+
"grad_norm": 0.48514464497566223,
|
| 2219 |
+
"learning_rate": 7.789417459791681e-07,
|
| 2220 |
+
"loss": 0.2809,
|
| 2221 |
+
"step": 3160
|
| 2222 |
+
},
|
| 2223 |
+
{
|
| 2224 |
+
"epoch": 0.38169777242624925,
|
| 2225 |
+
"grad_norm": 0.4638960063457489,
|
| 2226 |
+
"learning_rate": 7.77195061391176e-07,
|
| 2227 |
+
"loss": 0.2839,
|
| 2228 |
+
"step": 3170
|
| 2229 |
+
},
|
| 2230 |
+
{
|
| 2231 |
+
"epoch": 0.38290186634557494,
|
| 2232 |
+
"grad_norm": 0.5008341073989868,
|
| 2233 |
+
"learning_rate": 7.754434792584968e-07,
|
| 2234 |
+
"loss": 0.2701,
|
| 2235 |
+
"step": 3180
|
| 2236 |
+
},
|
| 2237 |
+
{
|
| 2238 |
+
"epoch": 0.3841059602649007,
|
| 2239 |
+
"grad_norm": 0.5258957743644714,
|
| 2240 |
+
"learning_rate": 7.73687030528477e-07,
|
| 2241 |
+
"loss": 0.2709,
|
| 2242 |
+
"step": 3190
|
| 2243 |
+
},
|
| 2244 |
+
{
|
| 2245 |
+
"epoch": 0.38531005418422637,
|
| 2246 |
+
"grad_norm": 0.5781968832015991,
|
| 2247 |
+
"learning_rate": 7.719257462344481e-07,
|
| 2248 |
+
"loss": 0.2994,
|
| 2249 |
+
"step": 3200
|
| 2250 |
+
},
|
| 2251 |
+
{
|
| 2252 |
+
"epoch": 0.38651414810355206,
|
| 2253 |
+
"grad_norm": 0.5485130548477173,
|
| 2254 |
+
"learning_rate": 7.701596574951771e-07,
|
| 2255 |
+
"loss": 0.3001,
|
| 2256 |
+
"step": 3210
|
| 2257 |
+
},
|
| 2258 |
+
{
|
| 2259 |
+
"epoch": 0.3877182420228778,
|
| 2260 |
+
"grad_norm": 0.4708418846130371,
|
| 2261 |
+
"learning_rate": 7.683887955143169e-07,
|
| 2262 |
+
"loss": 0.2736,
|
| 2263 |
+
"step": 3220
|
| 2264 |
+
},
|
| 2265 |
+
{
|
| 2266 |
+
"epoch": 0.3889223359422035,
|
| 2267 |
+
"grad_norm": 0.5321612358093262,
|
| 2268 |
+
"learning_rate": 7.666131915798556e-07,
|
| 2269 |
+
"loss": 0.2892,
|
| 2270 |
+
"step": 3230
|
| 2271 |
+
},
|
| 2272 |
+
{
|
| 2273 |
+
"epoch": 0.3901264298615292,
|
| 2274 |
+
"grad_norm": 0.524898111820221,
|
| 2275 |
+
"learning_rate": 7.648328770635623e-07,
|
| 2276 |
+
"loss": 0.2897,
|
| 2277 |
+
"step": 3240
|
| 2278 |
+
},
|
| 2279 |
+
{
|
| 2280 |
+
"epoch": 0.3913305237808549,
|
| 2281 |
+
"grad_norm": 0.4973953664302826,
|
| 2282 |
+
"learning_rate": 7.630478834204351e-07,
|
| 2283 |
+
"loss": 0.2804,
|
| 2284 |
+
"step": 3250
|
| 2285 |
+
},
|
| 2286 |
+
{
|
| 2287 |
+
"epoch": 0.3925346177001806,
|
| 2288 |
+
"grad_norm": 0.5439997315406799,
|
| 2289 |
+
"learning_rate": 7.612582421881423e-07,
|
| 2290 |
+
"loss": 0.2824,
|
| 2291 |
+
"step": 3260
|
| 2292 |
+
},
|
| 2293 |
+
{
|
| 2294 |
+
"epoch": 0.3937387116195063,
|
| 2295 |
+
"grad_norm": 0.5040695667266846,
|
| 2296 |
+
"learning_rate": 7.594639849864681e-07,
|
| 2297 |
+
"loss": 0.2806,
|
| 2298 |
+
"step": 3270
|
| 2299 |
+
},
|
| 2300 |
+
{
|
| 2301 |
+
"epoch": 0.39494280553883204,
|
| 2302 |
+
"grad_norm": 0.57867830991745,
|
| 2303 |
+
"learning_rate": 7.576651435167523e-07,
|
| 2304 |
+
"loss": 0.2788,
|
| 2305 |
+
"step": 3280
|
| 2306 |
+
},
|
| 2307 |
+
{
|
| 2308 |
+
"epoch": 0.39614689945815773,
|
| 2309 |
+
"grad_norm": 0.43785402178764343,
|
| 2310 |
+
"learning_rate": 7.558617495613304e-07,
|
| 2311 |
+
"loss": 0.272,
|
| 2312 |
+
"step": 3290
|
| 2313 |
+
},
|
| 2314 |
+
{
|
| 2315 |
+
"epoch": 0.3973509933774834,
|
| 2316 |
+
"grad_norm": 0.6042655110359192,
|
| 2317 |
+
"learning_rate": 7.540538349829725e-07,
|
| 2318 |
+
"loss": 0.2918,
|
| 2319 |
+
"step": 3300
|
| 2320 |
+
},
|
| 2321 |
+
{
|
| 2322 |
+
"epoch": 0.39855508729680916,
|
| 2323 |
+
"grad_norm": 0.6529451012611389,
|
| 2324 |
+
"learning_rate": 7.522414317243198e-07,
|
| 2325 |
+
"loss": 0.2882,
|
| 2326 |
+
"step": 3310
|
| 2327 |
+
},
|
| 2328 |
+
{
|
| 2329 |
+
"epoch": 0.39975918121613485,
|
| 2330 |
+
"grad_norm": 0.5043284296989441,
|
| 2331 |
+
"learning_rate": 7.50424571807321e-07,
|
| 2332 |
+
"loss": 0.2859,
|
| 2333 |
+
"step": 3320
|
| 2334 |
+
},
|
| 2335 |
+
{
|
| 2336 |
+
"epoch": 0.40096327513546054,
|
| 2337 |
+
"grad_norm": 0.44874584674835205,
|
| 2338 |
+
"learning_rate": 7.486032873326656e-07,
|
| 2339 |
+
"loss": 0.2912,
|
| 2340 |
+
"step": 3330
|
| 2341 |
+
},
|
| 2342 |
+
{
|
| 2343 |
+
"epoch": 0.4021673690547863,
|
| 2344 |
+
"grad_norm": 0.515211284160614,
|
| 2345 |
+
"learning_rate": 7.467776104792171e-07,
|
| 2346 |
+
"loss": 0.2747,
|
| 2347 |
+
"step": 3340
|
| 2348 |
+
},
|
| 2349 |
+
{
|
| 2350 |
+
"epoch": 0.40337146297411197,
|
| 2351 |
+
"grad_norm": 0.5425666570663452,
|
| 2352 |
+
"learning_rate": 7.449475735034453e-07,
|
| 2353 |
+
"loss": 0.2964,
|
| 2354 |
+
"step": 3350
|
| 2355 |
+
},
|
| 2356 |
+
{
|
| 2357 |
+
"epoch": 0.4045755568934377,
|
| 2358 |
+
"grad_norm": 0.5557084083557129,
|
| 2359 |
+
"learning_rate": 7.431132087388546e-07,
|
| 2360 |
+
"loss": 0.2809,
|
| 2361 |
+
"step": 3360
|
| 2362 |
+
},
|
| 2363 |
+
{
|
| 2364 |
+
"epoch": 0.4057796508127634,
|
| 2365 |
+
"grad_norm": 0.4438600540161133,
|
| 2366 |
+
"learning_rate": 7.412745485954144e-07,
|
| 2367 |
+
"loss": 0.269,
|
| 2368 |
+
"step": 3370
|
| 2369 |
+
},
|
| 2370 |
+
{
|
| 2371 |
+
"epoch": 0.4069837447320891,
|
| 2372 |
+
"grad_norm": 0.586608350276947,
|
| 2373 |
+
"learning_rate": 7.394316255589854e-07,
|
| 2374 |
+
"loss": 0.2848,
|
| 2375 |
+
"step": 3380
|
| 2376 |
+
},
|
| 2377 |
+
{
|
| 2378 |
+
"epoch": 0.40818783865141484,
|
| 2379 |
+
"grad_norm": 0.6429834961891174,
|
| 2380 |
+
"learning_rate": 7.375844721907466e-07,
|
| 2381 |
+
"loss": 0.2917,
|
| 2382 |
