--- library_name: transformers tags: - unsloth --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a ЁЯдЧ transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use ```from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name="sharad461/OpenWiseyak-0.1-MixedSFT-Adapter", max_seq_length=2048, dtype=None, load_in_4bit=True, ) FastLanguageModel.for_inference(model) prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" question = ["рдпреЛ рд╡рд╛рдХреНрдпрдорд╛ рд╕рд░реНрд╡рдирд╛рдо рдХреБрди рд╣реЛ?", "рд╢реНрдпрд╛рдордХреЛ рд╕реБрдирдХреЛ рдФрдареА рд╣рд░рд╛рдпреЛ рд░ рдЙ рд░реЛрдпреЛред", ""] inputs = tokenizer(prompt.format( question[0], question[1], question[2], ), return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True) decoded_outputs = tokenizer.batch_decode(outputs) response = decoded_outputs[0].split("### Response:")[1].split("<|end_of_text|>")[0].strip() print(response) >>> рд╡рд╛рдХреНрдпрдорд╛ рд╕рд░реНрд╡рдирд╛рдо "рдЙ" рд╣реЛ, рдХрд┐рдирдХрд┐ рдпреЛ рдПрдХ рд╡реНрдпрдХреНрддрд┐рдЧрдд рд╕рд░реНрд╡рдирд╛рдо рд╣реЛ рдЬрд╕рд▓реЗ рд╢реНрдпрд╛рдорд▓рд╛рдИ рдЬрдирд╛рдЙрдБрдЫред ``` ### Citation Information ``` @misc{duwal2024domainadaptativecontinuallearninglowresource, title={Domain-adaptative Continual Learning for Low-resource Tasks: Evaluation on Nepali}, author={Sharad Duwal and Suraj Prasai and Suresh Manandhar}, year={2024}, eprint={2412.13860}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.13860}, } ``` ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]