|
import math
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def cubic(x):
|
|
"""cubic function used for calculate_weights_indices."""
|
|
absx = torch.abs(x)
|
|
absx2 = absx**2
|
|
absx3 = absx**3
|
|
return (1.5 * absx3 - 2.5 * absx2 + 1) * (
|
|
(absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) *
|
|
(absx <= 2)).type_as(absx))
|
|
|
|
|
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
|
"""Calculate weights and indices, used for imresize function.
|
|
|
|
Args:
|
|
in_length (int): Input length.
|
|
out_length (int): Output length.
|
|
scale (float): Scale factor.
|
|
kernel_width (int): Kernel width.
|
|
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
|
"""
|
|
|
|
if (scale < 1) and antialiasing:
|
|
|
|
|
|
kernel_width = kernel_width / scale
|
|
|
|
|
|
x = torch.linspace(1, out_length, out_length)
|
|
|
|
|
|
|
|
|
|
u = x / scale + 0.5 * (1 - 1 / scale)
|
|
|
|
|
|
left = torch.floor(u - kernel_width / 2)
|
|
|
|
|
|
|
|
|
|
|
|
p = math.ceil(kernel_width) + 2
|
|
|
|
|
|
|
|
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
|
|
out_length, p)
|
|
|
|
|
|
|
|
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices
|
|
|
|
|
|
if (scale < 1) and antialiasing:
|
|
weights = scale * cubic(distance_to_center * scale)
|
|
else:
|
|
weights = cubic(distance_to_center)
|
|
|
|
|
|
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
|
weights = weights / weights_sum.expand(out_length, p)
|
|
|
|
|
|
|
|
weights_zero_tmp = torch.sum((weights == 0), 0)
|
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
|
indices = indices.narrow(1, 1, p - 2)
|
|
weights = weights.narrow(1, 1, p - 2)
|
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
|
indices = indices.narrow(1, 0, p - 2)
|
|
weights = weights.narrow(1, 0, p - 2)
|
|
weights = weights.contiguous()
|
|
indices = indices.contiguous()
|
|
sym_len_s = -indices.min() + 1
|
|
sym_len_e = indices.max() - in_length
|
|
indices = indices + sym_len_s - 1
|
|
return weights, indices, int(sym_len_s), int(sym_len_e)
|
|
|
|
|
|
@torch.no_grad()
|
|
def imresize(img, scale, antialiasing=True):
|
|
"""imresize function same as MATLAB.
|
|
|
|
It now only supports bicubic.
|
|
The same scale applies for both height and width.
|
|
|
|
Args:
|
|
img (Tensor | Numpy array):
|
|
Tensor: Input image with shape (c, h, w), [0, 1] range.
|
|
Numpy: Input image with shape (h, w, c), [0, 1] range.
|
|
scale (float): Scale factor. The same scale applies for both height
|
|
and width.
|
|
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
|
Default: True.
|
|
|
|
Returns:
|
|
Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round.
|
|
"""
|
|
squeeze_flag = False
|
|
if type(img).__module__ == np.__name__:
|
|
numpy_type = True
|
|
if img.ndim == 2:
|
|
img = img[:, :, None]
|
|
squeeze_flag = True
|
|
img = torch.from_numpy(img.transpose(2, 0, 1)).float()
|
|
else:
|
|
numpy_type = False
|
|
if img.ndim == 2:
|
|
img = img.unsqueeze(0)
|
|
squeeze_flag = True
|
|
|
|
in_c, in_h, in_w = img.size()
|
|
out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale)
|
|
kernel_width = 4
|
|
kernel = 'cubic'
|
|
|
|
|
|
weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width,
|
|
antialiasing)
|
|
weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width,
|
|
antialiasing)
|
|
|
|
|
|
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
|
|
img_aug.narrow(1, sym_len_hs, in_h).copy_(img)
|
|
|
|
sym_patch = img[:, :sym_len_hs, :]
|
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
|
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)
|
|
|
|
sym_patch = img[:, -sym_len_he:, :]
|
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
|
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)
|
|
|
|
out_1 = torch.FloatTensor(in_c, out_h, in_w)
|
|
kernel_width = weights_h.size(1)
|
|
for i in range(out_h):
|
|
idx = int(indices_h[i][0])
|
|
for j in range(in_c):
|
|
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])
|
|
|
|
|
|
|
|
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
|
|
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)
|
|
|
|
sym_patch = out_1[:, :, :sym_len_ws]
|
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
|
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)
|
|
|
|
sym_patch = out_1[:, :, -sym_len_we:]
|
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
|
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)
|
|
|
|
out_2 = torch.FloatTensor(in_c, out_h, out_w)
|
|
kernel_width = weights_w.size(1)
|
|
for i in range(out_w):
|
|
idx = int(indices_w[i][0])
|
|
for j in range(in_c):
|
|
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])
|
|
|
|
if squeeze_flag:
|
|
out_2 = out_2.squeeze(0)
|
|
if numpy_type:
|
|
out_2 = out_2.numpy()
|
|
if not squeeze_flag:
|
|
out_2 = out_2.transpose(1, 2, 0)
|
|
|
|
return out_2
|
|
|
|
|
|
def rgb2ycbcr(img, y_only=False):
|
|
"""Convert a RGB image to YCbCr image.
|
|
|
|
This function produces the same results as Matlab's `rgb2ycbcr` function.
|
|
It implements the ITU-R BT.601 conversion for standard-definition
|
|
television. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
|
|
|
It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
|
|
In OpenCV, it implements a JPEG conversion. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
|
|
|
Args:
|
|
img (ndarray): The input image. It accepts:
|
|
1. np.uint8 type with range [0, 255];
|
|
2. np.float32 type with range [0, 1].