+
"step": 3390
|
| 2383 |
+
},
|
| 2384 |
+
{
|
| 2385 |
+
"epoch": 0.4093919325707405,
|
| 2386 |
+
"grad_norm": 0.5150188207626343,
|
| 2387 |
+
"learning_rate": 7.35733121126619e-07,
|
| 2388 |
+
"loss": 0.2772,
|
| 2389 |
+
"step": 3400
|
| 2390 |
+
},
|
| 2391 |
+
{
|
| 2392 |
+
"epoch": 0.4105960264900662,
|
| 2393 |
+
"grad_norm": 0.5537393093109131,
|
| 2394 |
+
"learning_rate": 7.338776050766896e-07,
|
| 2395 |
+
"loss": 0.2819,
|
| 2396 |
+
"step": 3410
|
| 2397 |
+
},
|
| 2398 |
+
{
|
| 2399 |
+
"epoch": 0.41180012040939196,
|
| 2400 |
+
"grad_norm": 0.4834784269332886,
|
| 2401 |
+
"learning_rate": 7.320179568246333e-07,
|
| 2402 |
+
"loss": 0.2851,
|
| 2403 |
+
"step": 3420
|
| 2404 |
+
},
|
| 2405 |
+
{
|
| 2406 |
+
"epoch": 0.41300421432871764,
|
| 2407 |
+
"grad_norm": 0.6806831955909729,
|
| 2408 |
+
"learning_rate": 7.301542092271337e-07,
|
| 2409 |
+
"loss": 0.2841,
|
| 2410 |
+
"step": 3430
|
| 2411 |
+
},
|
| 2412 |
+
{
|
| 2413 |
+
"epoch": 0.41420830824804333,
|
| 2414 |
+
"grad_norm": 0.5081019997596741,
|
| 2415 |
+
"learning_rate": 7.282863952133022e-07,
|
| 2416 |
+
"loss": 0.2763,
|
| 2417 |
+
"step": 3440
|
| 2418 |
+
},
|
| 2419 |
+
{
|
| 2420 |
+
"epoch": 0.4154124021673691,
|
| 2421 |
+
"grad_norm": 0.5681424140930176,
|
| 2422 |
+
"learning_rate": 7.264145477840974e-07,
|
| 2423 |
+
"loss": 0.2719,
|
| 2424 |
+
"step": 3450
|
| 2425 |
+
},
|
| 2426 |
+
{
|
| 2427 |
+
"epoch": 0.41661649608669477,
|
| 2428 |
+
"grad_norm": 0.6257504820823669,
|
| 2429 |
+
"learning_rate": 7.245387000117404e-07,
|
| 2430 |
+
"loss": 0.2813,
|
| 2431 |
+
"step": 3460
|
| 2432 |
+
},
|
| 2433 |
+
{
|
| 2434 |
+
"epoch": 0.41782059000602045,
|
| 2435 |
+
"grad_norm": 0.5195356607437134,
|
| 2436 |
+
"learning_rate": 7.226588850391317e-07,
|
| 2437 |
+
"loss": 0.2761,
|
| 2438 |
+
"step": 3470
|
| 2439 |
+
},
|
| 2440 |
+
{
|
| 2441 |
+
"epoch": 0.4190246839253462,
|
| 2442 |
+
"grad_norm": 0.5490323305130005,
|
| 2443 |
+
"learning_rate": 7.207751360792647e-07,
|
| 2444 |
+
"loss": 0.291,
|
| 2445 |
+
"step": 3480
|
| 2446 |
+
},
|
| 2447 |
+
{
|
| 2448 |
+
"epoch": 0.4202287778446719,
|
| 2449 |
+
"grad_norm": 0.6458017230033875,
|
| 2450 |
+
"learning_rate": 7.188874864146397e-07,
|
| 2451 |
+
"loss": 0.2919,
|
| 2452 |
+
"step": 3490
|
| 2453 |
+
},
|
| 2454 |
+
{
|
| 2455 |
+
"epoch": 0.4214328717639976,
|
| 2456 |
+
"grad_norm": 0.5081551671028137,
|
| 2457 |
+
"learning_rate": 7.16995969396676e-07,
|
| 2458 |
+
"loss": 0.2762,
|
| 2459 |
+
"step": 3500
|
| 2460 |
+
},
|
| 2461 |
+
{
|
| 2462 |
+
"epoch": 0.4226369656833233,
|
| 2463 |
+
"grad_norm": 0.6496263742446899,
|
| 2464 |
+
"learning_rate": 7.151006184451212e-07,
|
| 2465 |
+
"loss": 0.2766,
|
| 2466 |
+
"step": 3510
|
| 2467 |
+
},
|
| 2468 |
+
{
|
| 2469 |
+
"epoch": 0.423841059602649,
|
| 2470 |
+
"grad_norm": 0.6383594870567322,
|
| 2471 |
+
"learning_rate": 7.132014670474625e-07,
|
| 2472 |
+
"loss": 0.2829,
|
| 2473 |
+
"step": 3520
|
| 2474 |
+
},
|
| 2475 |
+
{
|
| 2476 |
+
"epoch": 0.4250451535219747,
|
| 2477 |
+
"grad_norm": 0.6374247074127197,
|
| 2478 |
+
"learning_rate": 7.112985487583333e-07,
|
| 2479 |
+
"loss": 0.2776,
|
| 2480 |
+
"step": 3530
|
| 2481 |
+
},
|
| 2482 |
+
{
|
| 2483 |
+
"epoch": 0.42624924744130044,
|
| 2484 |
+
"grad_norm": 0.48250874876976013,
|
| 2485 |
+
"learning_rate": 7.093918971989229e-07,
|
| 2486 |
+
"loss": 0.2794,
|
| 2487 |
+
"step": 3540
|
| 2488 |
+
},
|
| 2489 |
+
{
|
| 2490 |
+
"epoch": 0.4274533413606261,
|
| 2491 |
+
"grad_norm": 0.5055521726608276,
|
| 2492 |
+
"learning_rate": 7.07481546056379e-07,
|
| 2493 |
+
"loss": 0.2818,
|
| 2494 |
+
"step": 3550
|
| 2495 |
+
},
|
| 2496 |
+
{
|
| 2497 |
+
"epoch": 0.4286574352799518,
|
| 2498 |
+
"grad_norm": 0.558320164680481,
|
| 2499 |
+
"learning_rate": 7.055675290832157e-07,
|
| 2500 |
+
"loss": 0.29,
|
| 2501 |
+
"step": 3560
|
| 2502 |
+
},
|
| 2503 |
+
{
|
| 2504 |
+
"epoch": 0.42986152919927756,
|
| 2505 |
+
"grad_norm": 0.54196697473526,
|
| 2506 |
+
"learning_rate": 7.036498800967153e-07,
|
| 2507 |
+
"loss": 0.2819,
|
| 2508 |
+
"step": 3570
|
| 2509 |
+
},
|
| 2510 |
+
{
|
| 2511 |
+
"epoch": 0.43106562311860325,
|
| 2512 |
+
"grad_norm": 0.5442371368408203,
|
| 2513 |
+
"learning_rate": 7.017286329783314e-07,
|
| 2514 |
+
"loss": 0.3044,
|
| 2515 |
+
"step": 3580
|
| 2516 |
+
},
|
| 2517 |
+
{
|
| 2518 |
+
"epoch": 0.43226971703792894,
|
| 2519 |
+
"grad_norm": 0.531579315662384,
|
| 2520 |
+
"learning_rate": 6.9980382167309e-07,
|
| 2521 |
+
"loss": 0.2875,
|
| 2522 |
+
"step": 3590
|
| 2523 |
+
},
|
| 2524 |
+
{
|
| 2525 |
+
"epoch": 0.4334738109572547,
|
| 2526 |
+
"grad_norm": 0.6069034934043884,
|
| 2527 |
+
"learning_rate": 6.978754801889902e-07,
|
| 2528 |
+
"loss": 0.2915,
|
| 2529 |
+
"step": 3600
|
| 2530 |
+
},
|
| 2531 |
+
{
|
| 2532 |
+
"epoch": 0.43467790487658037,
|
| 2533 |
+
"grad_norm": 0.5376235246658325,
|
| 2534 |
+
"learning_rate": 6.959436425964033e-07,
|
| 2535 |
+
"loss": 0.2768,
|
| 2536 |
+
"step": 3610
|
| 2537 |
+
},
|
| 2538 |
+
{
|
| 2539 |
+
"epoch": 0.43588199879590606,
|
| 2540 |
+
"grad_norm": 0.5438763499259949,
|
| 2541 |
+
"learning_rate": 6.9400834302747e-07,
|
| 2542 |
+
"loss": 0.2911,
|
| 2543 |
+
"step": 3620
|
| 2544 |
+
},
|
| 2545 |
+
{
|
| 2546 |
+
"epoch": 0.4370860927152318,
|
| 2547 |
+
"grad_norm": 0.4325105547904968,
|
