File size: 1,528 Bytes
01b23ee 32bfdf3 01b23ee c348e3a 01b23ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
base_model: alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech
library_name: transformers.js
---
https://huggingface.co/alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Perform audio classification with `Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech`.
```js
import { pipeline } from '@huggingface/transformers';
// Create an audio classification pipeline
const classifier = await pipeline('audio-classification', 'Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech');
// Predict class
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
const output = await classifier(url);
console.log(output);
// [
// { label: 'male', score: 0.9976564049720764 },
// { label: 'female', score: 0.002343568252399564 }
// ]
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |