Model save
Browse files- .gitattributes +1 -0
- README.md +58 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +29 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_state.json +2563 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-7B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Qwen2.5-7B-Open-R1-Distill-Turkish
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for Qwen2.5-7B-Open-R1-Distill-Turkish
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="bezir/Qwen2.5-7B-Open-R1-Distill-Turkish", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bezirglasgow/huggingface/runs/acb76vve)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0.dev0
|
38 |
+
- Transformers: 4.50.0.dev0
|
39 |
+
- Pytorch: 2.5.1
|
40 |
+
- Datasets: 3.2.0
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 827207983300608.0,
|
3 |
+
"train_loss": 0.6521280055868006,
|
4 |
+
"train_runtime": 235151.6683,
|
5 |
+
"train_samples": 107561,
|
6 |
+
"train_samples_per_second": 1.718,
|
7 |
+
"train_steps_per_second": 0.007
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": 131072,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.50.0.dev0",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.50.0.dev0"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:701a82b0a9200ce3ea4e9fdf9126967514b3a797a3e0647b047d2ddc1e65269c
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28ea60c859938b41c604996047b23697afba5083c51a32713db0919c26d24e6e
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11dcc10fe0aaeb7238f18ae695f3e09f348f47d86410ec8ecc56615c3557689b
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c762518ab04a02e0bf4b3ad79e4493b6a21a008fefc8b407dc31595e69315951
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": "<|im_end|>"
|
25 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|im_end|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 827207983300608.0,
|
3 |
+
"train_loss": 0.6521280055868006,
|
4 |
+
"train_runtime": 235151.6683,
|
5 |
+
"train_samples": 107561,
|
6 |
+
"train_samples_per_second": 1.718,
|
7 |
+
"train_steps_per_second": 0.007
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 1578,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0063371356147021544,
|
13 |
+
"grad_norm": 7.199723076955636,
|
14 |
+
"learning_rate": 3.164556962025317e-07,
|
15 |
+
"loss": 1.4397,
|
16 |
+
"mean_token_accuracy": 0.6951015710830688,
|
17 |
+
"step": 5
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.012674271229404309,
|
21 |
+
"grad_norm": 7.116001217650177,
|
22 |
+
"learning_rate": 6.329113924050634e-07,
|
23 |
+
"loss": 1.4552,
|
24 |
+
"mean_token_accuracy": 0.6930991888046265,
|
25 |
+
"step": 10
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.019011406844106463,
|
29 |
+
"grad_norm": 4.64551484224683,
|
30 |
+
"learning_rate": 9.493670886075951e-07,
|
31 |
+
"loss": 1.3993,
|
32 |
+
"mean_token_accuracy": 0.6986153647303581,
|
33 |
+
"step": 15
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.025348542458808618,
|
37 |
+
"grad_norm": 3.0027875956032366,
|
38 |
+
"learning_rate": 1.2658227848101267e-06,
|
39 |
+
"loss": 1.3103,
|
40 |
+
"mean_token_accuracy": 0.7071203991770745,
|
41 |
+
"step": 20
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.031685678073510776,
|
45 |
+
"grad_norm": 3.1251366551644244,
|
46 |
+
"learning_rate": 1.5822784810126585e-06,
|
47 |
+
"loss": 1.2458,
|
48 |
+
"mean_token_accuracy": 0.7130974352359771,
|
49 |
+
"step": 25
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.03802281368821293,
|
53 |
+