| 2548 |
+
"learning_rate": 6.920696156754985e-07,
|
| 2549 |
+
"loss": 0.269,
|
| 2550 |
+
"step": 3630
|
| 2551 |
+
},
|
| 2552 |
+
{
|
| 2553 |
+
"epoch": 0.4382901866345575,
|
| 2554 |
+
"grad_norm": 0.5107905864715576,
|
| 2555 |
+
"learning_rate": 6.901274947943597e-07,
|
| 2556 |
+
"loss": 0.2754,
|
| 2557 |
+
"step": 3640
|
| 2558 |
+
},
|
| 2559 |
+
{
|
| 2560 |
+
"epoch": 0.4394942805538832,
|
| 2561 |
+
"grad_norm": 0.5302306413650513,
|
| 2562 |
+
"learning_rate": 6.881820146978822e-07,
|
| 2563 |
+
"loss": 0.2835,
|
| 2564 |
+
"step": 3650
|
| 2565 |
+
},
|
| 2566 |
+
{
|
| 2567 |
+
"epoch": 0.4406983744732089,
|
| 2568 |
+
"grad_norm": 0.5489309430122375,
|
| 2569 |
+
"learning_rate": 6.862332097592457e-07,
|
| 2570 |
+
"loss": 0.2746,
|
| 2571 |
+
"step": 3660
|
| 2572 |
+
},
|
| 2573 |
+
{
|
| 2574 |
+
"epoch": 0.4419024683925346,
|
| 2575 |
+
"grad_norm": 0.4515032172203064,
|
| 2576 |
+
"learning_rate": 6.842811144103743e-07,
|
| 2577 |
+
"loss": 0.2829,
|
| 2578 |
+
"step": 3670
|
| 2579 |
+
},
|
| 2580 |
+
{
|
| 2581 |
+
"epoch": 0.44310656231186035,
|
| 2582 |
+
"grad_norm": 0.5359588861465454,
|
| 2583 |
+
"learning_rate": 6.823257631413275e-07,
|
| 2584 |
+
"loss": 0.2826,
|
| 2585 |
+
"step": 3680
|
| 2586 |
+
},
|
| 2587 |
+
{
|
| 2588 |
+
"epoch": 0.44431065623118604,
|
| 2589 |
+
"grad_norm": 0.49561506509780884,
|
| 2590 |
+
"learning_rate": 6.803671904996916e-07,
|
| 2591 |
+
"loss": 0.2946,
|
| 2592 |
+
"step": 3690
|
| 2593 |
+
},
|
| 2594 |
+
{
|
| 2595 |
+
"epoch": 0.44551475015051173,
|
| 2596 |
+
"grad_norm": 0.43841075897216797,
|
| 2597 |
+
"learning_rate": 6.784054310899683e-07,
|
| 2598 |
+
"loss": 0.2802,
|
| 2599 |
+
"step": 3700
|
| 2600 |
+
},
|
| 2601 |
+
{
|
| 2602 |
+
"epoch": 0.4467188440698375,
|
| 2603 |
+
"grad_norm": 0.7528261542320251,
|
| 2604 |
+
"learning_rate": 6.764405195729639e-07,
|
| 2605 |
+
"loss": 0.2829,
|
| 2606 |
+
"step": 3710
|
| 2607 |
+
},
|
| 2608 |
+
{
|
| 2609 |
+
"epoch": 0.44792293798916316,
|
| 2610 |
+
"grad_norm": 1.1440777778625488,
|
| 2611 |
+
"learning_rate": 6.744724906651774e-07,
|
| 2612 |
+
"loss": 0.2665,
|
| 2613 |
+
"step": 3720
|
| 2614 |
+
},
|
| 2615 |
+
{
|
| 2616 |
+
"epoch": 0.44912703190848885,
|
| 2617 |
+
"grad_norm": 0.5153807997703552,
|
| 2618 |
+
"learning_rate": 6.72501379138186e-07,
|
| 2619 |
+
"loss": 0.2754,
|
| 2620 |
+
"step": 3730
|
| 2621 |
+
},
|
| 2622 |
+
{
|
| 2623 |
+
"epoch": 0.4503311258278146,
|
| 2624 |
+
"grad_norm": 0.582036554813385,
|
| 2625 |
+
"learning_rate": 6.705272198180312e-07,
|
| 2626 |
+
"loss": 0.2818,
|
| 2627 |
+
"step": 3740
|
| 2628 |
+
},
|
| 2629 |
+
{
|
| 2630 |
+
"epoch": 0.4515352197471403,
|
| 2631 |
+
"grad_norm": 0.7196856737136841,
|
| 2632 |
+
"learning_rate": 6.685500475846044e-07,
|
| 2633 |
+
"loss": 0.2744,
|
| 2634 |
+
"step": 3750
|
| 2635 |
+
},
|
| 2636 |
+
{
|
| 2637 |
+
"epoch": 0.45273931366646597,
|
| 2638 |
+
"grad_norm": 1.0595272779464722,
|
| 2639 |
+
"learning_rate": 6.665698973710288e-07,
|
| 2640 |
+
"loss": 0.2602,
|
| 2641 |
+
"step": 3760
|
| 2642 |
+
},
|
| 2643 |
+
{
|
| 2644 |
+
"epoch": 0.4539434075857917,
|
| 2645 |
+
"grad_norm": 0.4910378158092499,
|
| 2646 |
+
"learning_rate": 6.645868041630439e-07,
|
| 2647 |
+
"loss": 0.2887,
|
| 2648 |
+
"step": 3770
|
| 2649 |
+
},
|
| 2650 |
+
{
|
| 2651 |
+
"epoch": 0.4551475015051174,
|
| 2652 |
+
"grad_norm": 0.4395122230052948,
|
| 2653 |
+
"learning_rate": 6.626008029983867e-07,
|
| 2654 |
+
"loss": 0.2771,
|
| 2655 |
+
"step": 3780
|
| 2656 |
+
},
|
| 2657 |
+
{
|
| 2658 |
+
"epoch": 0.4563515954244431,
|
| 2659 |
+
"grad_norm": 0.5630185008049011,
|
| 2660 |
+
"learning_rate": 6.606119289661721e-07,
|
| 2661 |
+
"loss": 0.2976,
|
| 2662 |
+
"step": 3790
|
| 2663 |
+
},
|
| 2664 |
+
{
|
| 2665 |
+
"epoch": 0.45755568934376883,
|
| 2666 |
+
"grad_norm": 0.6062456965446472,
|
| 2667 |
+
"learning_rate": 6.58620217206274e-07,
|
| 2668 |
+
"loss": 0.2707,
|
| 2669 |
+
"step": 3800
|
| 2670 |
+
},
|
| 2671 |
+
{
|
| 2672 |
+
"epoch": 0.4587597832630945,
|
| 2673 |
+
"grad_norm": 0.6882142424583435,
|
| 2674 |
+
"learning_rate": 6.566257029087039e-07,
|
| 2675 |
+
"loss": 0.2732,
|
| 2676 |
+
"step": 3810
|
| 2677 |
+
},
|
| 2678 |
+
{
|
| 2679 |
+
"epoch": 0.4599638771824202,
|
| 2680 |
+
"grad_norm": 0.4631926417350769,
|
| 2681 |
+
"learning_rate": 6.546284213129885e-07,
|
| 2682 |
+
"loss": 0.2794,
|
| 2683 |
+
"step": 3820
|
| 2684 |
+
},
|
| 2685 |
+
{
|
| 2686 |
+
"epoch": 0.46116797110174595,
|
| 2687 |
+
"grad_norm": 0.4465793967247009,
|
| 2688 |
+
"learning_rate": 6.526284077075488e-07,
|
| 2689 |
+
"loss": 0.2809,
|
| 2690 |
+
"step": 3830
|
| 2691 |
+
},
|
| 2692 |
+
{
|
| 2693 |
+
"epoch": 0.46237206502107164,
|
| 2694 |
+
"grad_norm": 0.5073222517967224,
|
| 2695 |
+
"learning_rate": 6.506256974290747e-07,
|
| 2696 |
+
"loss": 0.2908,
|
| 2697 |
+
"step": 3840
|
| 2698 |
+
},
|
| 2699 |
+
{
|
| 2700 |
+
"epoch": 0.46357615894039733,
|
| 2701 |
+
"grad_norm": 0.5717306137084961,
|
| 2702 |
+
"learning_rate": 6.486203258619016e-07,
|
| 2703 |
+
"loss": 0.282,
|
| 2704 |
+
"step": 3850
|
| 2705 |
+
},
|
| 2706 |
+
{
|
| 2707 |
+
"epoch": 0.4647802528597231,
|
| 2708 |
+
"grad_norm": 0.5614638924598694,
|
| 2709 |
+
"learning_rate": 6.466123284373858e-07,
|
| 2710 |
+
"loss": 0.2764,
|
| 2711 |
+
"step": 3860
|
| 2712 |
+
},
|