|
|
y_only (bool): Whether to only return Y channel. Default: False.
|
|
|
|
Returns:
|
|
ndarray: The converted YCbCr image. The output image has the same type
|
|
and range as input image.
|
|
"""
|
|
img_type = img.dtype
|
|
img = _convert_input_type_range(img)
|
|
if y_only:
|
|
out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
|
|
else:
|
|
out_img = np.matmul(
|
|
img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128]
|
|
out_img = _convert_output_type_range(out_img, img_type)
|
|
return out_img
|
|
|
|
|
|
def bgr2ycbcr(img, y_only=False):
|
|
"""Convert a BGR image to YCbCr image.
|
|
|
|
The bgr version of rgb2ycbcr.
|
|
It implements the ITU-R BT.601 conversion for standard-definition
|
|
television. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
|
|
|
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
|
|
In OpenCV, it implements a JPEG conversion. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
|
|
|
Args:
|
|
img (ndarray): The input image. It accepts:
|
|
1. np.uint8 type with range [0, 255];
|
|
2. np.float32 type with range [0, 1].
|
|
y_only (bool): Whether to only return Y channel. Default: False.
|
|
|
|
Returns:
|
|
ndarray: The converted YCbCr image. The output image has the same type
|
|
and range as input image.
|
|
"""
|
|
img_type = img.dtype
|
|
img = _convert_input_type_range(img)
|
|
if y_only:
|
|
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
|
|
else:
|
|
out_img = np.matmul(
|
|
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
|
|
out_img = _convert_output_type_range(out_img, img_type)
|
|
return out_img
|
|
|
|
|
|
def ycbcr2rgb(img):
|
|
"""Convert a YCbCr image to RGB image.
|
|
|
|
This function produces the same results as Matlab's ycbcr2rgb function.
|
|
It implements the ITU-R BT.601 conversion for standard-definition
|
|
television. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
|
|
|
It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
|
|
In OpenCV, it implements a JPEG conversion. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
|
|
|
Args:
|
|
img (ndarray): The input image. It accepts:
|
|
1. np.uint8 type with range [0, 255];
|
|
2. np.float32 type with range [0, 1].
|
|
|
|
Returns:
|
|
ndarray: The converted RGB image. The output image has the same type
|
|
and range as input image.
|
|
"""
|
|
img_type = img.dtype
|
|
img = _convert_input_type_range(img) * 255
|
|
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
|
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
|
out_img = _convert_output_type_range(out_img, img_type)
|
|
return out_img
|
|
|
|
|
|
def ycbcr2bgr(img):
|
|
"""Convert a YCbCr image to BGR image.
|
|
|
|
The bgr version of ycbcr2rgb.
|
|
It implements the ITU-R BT.601 conversion for standard-definition
|
|
television. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
|
|
|
It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
|
|
In OpenCV, it implements a JPEG conversion. See more details in
|
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
|
|
|
Args:
|
|
img (ndarray): The input image. It accepts:
|
|
1. np.uint8 type with range [0, 255];
|
|
2. np.float32 type with range [0, 1].
|
|
|
|
Returns:
|
|
ndarray: The converted BGR image. The output image has the same type
|
|
and range as input image.
|
|
"""
|
|
img_type = img.dtype
|
|
img = _convert_input_type_range(img) * 255
|
|
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0],
|
|
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921]
|
|
out_img = _convert_output_type_range(out_img, img_type)
|
|
return out_img
|
|
|
|
|
|
def _convert_input_type_range(img):
|
|
"""Convert the type and range of the input image.
|
|
|
|
It converts the input image to np.float32 type and range of [0, 1].
|
|
It is mainly used for pre-processing the input image in colorspace
|
|
conversion functions such as rgb2ycbcr and ycbcr2rgb.
|
|
|
|
Args:
|
|
img (ndarray): The input image. It accepts:
|
|
1. np.uint8 type with range [0, 255];
|
|
2. np.float32 type with range [0, 1].
|
|
|
|
Returns:
|
|
(ndarray): The converted image with type of np.float32 and range of
|
|
[0, 1].
|
|
"""
|
|
img_type = img.dtype
|
|
img = img.astype(np.float32)
|
|
if img_type == np.float32:
|
|
pass
|
|
elif img_type == np.uint8:
|
|
img /= 255.
|
|
else:
|
|
raise TypeError(f'The img type should be np.float32 or np.uint8, but got {img_type}')
|
|
return img
|
|
|
|
|
|
def _convert_output_type_range(img, dst_type):
|
|
"""Convert the type and range of the image according to dst_type.
|
|
|
|
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
|
images will be converted to np.uint8 type with range [0, 255]. If
|
|
`dst_type` is np.float32, it converts the image to np.float32 type with
|
|
range [0, 1].
|
|
It is mainly used for post-processing images in colorspace conversion
|
|
functions such as rgb2ycbcr and ycbcr2rgb.
|
|
|
|
Args:
|
|
img (ndarray): The image to be converted with np.float32 type and
|
|
range [0, 255].
|
|
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
|
converts the image to np.uint8 type with range [0, 255]. If
|
|
dst_type is np.float32, it converts the image to np.float32 type
|
|
with range [0, 1].
|
|
|
|
Returns:
|
|
(ndarray): The converted image with desired type and range.
|
|
"""
|
|
if dst_type not in (np.uint8, np.float32):
|
|
raise TypeError(f'The dst_type should be np.float32 or np.uint8, but got {dst_type}')
|
|
if dst_type == np.uint8:
|
|
img = img.round()
|
|
else:
|
|
img /= 255.
|
|
return img.astype(dst_type)
|
|
|