"grad_norm": 2.289149516732586,
|
54 |
+
"learning_rate": 1.8987341772151901e-06,
|
55 |
+
"loss": 1.1709,
|
56 |
+
"mean_token_accuracy": 0.7238569274544716,
|
57 |
+
"step": 30
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.044359949302915085,
|
61 |
+
"grad_norm": 2.0282034523858945,
|
62 |
+
"learning_rate": 2.2151898734177215e-06,
|
63 |
+
"loss": 1.1025,
|
64 |
+
"mean_token_accuracy": 0.7365155085921288,
|
65 |
+
"step": 35
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.050697084917617236,
|
69 |
+
"grad_norm": 1.4393865600169713,
|
70 |
+
"learning_rate": 2.5316455696202535e-06,
|
71 |
+
"loss": 1.0754,
|
72 |
+
"mean_token_accuracy": 0.7417579337954521,
|
73 |
+
"step": 40
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.057034220532319393,
|
77 |
+
"grad_norm": 0.9968108242787993,
|
78 |
+
"learning_rate": 2.848101265822785e-06,
|
79 |
+
"loss": 1.0382,
|
80 |
+
"mean_token_accuracy": 0.7486504480242729,
|
81 |
+
"step": 45
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.06337135614702155,
|
85 |
+
"grad_norm": 0.9450280587173171,
|
86 |
+
"learning_rate": 3.164556962025317e-06,
|
87 |
+
"loss": 1.0089,
|
88 |
+
"mean_token_accuracy": 0.7545697376132011,
|
89 |
+
"step": 50
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.0697084917617237,
|
93 |
+
"grad_norm": 0.9255531790602832,
|
94 |
+
"learning_rate": 3.4810126582278487e-06,
|
95 |
+
"loss": 0.974,
|
96 |
+
"mean_token_accuracy": 0.7610737249255181,
|
97 |
+
"step": 55
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.07604562737642585,
|
101 |
+
"grad_norm": 0.784862301963824,
|
102 |
+
"learning_rate": 3.7974683544303802e-06,
|
103 |
+
"loss": 0.9446,
|
104 |
+
"mean_token_accuracy": 0.7658546909689903,
|
105 |
+
"step": 60
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.08238276299112801,
|
109 |
+
"grad_norm": 0.8654366770506445,
|
110 |
+
"learning_rate": 4.113924050632912e-06,
|
111 |
+
"loss": 0.9532,
|
112 |
+
"mean_token_accuracy": 0.764112365245819,
|
113 |
+
"step": 65
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.08871989860583017,
|
117 |
+
"grad_norm": 0.8440093108811262,
|
118 |
+
"learning_rate": 4.430379746835443e-06,
|
119 |
+
"loss": 0.9019,
|
120 |
+
"mean_token_accuracy": 0.7735387146472931,
|
121 |
+
"step": 70
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.09505703422053231,
|
125 |
+
"grad_norm": 0.7242515634546599,
|
126 |
+
"learning_rate": 4.746835443037975e-06,
|
127 |
+
"loss": 0.8972,
|
128 |
+
"mean_token_accuracy": 0.7742968738079071,
|
129 |
+
"step": 75
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.10139416983523447,
|
133 |
+
"grad_norm": 0.7207614994286641,
|
134 |
+
"learning_rate": 5.063291139240507e-06,
|
135 |
+
"loss": 0.8872,
|
136 |
+
"mean_token_accuracy": 0.7761535227298737,
|
137 |
+
"step": 80
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.10773130544993663,
|
141 |
+
"grad_norm": 0.742791199954622,
|
142 |
+
"learning_rate": 5.379746835443038e-06,
|
143 |
+
"loss": 0.8559,
|
144 |
+
"mean_token_accuracy": 0.7819930538535118,
|
145 |
+
"step": 85
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.11406844106463879,
|
149 |
+
"grad_norm": 0.7678641716925835,
|
150 |
+
"learning_rate": 5.69620253164557e-06,
|
151 |
+
"loss": 0.8473,
|
152 |
+
"mean_token_accuracy": 0.7834332928061485,
|
153 |
+
"step": 90
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.12040557667934093,
|
157 |
+
"grad_norm": 0.71180994773894,
|
158 |
+
"learning_rate": 6.012658227848101e-06,
|
159 |
+
"loss": 0.8352,
|
160 |
+
"mean_token_accuracy": 0.7855397373437881,