| 2713 |
+
{
|
| 2714 |
+
"epoch": 0.46598434677904876,
|
| 2715 |
+
"grad_norm": 0.626006007194519,
|
| 2716 |
+
"learning_rate": 6.446017406332772e-07,
|
| 2717 |
+
"loss": 0.277,
|
| 2718 |
+
"step": 3870
|
| 2719 |
+
},
|
| 2720 |
+
{
|
| 2721 |
+
"epoch": 0.46718844069837445,
|
| 2722 |
+
"grad_norm": 0.47509709000587463,
|
| 2723 |
+
"learning_rate": 6.425885979730933e-07,
|
| 2724 |
+
"loss": 0.2828,
|
| 2725 |
+
"step": 3880
|
| 2726 |
+
},
|
| 2727 |
+
{
|
| 2728 |
+
"epoch": 0.4683925346177002,
|
| 2729 |
+
"grad_norm": 0.5545176267623901,
|
| 2730 |
+
"learning_rate": 6.405729360254914e-07,
|
| 2731 |
+
"loss": 0.2893,
|
| 2732 |
+
"step": 3890
|
| 2733 |
+
},
|
| 2734 |
+
{
|
| 2735 |
+
"epoch": 0.4695966285370259,
|
| 2736 |
+
"grad_norm": 0.4888879060745239,
|
| 2737 |
+
"learning_rate": 6.3855479040364e-07,
|
| 2738 |
+
"loss": 0.2811,
|
| 2739 |
+
"step": 3900
|
| 2740 |
+
},
|
| 2741 |
+
{
|
| 2742 |
+
"epoch": 0.4708007224563516,
|
| 2743 |
+
"grad_norm": 0.44063079357147217,
|
| 2744 |
+
"learning_rate": 6.365341967645902e-07,
|
| 2745 |
+
"loss": 0.2782,
|
| 2746 |
+
"step": 3910
|
| 2747 |
+
},
|
| 2748 |
+
{
|
| 2749 |
+
"epoch": 0.4720048163756773,
|
| 2750 |
+
"grad_norm": 0.5356207489967346,
|
| 2751 |
+
"learning_rate": 6.345111908086444e-07,
|
| 2752 |
+
"loss": 0.2658,
|
| 2753 |
+
"step": 3920
|
| 2754 |
+
},
|
| 2755 |
+
{
|
| 2756 |
+
"epoch": 0.473208910295003,
|
| 2757 |
+
"grad_norm": 0.5134460926055908,
|
| 2758 |
+
"learning_rate": 6.324858082787275e-07,
|
| 2759 |
+
"loss": 0.2782,
|
| 2760 |
+
"step": 3930
|
| 2761 |
+
},
|
| 2762 |
+
{
|
| 2763 |
+
"epoch": 0.4744130042143287,
|
| 2764 |
+
"grad_norm": 0.5685980916023254,
|
| 2765 |
+
"learning_rate": 6.304580849597527e-07,
|
| 2766 |
+
"loss": 0.2704,
|
| 2767 |
+
"step": 3940
|
| 2768 |
+
},
|
| 2769 |
+
{
|
| 2770 |
+
"epoch": 0.47561709813365444,
|
| 2771 |
+
"grad_norm": 0.8610411286354065,
|
| 2772 |
+
"learning_rate": 6.284280566779923e-07,
|
| 2773 |
+
"loss": 0.29,
|
| 2774 |
+
"step": 3950
|
| 2775 |
+
},
|
| 2776 |
+
{
|
| 2777 |
+
"epoch": 0.4768211920529801,
|
| 2778 |
+
"grad_norm": 0.5496920943260193,
|
| 2779 |
+
"learning_rate": 6.263957593004421e-07,
|
| 2780 |
+
"loss": 0.2704,
|
| 2781 |
+
"step": 3960
|
| 2782 |
+
},
|
| 2783 |
+
{
|
| 2784 |
+
"epoch": 0.4780252859723058,
|
| 2785 |
+
"grad_norm": 0.4593532383441925,
|
| 2786 |
+
"learning_rate": 6.243612287341896e-07,
|
| 2787 |
+
"loss": 0.2806,
|
| 2788 |
+
"step": 3970
|
| 2789 |
+
},
|
| 2790 |
+
{
|
| 2791 |
+
"epoch": 0.47922937989163156,
|
| 2792 |
+
"grad_norm": 0.5178139805793762,
|
| 2793 |
+
"learning_rate": 6.223245009257783e-07,
|
| 2794 |
+
"loss": 0.2683,
|
| 2795 |
+
"step": 3980
|
| 2796 |
+
},
|
| 2797 |
+
{
|
| 2798 |
+
"epoch": 0.48043347381095725,
|
| 2799 |
+
"grad_norm": 0.6350088119506836,
|
| 2800 |
+
"learning_rate": 6.20285611860573e-07,
|
| 2801 |
+
"loss": 0.2796,
|
| 2802 |
+
"step": 3990
|
| 2803 |
+
},
|
| 2804 |
+
{
|
| 2805 |
+
"epoch": 0.481637567730283,
|
| 2806 |
+
"grad_norm": 0.4848230183124542,
|
| 2807 |
+
"learning_rate": 6.182445975621246e-07,
|
| 2808 |
+
"loss": 0.2727,
|
| 2809 |
+
"step": 4000
|
| 2810 |
+
},
|
| 2811 |
+
{
|
| 2812 |
+
"epoch": 0.4828416616496087,
|
| 2813 |
+
"grad_norm": 0.6039783358573914,
|
| 2814 |
+
"learning_rate": 6.162014940915323e-07,
|
| 2815 |
+
"loss": 0.295,
|
| 2816 |
+
"step": 4010
|
| 2817 |
+
},
|
| 2818 |
+
{
|
| 2819 |
+
"epoch": 0.48404575556893437,
|
| 2820 |
+
"grad_norm": 0.5623034834861755,
|
| 2821 |
+
"learning_rate": 6.141563375468082e-07,
|
| 2822 |
+
"loss": 0.2843,
|
| 2823 |
+
"step": 4020
|
| 2824 |
+
},
|
| 2825 |
+
{
|
| 2826 |
+
"epoch": 0.4852498494882601,
|
| 2827 |
+
"grad_norm": 0.5298231244087219,
|
| 2828 |
+
"learning_rate": 6.12109164062238e-07,
|
| 2829 |
+
"loss": 0.2685,
|
| 2830 |
+
"step": 4030
|
| 2831 |
+
},
|
| 2832 |
+
{
|
| 2833 |
+
"epoch": 0.4864539434075858,
|
| 2834 |
+
"grad_norm": 0.49439486861228943,
|
| 2835 |
+
"learning_rate": 6.100600098077431e-07,
|
| 2836 |
+
"loss": 0.2588,
|
| 2837 |
+
"step": 4040
|
| 2838 |
+
},
|
| 2839 |
+
{
|
| 2840 |
+
"epoch": 0.4876580373269115,
|
| 2841 |
+
"grad_norm": 0.4667768180370331,
|
| 2842 |
+
"learning_rate": 6.080089109882418e-07,
|
| 2843 |
+
"loss": 0.275,
|
| 2844 |
+
"step": 4050
|
| 2845 |
+
},
|
| 2846 |
+
{
|
| 2847 |
+
"epoch": 0.48886213124623723,
|
| 2848 |
+
"grad_norm": 0.5490863919258118,
|
| 2849 |
+
"learning_rate": 6.059559038430094e-07,
|
| 2850 |
+
"loss": 0.2837,
|
| 2851 |
+
"step": 4060
|
| 2852 |
+
},
|
| 2853 |
+
{
|
| 2854 |
+
"epoch": 0.4900662251655629,
|
| 2855 |
+
"grad_norm": 0.467192143201828,
|
| 2856 |
+
"learning_rate": 6.039010246450376e-07,
|
| 2857 |
+
"loss": 0.2733,
|
| 2858 |
+
"step": 4070
|
| 2859 |
+
},
|
| 2860 |
+
{
|
| 2861 |
+
"epoch": 0.4912703190848886,
|
| 2862 |
+
"grad_norm": 0.49663642048835754,
|
| 2863 |
+
"learning_rate": 6.018443097003945e-07,
|
| 2864 |
+
"loss": 0.2738,
|
| 2865 |
+
"step": 4080
|
| 2866 |
+
},
|
| 2867 |
+
{
|
| 2868 |
+
"epoch": 0.49247441300421435,
|
| 2869 |
+
"grad_norm": 0.501777708530426,
|
| 2870 |
+
"learning_rate": 5.997857953475823e-07,
|
| 2871 |
+
"loss": 0.2743,
|
| 2872 |
+
"step": 4090
|
| 2873 |
+
},
|
| 2874 |
+
{
|
| 2875 |
+
"epoch": 0.49367850692354004,
|
| 2876 |
+
"grad_norm": 0.5064652562141418,
|
| 2877 |
+
"learning_rate": 5.977255179568955e-07,
