File size: 1,528 Bytes
01b23ee
32bfdf3
 
01b23ee
 
 
 
c348e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b23ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
base_model: alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech
library_name: transformers.js
---

https://huggingface.co/alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech with ONNX weights to be compatible with Transformers.js.


## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```

**Example:** Perform audio classification with `Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech`.
```js
import { pipeline } from '@huggingface/transformers';

// Create an audio classification pipeline
const classifier = await pipeline('audio-classification', 'Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech');

// Predict class
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
const output = await classifier(url);
console.log(output);
// [
//   { label: 'male', score: 0.9976564049720764 },
//   { label: 'female', score: 0.002343568252399564 }
// ]
```

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).