|
| 2878 |
+
"loss": 0.2748,
|
| 2879 |
+
"step": 4100
|
| 2880 |
+
},
|
| 2881 |
+
{
|
| 2882 |
+
"epoch": 0.4948826008428657,
|
| 2883 |
+
"grad_norm": 0.6248656511306763,
|
| 2884 |
+
"learning_rate": 5.956635139297783e-07,
|
| 2885 |
+
"loss": 0.2765,
|
| 2886 |
+
"step": 4110
|
| 2887 |
+
},
|
| 2888 |
+
{
|
| 2889 |
+
"epoch": 0.49608669476219147,
|
| 2890 |
+
"grad_norm": 0.45688706636428833,
|
| 2891 |
+
"learning_rate": 5.935998196981817e-07,
|
| 2892 |
+
"loss": 0.271,
|
| 2893 |
+
"step": 4120
|
| 2894 |
+
},
|
| 2895 |
+
{
|
| 2896 |
+
"epoch": 0.49729078868151716,
|
| 2897 |
+
"grad_norm": 0.7225250601768494,
|
| 2898 |
+
"learning_rate": 5.915344717239197e-07,
|
| 2899 |
+
"loss": 0.2853,
|
| 2900 |
+
"step": 4130
|
| 2901 |
+
},
|
| 2902 |
+
{
|
| 2903 |
+
"epoch": 0.49849488260084285,
|
| 2904 |
+
"grad_norm": 0.5863081812858582,
|
| 2905 |
+
"learning_rate": 5.894675064980246e-07,
|
| 2906 |
+
"loss": 0.2685,
|
| 2907 |
+
"step": 4140
|
| 2908 |
+
},
|
| 2909 |
+
{
|
| 2910 |
+
"epoch": 0.4996989765201686,
|
| 2911 |
+
"grad_norm": 0.5770187973976135,
|
| 2912 |
+
"learning_rate": 5.87398960540103e-07,
|
| 2913 |
+
"loss": 0.2774,
|
| 2914 |
+
"step": 4150
|
| 2915 |
+
},
|
| 2916 |
+
{
|
| 2917 |
+
"epoch": 0.5009030704394943,
|
| 2918 |
+
"grad_norm": 0.41943806409835815,
|
| 2919 |
+
"learning_rate": 5.8532887039769e-07,
|
| 2920 |
+
"loss": 0.2622,
|
| 2921 |
+
"step": 4160
|
| 2922 |
+
},
|
| 2923 |
+
{
|
| 2924 |
+
"epoch": 0.50210716435882,
|
| 2925 |
+
"grad_norm": 0.6374907493591309,
|
| 2926 |
+
"learning_rate": 5.832572726456039e-07,
|
| 2927 |
+
"loss": 0.2858,
|
| 2928 |
+
"step": 4170
|
| 2929 |
+
},
|
| 2930 |
+
{
|
| 2931 |
+
"epoch": 0.5033112582781457,
|
| 2932 |
+
"grad_norm": 0.5210843086242676,
|
| 2933 |
+
"learning_rate": 5.811842038852996e-07,
|
| 2934 |
+
"loss": 0.2706,
|
| 2935 |
+
"step": 4180
|
| 2936 |
+
},
|
| 2937 |
+
{
|
| 2938 |
+
"epoch": 0.5045153521974715,
|
| 2939 |
+
"grad_norm": 0.596387505531311,
|
| 2940 |
+
"learning_rate": 5.791097007442222e-07,
|
| 2941 |
+
"loss": 0.2823,
|
| 2942 |
+
"step": 4190
|
| 2943 |
+
},
|
| 2944 |
+
{
|
| 2945 |
+
"epoch": 0.5057194461167971,
|
| 2946 |
+
"grad_norm": 0.6676878929138184,
|
| 2947 |
+
"learning_rate": 5.7703379987516e-07,
|
| 2948 |
+
"loss": 0.2848,
|
| 2949 |
+
"step": 4200
|
| 2950 |
+
},
|
| 2951 |
+
{
|
| 2952 |
+
"epoch": 0.5069235400361228,
|
| 2953 |
+
"grad_norm": 0.6097555160522461,
|
| 2954 |
+
"learning_rate": 5.749565379555961e-07,
|
| 2955 |
+
"loss": 0.2766,
|
| 2956 |
+
"step": 4210
|
| 2957 |
+
},
|
| 2958 |
+
{
|
| 2959 |
+
"epoch": 0.5081276339554486,
|
| 2960 |
+
"grad_norm": 0.6043739318847656,
|
| 2961 |
+
"learning_rate": 5.728779516870615e-07,
|
| 2962 |
+
"loss": 0.2885,
|
| 2963 |
+
"step": 4220
|
| 2964 |
+
},
|
| 2965 |
+
{
|
| 2966 |
+
"epoch": 0.5093317278747742,
|
| 2967 |
+
"grad_norm": 0.5565124750137329,
|
| 2968 |
+
"learning_rate": 5.707980777944859e-07,
|
| 2969 |
+
"loss": 0.2643,
|
| 2970 |
+
"step": 4230
|
| 2971 |
+
},
|
| 2972 |
+
{
|
| 2973 |
+
"epoch": 0.5105358217941,
|
| 2974 |
+
"grad_norm": 0.49649959802627563,
|
| 2975 |
+
"learning_rate": 5.687169530255487e-07,
|
| 2976 |
+
"loss": 0.2672,
|
| 2977 |
+
"step": 4240
|
| 2978 |
+
},
|
| 2979 |
+
{
|
| 2980 |
+
"epoch": 0.5117399157134257,
|
| 2981 |
+
"grad_norm": 0.49968451261520386,
|
| 2982 |
+
"learning_rate": 5.666346141500307e-07,
|
| 2983 |
+
"loss": 0.2754,
|
| 2984 |
+
"step": 4250
|
| 2985 |
+
},
|
| 2986 |
+
{
|
| 2987 |
+
"epoch": 0.5129440096327513,
|
| 2988 |
+
"grad_norm": 0.4982677698135376,
|
| 2989 |
+
"learning_rate": 5.645510979591634e-07,
|
| 2990 |
+
"loss": 0.2785,
|
| 2991 |
+
"step": 4260
|
| 2992 |
+
},
|
| 2993 |
+
{
|
| 2994 |
+
"epoch": 0.5141481035520771,
|
| 2995 |
+
"grad_norm": 0.904083251953125,
|
| 2996 |
+
"learning_rate": 5.624664412649797e-07,
|
| 2997 |
+
"loss": 0.2833,
|
| 2998 |
+
"step": 4270
|
| 2999 |
+
},
|
| 3000 |
+
{
|
| 3001 |
+
"epoch": 0.5153521974714028,
|
| 3002 |
+
"grad_norm": 0.5038682222366333,
|
| 3003 |
+
"learning_rate": 5.603806808996625e-07,
|
| 3004 |
+
"loss": 0.2746,
|
| 3005 |
+
"step": 4280
|
| 3006 |
+
},
|
| 3007 |
+
{
|
| 3008 |
+
"epoch": 0.5165562913907285,
|
| 3009 |
+
"grad_norm": 0.7115175724029541,
|
| 3010 |
+
"learning_rate": 5.58293853714895e-07,
|
| 3011 |
+
"loss": 0.2712,
|
| 3012 |
+
"step": 4290
|
| 3013 |
+
},
|
| 3014 |
+
{
|
| 3015 |
+
"epoch": 0.5177603853100542,
|
| 3016 |
+
"grad_norm": 0.5522176027297974,
|
| 3017 |
+
"learning_rate": 5.562059965812097e-07,
|
| 3018 |
+
"loss": 0.2869,
|
| 3019 |
+
"step": 4300
|
| 3020 |
+
},
|
| 3021 |
+
{
|
| 3022 |
+
"epoch": 0.5189644792293799,
|
| 3023 |
+
"grad_norm": 0.6081178784370422,
|
| 3024 |
+
"learning_rate": 5.541171463873357e-07,
|
| 3025 |
+
"loss": 0.2751,
|
| 3026 |
+
"step": 4310
|
| 3027 |
+
},
|
| 3028 |
+
{
|
| 3029 |
+
"epoch": 0.5201685731487056,
|
| 3030 |
+
"grad_norm": 0.5689599514007568,
|
| 3031 |
+
"learning_rate": 5.52027340039548e-07,
|
| 3032 |
+
"loss": 0.2875,
|
| 3033 |
+
"step": 4320
|
| 3034 |
+
},
|
| 3035 |
+
{
|
| 3036 |
+
"epoch": 0.5213726670680313,
|
| 3037 |
+
"grad_norm": 0.43370601534843445,
|
| 3038 |
+
"learning_rate": 5.499366144610153e-07,
|
| 3039 |
+
"loss": 0.2673,
|
| 3040 |
+
"step": 4330
|
| 3041 |
+
},
|
| 3042 |
+
{
|
| 3043 |
+
"epoch": 0.5225767609873571,
|
| 3044 |
+
"grad_norm": 0.5115625262260437,
|
| 3045 |
+
"learning_rate": 5.478450065911473e-07,
|
| 3046 |
+
"loss": 0.2791,
|
| 3047 |
+
"step": 4340
|
| 3048 |
+
},
|
| 3049 |
+
{
|
| 3050 |
+
"epoch": 0.5237808549066827,
|
| 3051 |
+
"grad_norm": 0.518798291683197,
|
| 3052 |
+
"learning_rate": 5.45752553384942e-07,
|
| 3053 |
+
"loss": 0.277,
|
| 3054 |
+
"step": 4350
|
| 3055 |
+
},
|
| 3056 |
+
{
|
| 3057 |
+
"epoch": 0.5249849488260084,
|
| 3058 |
+
"grad_norm": 0.5628324151039124,
|
| 3059 |
+
"learning_rate": 5.436592918123337e-07,
|
| 3060 |
+
"loss": 0.2884,
|
| 3061 |
+
"step": 4360
|
| 3062 |
+
},
|
| 3063 |
+
{
|
| 3064 |
+
"epoch": 0.5261890427453342,
|
| 3065 |
+
"grad_norm": 0.47458890080451965,
|
| 3066 |
+
"learning_rate": 5.415652588575385e-07,
|
| 3067 |
+
"loss": 0.27,
|
| 3068 |
+
"step": 4370
|
| 3069 |
+
},
|
| 3070 |
+
{
|
| 3071 |
+
"epoch": 0.5273931366646598,
|
| 3072 |
+
"grad_norm": 0.6163709759712219,
|
| 3073 |
+
"learning_rate": 5.394704915184014e-07,
|
| 3074 |
+
"loss": 0.2643,
|
| 3075 |
+
"step": 4380
|
| 3076 |
+
},
|
| 3077 |
+
{
|
| 3078 |
+
"epoch": 0.5285972305839856,
|
| 3079 |
+
"grad_norm": 0.44985631108283997,
|
| 3080 |
+
"learning_rate": 5.373750268057431e-07,
|
| 3081 |
+
"loss": 0.2774,
|
| 3082 |
+
"step": 4390
|
| 3083 |
+
},
|
| 3084 |
+
{
|
| 3085 |
+
"epoch": 0.5298013245033113,
|
| 3086 |
+
"grad_norm": 0.47572416067123413,
|
| 3087 |
+
"learning_rate": 5.352789017427052e-07,
|
| 3088 |
+
"loss": 0.278,
|
| 3089 |
+
"step": 4400
|
| 3090 |
+
},
|
| 3091 |
+
{
|
| 3092 |
+
"epoch": 0.5310054184226369,
|
| 3093 |
+
"grad_norm": 0.5311432480812073,
|
| 3094 |
+
"learning_rate": 5.33182153364097e-07,
|
| 3095 |
+
"loss": 0.283,
|
| 3096 |
+
"step": 4410
|
| 3097 |
+
},
|
| 3098 |
+
{
|
| 3099 |
+
"epoch": 0.5322095123419627,
|
| 3100 |
+
"grad_norm": 0.5810163617134094,
|
| 3101 |
+
"learning_rate": 5.310848187157403e-07,
|
| 3102 |
+
"loss": 0.257,
|
| 3103 |
+
"step": 4420
|
| 3104 |
+
},
|
| 3105 |
+
{
|
| 3106 |
+
"epoch": 0.5334136062612884,
|
| 3107 |
+
"grad_norm": 0.8989514708518982,
|
| 3108 |
+
"learning_rate": 5.289869348538153e-07,
|
| 3109 |
+
"loss": 0.2846,
|
| 3110 |
+
"step": 4430
|
| 3111 |
+
},
|
| 3112 |
+
{
|
| 3113 |
+
"epoch": 0.534617700180614,
|
| 3114 |
+
"grad_norm": 0.4534051716327667,
|
| 3115 |
+
"learning_rate": 5.26888538844206e-07,
|
| 3116 |
+
"loss": 0.2836,
|
| 3117 |
+
"step": 4440
|
| 3118 |
+
},
|
| 3119 |
+
{
|
| 3120 |
+
"epoch": 0.5358217940999398,
|
| 3121 |
+
"grad_norm": 0.4670819938182831,
|
| 3122 |
+
"learning_rate": 5.247896677618452e-07,
|
| 3123 |
+
"loss": 0.2614,
|
| 3124 |
+
"step": 4450
|
| 3125 |
+
},
|
| 3126 |
+
{
|
| 3127 |
+
"epoch": 0.5370258880192655,
|
| 3128 |
+
"grad_norm": 0.5935913324356079,
|
| 3129 |
+
"learning_rate": 5.226903586900587e-07,
|
| 3130 |
+
"loss": 0.2826,
|
| 3131 |
+
"step": 4460
|
| 3132 |
+
},
|
| 3133 |
+
{
|
| 3134 |
+
"epoch": 0.5382299819385912,
|
| 3135 |
+
"grad_norm": 0.45839351415634155,
|
| 3136 |
+
"learning_rate": 5.205906487199119e-07,
|
| 3137 |
+
"loss": 0.2514,
|
| 3138 |
+
"step": 4470
|
| 3139 |
+
},
|
| 3140 |
+
{
|
| 3141 |
+
"epoch": 0.5394340758579169,
|
| 3142 |
+
"grad_norm": 0.4929831624031067,
|
| 3143 |
+
"learning_rate": 5.184905749495525e-07,
|
| 3144 |
+
"loss": 0.2815,
|
| 3145 |
+
"step": 4480
|
| 3146 |
+
},
|
| 3147 |
+
{
|
| 3148 |
+
"epoch": 0.5406381697772427,
|
| 3149 |
+
"grad_norm": 0.529437780380249,
|
| 3150 |
+
"learning_rate": 5.163901744835564e-07,
|
| 3151 |
+
"loss": 0.2744,
|
| 3152 |
+
"step": 4490
|
| 3153 |
+
},
|
| 3154 |
+
{
|
| 3155 |
+
"epoch": 0.5418422636965683,
|
| 3156 |
+
"grad_norm": 0.44370970129966736,
|
| 3157 |
+
"learning_rate": 5.14289484432271e-07,
|
| 3158 |
+
"loss": 0.2837,
|
| 3159 |
+
"step": 4500
|
| 3160 |
+
},
|
| 3161 |
+
{
|
| 3162 |
+
"epoch": 0.543046357615894,
|
| 3163 |
+
"grad_norm": 0.46680358052253723,
|
| 3164 |
+
"learning_rate": 5.121885419111611e-07,
|
| 3165 |
+
"loss": 0.2833,
|
| 3166 |
+
"step": 4510
|
| 3167 |
+
},
|
| 3168 |
+
{
|
| 3169 |
+
"epoch": 0.5442504515352198,
|
| 3170 |
+
"grad_norm": 0.5581067204475403,
|
| 3171 |
+
"learning_rate": 5.100873840401513e-07,
|
| 3172 |
+
"loss": 0.2846,
|
| 3173 |
+
"step": 4520
|
| 3174 |
+
},
|
| 3175 |
+
{
|
| 3176 |
+
"epoch": 0.5454545454545454,
|
| 3177 |
+
"grad_norm": 0.4683559238910675,
|
| 3178 |
+
"learning_rate": 5.079860479429718e-07,
|
| 3179 |
+
"loss": 0.2666,
|
| 3180 |
+
"step": 4530
|
| 3181 |
+
},
|
| 3182 |
+
{
|
| 3183 |
+
"epoch": 0.5466586393738712,
|
| 3184 |
+
"grad_norm": 0.464067280292511,
|
| 3185 |
+
"learning_rate": 5.058845707465009e-07,
|
| 3186 |
+
"loss": 0.2693,
|
| 3187 |
+
"step": 4540
|
| 3188 |
+
},
|
| 3189 |
+
{
|
| 3190 |
+
"epoch": 0.5478627332931969,
|
| 3191 |
+
"grad_norm": 0.5715063214302063,
|
| 3192 |
+
"learning_rate": 5.037829895801106e-07,
|
| 3193 |
+
"loss": 0.2746,
|
| 3194 |
+
"step": 4550
|
| 3195 |
+
},
|
| 3196 |
+
{
|
| 3197 |
+
"epoch": 0.5490668272125225,
|
| 3198 |
+
"grad_norm": 0.585356593132019,
|
| 3199 |
+
"learning_rate": 5.016813415750097e-07,
|
| 3200 |
+
"loss": 0.281,
|
| 3201 |
+
"step": 4560
|
| 3202 |
+
},
|
| 3203 |
+
{
|
| 3204 |
+
"epoch": 0.5502709211318483,
|
| 3205 |
+
"grad_norm": 0.4893047511577606,
|
| 3206 |
+
"learning_rate": 4.995796638635875e-07,
|
| 3207 |
+
"loss": 0.2799,
|
| 3208 |
+
"step": 4570
|
| 3209 |
+
},
|
| 3210 |
+
{
|
| 3211 |
+
"epoch": 0.551475015051174,
|
| 3212 |
+
"grad_norm": 1.0689632892608643,
|
| 3213 |
+
"learning_rate": 4.974779935787589e-07,
|
| 3214 |
+
"loss": 0.2574,
|
| 3215 |
+
"step": 4580
|
| 3216 |
+
},
|
| 3217 |
+
{
|
| 3218 |
+
"epoch": 0.5526791089704997,
|
| 3219 |
+
"grad_norm": 0.6054455637931824,
|
| 3220 |
+
"learning_rate": 4.953763678533068e-07,
|
| 3221 |
+
"loss": 0.2635,
|
| 3222 |
+
"step": 4590
|
| 3223 |
+
},
|
| 3224 |
+
{
|
| 3225 |
+
"epoch": 0.5538832028898254,
|
| 3226 |
+
"grad_norm": 0.46325477957725525,
|
| 3227 |
+
"learning_rate": 4.932748238192273e-07,
|
| 3228 |
+
"loss": 0.2769,
|
| 3229 |
+
"step": 4600
|
| 3230 |
+
},
|
| 3231 |
+
{
|
| 3232 |
+
"epoch": 0.5550872968091511,
|
| 3233 |
+
"grad_norm": 0.5770764350891113,
|
| 3234 |
+
"learning_rate": 4.911733986070735e-07,
|
| 3235 |
+
"loss": 0.2671,
|
| 3236 |
+
"step": 4610
|
| 3237 |
+
},
|
| 3238 |
+
{
|
| 3239 |
+
"epoch": 0.5562913907284768,
|
| 3240 |
+
"grad_norm": 0.5715611577033997,
|
| 3241 |
+
"learning_rate": 4.890721293452979e-07,
|
| 3242 |
+
"loss": 0.2917,
|
| 3243 |
+
"step": 4620
|
| 3244 |
+
},
|
| 3245 |
+
{
|
| 3246 |
+
"epoch": 0.5574954846478025,
|
| 3247 |
+
"grad_norm": 0.5384266972541809,
|
| 3248 |
+
"learning_rate": 4.869710531595988e-07,
|
| 3249 |
+
"loss": 0.2771,
|
| 3250 |
+
"step": 4630
|
| 3251 |
+
},
|
| 3252 |
+
{
|
| 3253 |
+
"epoch": 0.5586995785671283,
|
| 3254 |
+
"grad_norm": 0.4611688256263733,
|
| 3255 |
+
"learning_rate": 4.848702071722629e-07,
|
| 3256 |
+
"loss": 0.2828,
|
| 3257 |
+
"step": 4640
|
| 3258 |
+
},
|
| 3259 |
+
{
|
| 3260 |
+
"epoch": 0.5599036724864539,
|
| 3261 |
+
"grad_norm": 0.6118834018707275,
|
| 3262 |
+
"learning_rate": 4.827696285015094e-07,
|
| 3263 |
+
"loss": 0.2832,
|
| 3264 |
+
"step": 4650
|
| 3265 |
+
},
|
| 3266 |
+
{
|
| 3267 |
+
"epoch": 0.5611077664057796,
|
| 3268 |
+
"grad_norm": 0.5026919841766357,
|
| 3269 |
+
"learning_rate": 4.806693542608348e-07,
|
| 3270 |
+
"loss": 0.2735,
|
| 3271 |
+
"step": 4660
|
| 3272 |
+
},
|
| 3273 |
+
{
|
| 3274 |
+
"epoch": 0.5623118603251054,
|
| 3275 |
+
"grad_norm": 0.548273503780365,
|
| 3276 |
+
"learning_rate": 4.785694215583566e-07,
|
| 3277 |
+
"loss": 0.2742,
|
| 3278 |
+
"step": 4670
|
| 3279 |
+
},
|
| 3280 |
+
{
|
| 3281 |
+
"epoch": 0.563515954244431,
|
| 3282 |
+
"grad_norm": 0.6186013221740723,
|
| 3283 |
+
"learning_rate": 4.764698674961581e-07,
|
| 3284 |
+
"loss": 0.2784,
|
| 3285 |
+
"step": 4680
|
| 3286 |
+
},
|
| 3287 |
+
{
|
| 3288 |
+
"epoch": 0.5647200481637568,
|
| 3289 |
+
"grad_norm": 0.45300328731536865,
|
| 3290 |
+
"learning_rate": 4.743707291696329e-07,
|
| 3291 |
+
"loss": 0.2786,
|
| 3292 |
+
"step": 4690
|
| 3293 |
+
},
|
| 3294 |
+
{
|
| 3295 |
+
"epoch": 0.5659241420830825,
|
| 3296 |
+
"grad_norm": 0.49064886569976807,
|
| 3297 |
+
"learning_rate": 4.7227204366682873e-07,
|
| 3298 |
+
"loss": 0.2747,
|
| 3299 |
+
"step": 4700
|
| 3300 |
+
},
|
| 3301 |
+
{
|
| 3302 |
+
"epoch": 0.5671282360024081,
|
| 3303 |
+
"grad_norm": 0.5186241865158081,
|
| 3304 |
+
"learning_rate": 4.7017384806779336e-07,
|
| 3305 |
+
"loss": 0.2788,
|
| 3306 |
+
"step": 4710
|
| 3307 |
+
},
|
| 3308 |
+
{
|
| 3309 |
+
"epoch": 0.5683323299217339,
|
| 3310 |
+
"grad_norm": 0.5284368395805359,
|
| 3311 |
+
"learning_rate": 4.6807617944391843e-07,
|
| 3312 |
+
"loss": 0.264,
|
| 3313 |
+
"step": 4720
|
| 3314 |
+
},
|
| 3315 |
+
{
|
| 3316 |
+
"epoch": 0.5695364238410596,
|
| 3317 |
+
"grad_norm": 0.5770208239555359,
|
| 3318 |
+
"learning_rate": 4.6597907485728477e-07,
|
| 3319 |
+
"loss": 0.2759,
|
| 3320 |
+
"step": 4730
|
| 3321 |
+
},
|
| 3322 |
+
{
|
| 3323 |
+
"epoch": 0.5707405177603853,
|
| 3324 |
+
"grad_norm": 0.5039085149765015,
|
| 3325 |
+
"learning_rate": 4.6388257136000807e-07,
|
| 3326 |
+
"loss": 0.2807,
|
| 3327 |
+
"step": 4740
|
| 3328 |
+
},
|
| 3329 |
+
{
|
| 3330 |
+
"epoch": 0.571944611679711,
|
| 3331 |
+
"grad_norm": 1.2547776699066162,
|
| 3332 |
+
"learning_rate": 4.617867059935838e-07,
|
| 3333 |
+
"loss": 0.2651,
|
| 3334 |
+
"step": 4750
|
| 3335 |
+
},
|
| 3336 |
+
{
|
| 3337 |
+
"epoch": 0.5731487055990367,
|
| 3338 |
+
"grad_norm": 0.5457895398139954,
|
| 3339 |
+
"learning_rate": 4.5969151578823224e-07,
|
| 3340 |
+
"loss": 0.27,
|
| 3341 |
+
"step": 4760
|
| 3342 |
+
},
|
| 3343 |
+
{
|
| 3344 |
+
"epoch": 0.5743527995183624,
|
| 3345 |
+
"grad_norm": 0.4974658787250519,
|
| 3346 |
+
"learning_rate": 4.5759703776224555e-07,
|
| 3347 |
+
"loss": 0.2794,
|
| 3348 |
+
"step": 4770
|
| 3349 |
+
},
|
| 3350 |
+
{
|
| 3351 |
+
"epoch": 0.5755568934376881,
|
| 3352 |
+
"grad_norm": 0.5161871314048767,
|
| 3353 |
+
"learning_rate": 4.555033089213321e-07,
|
| 3354 |
+
"loss": 0.2816,
|
| 3355 |
+
"step": 4780
|
| 3356 |
+
},
|
| 3357 |
+
{
|
| 3358 |
+
"epoch": 0.5767609873570139,
|
| 3359 |
+
"grad_norm": 0.43015995621681213,
|
| 3360 |
+
"learning_rate": 4.534103662579642e-07,
|
| 3361 |
+
"loss": 0.267,
|
| 3362 |
+
"step": 4790
|
| 3363 |
+
},
|
| 3364 |
+
{
|
| 3365 |
+
"epoch": 0.5779650812763396,
|
| 3366 |
+
"grad_norm": 0.4864785969257355,
|
| 3367 |
+
"learning_rate": 4.5131824675072364e-07,
|
| 3368 |
+
"loss": 0.2793,
|
| 3369 |
+
"step": 4800
|
| 3370 |
+
},
|
| 3371 |
+
{
|
| 3372 |
+
"epoch": 0.5791691751956652,
|
| 3373 |
+
"grad_norm": 0.6006112694740295,
|
| 3374 |
+
"learning_rate": 4.492269873636482e-07,
|
| 3375 |
+
"loss": 0.2689,
|
| 3376 |
+
"step": 4810
|
| 3377 |
+
},
|
| 3378 |
+
{
|
| 3379 |
+
"epoch": 0.580373269114991,
|
| 3380 |
+
"grad_norm": 0.4434204399585724,
|
| 3381 |
+
"learning_rate": 4.4713662504557927e-07,
|
| 3382 |
+
"loss": 0.2876,
|
| 3383 |
+
"step": 4820
|
| 3384 |
+
},
|
| 3385 |
+
{
|
| 3386 |
+
"epoch": 0.5815773630343167,
|
| 3387 |
+
"grad_norm": 0.565077543258667,
|
| 3388 |
+
"learning_rate": 4.450471967295083e-07,
|
| 3389 |
+
"loss": 0.2658,
|
| 3390 |
+
"step": 4830
|
| 3391 |
+
},
|
| 3392 |
+
{
|
| 3393 |
+
"epoch": 0.5827814569536424,
|
| 3394 |
+
"grad_norm": 0.5381281971931458,
|
| 3395 |
+
"learning_rate": 4.429587393319246e-07,
|
| 3396 |
+
"loss": 0.2715,
|
| 3397 |
+
"step": 4840
|
| 3398 |
+
},
|
| 3399 |
+
{
|
| 3400 |
+
"epoch": 0.5839855508729681,
|
| 3401 |
+
"grad_norm": 0.49021026492118835,
|
| 3402 |
+
"learning_rate": 4.408712897521633e-07,
|
| 3403 |
+
"loss": 0.2688,
|
| 3404 |
+
"step": 4850
|
| 3405 |
+
},
|
| 3406 |
+
{
|
| 3407 |
+
"epoch": 0.5851896447922939,
|
| 3408 |
+
"grad_norm": 0.5293102264404297,
|
| 3409 |
+
"learning_rate": 4.3878488487175323e-07,
|
| 3410 |
+
"loss": 0.2604,
|
| 3411 |
+
"step": 4860
|
| 3412 |
+
},
|
| 3413 |
+
{
|
| 3414 |
+
"epoch": 0.5863937387116195,
|
| 3415 |
+
"grad_norm": 0.6353856921195984,
|
| 3416 |
+
"learning_rate": 4.3669956155376476e-07,
|
| 3417 |
+
"loss": 0.2586,
|
| 3418 |
+
"step": 4870
|
| 3419 |
+
},
|
| 3420 |
+
{
|
| 3421 |
+
"epoch": 0.5875978326309452,
|
| 3422 |
+
"grad_norm": 0.5306446552276611,
|
| 3423 |
+
"learning_rate": 4.3461535664215923e-07,
|
| 3424 |
+
"loss": 0.2624,
|
| 3425 |
+
"step": 4880
|
| 3426 |
+
},
|
| 3427 |
+
{
|
| 3428 |
+
"epoch": 0.588801926550271,
|
| 3429 |
+
"grad_norm": 0.5957462191581726,
|
| 3430 |
+
"learning_rate": 4.325323069611383e-07,
|
| 3431 |
+
"loss": 0.2731,
|
| 3432 |
+
"step": 4890
|
| 3433 |
+
},
|
| 3434 |
+
{
|
| 3435 |
+
"epoch": 0.5900060204695966,
|
| 3436 |
+
"grad_norm": 0.6803829073905945,
|
| 3437 |
+
"learning_rate": 4.3045044931449156e-07,
|
| 3438 |
+
"loss": 0.2779,
|
| 3439 |
+
"step": 4900
|
| 3440 |
+
},
|
| 3441 |
+
{
|
| 3442 |
+
"epoch": 0.5912101143889223,
|
| 3443 |
+
"grad_norm": 0.5501326322555542,
|
| 3444 |
+
"learning_rate": 4.2836982048494854e-07,
|
| 3445 |
+
"loss": 0.2675,
|
| 3446 |
+
"step": 4910
|
| 3447 |
+
},
|
| 3448 |
+
{
|
| 3449 |
+
"epoch": 0.5924142083082481,
|
| 3450 |
+
"grad_norm": 0.49481987953186035,
|
| 3451 |
+
"learning_rate": 4.262904572335272e-07,
|
| 3452 |
+
"loss": 0.2725,
|
| 3453 |
+
"step": 4920
|
| 3454 |
+
},
|
| 3455 |
+
{
|
| 3456 |
+
"epoch": 0.5936183022275737,
|
| 3457 |
+
"grad_norm": 0.5254814028739929,
|
| 3458 |
+
"learning_rate": 4.242123962988851e-07,
|
| 3459 |
+
"loss": 0.2804,
|
| 3460 |
+
"step": 4930
|
| 3461 |
+
},
|
| 3462 |
+
{
|
| 3463 |
+
"epoch": 0.5948223961468995,
|
| 3464 |
+
"grad_norm": 0.5598310232162476,
|
| 3465 |
+
"learning_rate": 4.2213567439667037e-07,
|
| 3466 |
+
"loss": 0.2703,
|
| 3467 |
+
"step": 4940
|
| 3468 |
+
},
|
| 3469 |
+
{
|
| 3470 |
+
"epoch": 0.5960264900662252,
|
| 3471 |
+
"grad_norm": 0.5715354681015015,
|
| 3472 |
+
"learning_rate": 4.200603282188724e-07,
|
| 3473 |
+
"loss": 0.2799,
|
| 3474 |
+
"step": 4950
|
| 3475 |
+
},
|
| 3476 |
+
{
|
| 3477 |
+
"epoch": 0.5972305839855508,
|
| 3478 |
+
"grad_norm": 0.6474336981773376,
|
| 3479 |
+
"learning_rate": 4.179863944331743e-07,
|
| 3480 |
+
"loss": 0.2799,
|
| 3481 |
+
"step": 4960
|
| 3482 |
+
},
|
| 3483 |
+
{
|
| 3484 |
+
"epoch": 0.5984346779048766,
|
| 3485 |
+
"grad_norm": 0.47116249799728394,
|
| 3486 |
+
"learning_rate": 4.15913909682305e-07,
|
| 3487 |
+
"loss": 0.2751,
|
| 3488 |
+
"step": 4970
|
| 3489 |
+
},
|
| 3490 |
+
{
|
| 3491 |
+
"epoch": 0.5996387718242023,
|
| 3492 |
+
"grad_norm": 0.5750442147254944,
|
| 3493 |
+
"learning_rate": 4.138429105833906e-07,
|
| 3494 |
+
"loss": 0.2719,
|
| 3495 |
+
"step": 4980
|
| 3496 |
+
},
|
| 3497 |
+
{
|
| 3498 |
+
"epoch": 0.600842865743528,
|
| 3499 |
+
"grad_norm": 0.5243822932243347,
|
| 3500 |
+
"learning_rate": 4.1177343372730923e-07,
|
| 3501 |
+
"loss": 0.2709,
|
| 3502 |
+
"step": 4990
|
| 3503 |
+
},
|
| 3504 |
+
{
|
| 3505 |
+
"epoch": 0.6020469596628537,
|
| 3506 |
+
"grad_norm": 0.5334904789924622,
|
| 3507 |
+
"learning_rate": 4.097055156780437e-07,
|
| 3508 |
+
"loss": 0.272,
|
| 3509 |
+
"step": 5000
|
| 3510 |
+
}
|
| 3511 |
+
],
|
| 3512 |
+
"logging_steps": 10,
|
| 3513 |
+
"max_steps": 8305,
|
| 3514 |
+
"num_input_tokens_seen": 0,
|
| 3515 |
+
"num_train_epochs": 1,
|
| 3516 |
+
"save_steps": 1000,
|
| 3517 |
+
"stateful_callbacks": {
|
| 3518 |
+
"TrainerControl": {
|
| 3519 |
+
"args": {
|
| 3520 |
+
"should_epoch_stop": false,
|
| 3521 |
+
"should_evaluate": false,
|
| 3522 |
+
"should_log": false,
|
| 3523 |
+
"should_save": true,
|
| 3524 |
+
"should_training_stop": false
|
| 3525 |
+
},
|
| 3526 |
+
"attributes": {}
|
| 3527 |
+
}
|
| 3528 |
+
},
|
| 3529 |
+
"total_flos": 1967389652549632.0,
|
| 3530 |
+
"train_batch_size": 1,
|
| 3531 |
+
"trial_name": null,
|
| 3532 |
+
"trial_params": null
|
| 3533 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bf150d820bfae61b431f78524e1ada6e18847a6a0b58efeab889334baf2b6e5
|
| 3 |
+
size 7672
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|