|
161 |
+
"step": 95
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.1267427122940431,
|
165 |
+
"grad_norm": 0.7993738785147041,
|
166 |
+
"learning_rate": 6.329113924050634e-06,
|
167 |
+
"loss": 0.8589,
|
168 |
+
"mean_token_accuracy": 0.7812221512198448,
|
169 |
+
"step": 100
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.13307984790874525,
|
173 |
+
"grad_norm": 0.7568194042750847,
|
174 |
+
"learning_rate": 6.645569620253165e-06,
|
175 |
+
"loss": 0.8431,
|
176 |
+
"mean_token_accuracy": 0.7850423708558083,
|
177 |
+
"step": 105
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.1394169835234474,
|
181 |
+
"grad_norm": 0.7969657403354691,
|
182 |
+
"learning_rate": 6.962025316455697e-06,
|
183 |
+
"loss": 0.8146,
|
184 |
+
"mean_token_accuracy": 0.7894491747021675,
|
185 |
+
"step": 110
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.14575411913814956,
|
189 |
+
"grad_norm": 0.7814384559927074,
|
190 |
+
"learning_rate": 7.2784810126582285e-06,
|
191 |
+
"loss": 0.816,
|
192 |
+
"mean_token_accuracy": 0.7893038675189018,
|
193 |
+
"step": 115
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.1520912547528517,
|
197 |
+
"grad_norm": 0.7970973600599863,
|
198 |
+
"learning_rate": 7.5949367088607605e-06,
|
199 |
+
"loss": 0.8168,
|
200 |
+
"mean_token_accuracy": 0.7892953917384148,
|
201 |
+
"step": 120
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.15842839036755388,
|
205 |
+
"grad_norm": 0.7289531586042841,
|
206 |
+
"learning_rate": 7.911392405063292e-06,
|
207 |
+
"loss": 0.8036,
|
208 |
+
"mean_token_accuracy": 0.7918314695358276,
|
209 |
+
"step": 125
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.16476552598225602,
|
213 |
+
"grad_norm": 0.8996289034177167,
|
214 |
+
"learning_rate": 8.227848101265824e-06,
|
215 |
+
"loss": 0.7886,
|
216 |
+
"mean_token_accuracy": 0.7948763906955719,
|
217 |
+
"step": 130
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 0.17110266159695817,
|
221 |
+
"grad_norm": 0.9505048466982942,
|
222 |
+
"learning_rate": 8.544303797468356e-06,
|
223 |
+
"loss": 0.7765,
|
224 |
+
"mean_token_accuracy": 0.7972663462162017,
|
225 |
+
"step": 135
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.17743979721166034,
|
229 |
+
"grad_norm": 0.8547089186827208,
|
230 |
+
"learning_rate": 8.860759493670886e-06,
|
231 |
+
"loss": 0.7778,
|
232 |
+
"mean_token_accuracy": 0.7966541960835457,
|
233 |
+
"step": 140
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.18377693282636248,
|
237 |
+
"grad_norm": 0.8115832093940138,
|
238 |
+
"learning_rate": 9.177215189873418e-06,
|
239 |
+
"loss": 0.7755,
|
240 |
+
"mean_token_accuracy": 0.7976241648197174,
|
241 |
+
"step": 145
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.19011406844106463,
|
245 |
+
"grad_norm": 0.7240367508508893,
|
246 |
+
"learning_rate": 9.49367088607595e-06,
|
247 |
+
"loss": 0.7679,
|
248 |
+
"mean_token_accuracy": 0.7988486766815186,
|
249 |
+
"step": 150
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.1964512040557668,
|
253 |
+
"grad_norm": 0.8604548037210017,
|
254 |
+
"learning_rate": 9.810126582278482e-06,
|
255 |
+
"loss": 0.7666,
|
256 |
+
"mean_token_accuracy": 0.7985615819692612,
|
257 |
+
"step": 155
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.20278833967046894,
|
261 |
+
"grad_norm": 0.7650650036074902,
|
262 |
+
"learning_rate": 9.99995105342046e-06,
|
263 |
+
"loss": 0.7615,
|
264 |
+
"mean_token_accuracy": 0.8001444712281227,
|
265 |
+
"step": 160
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.20912547528517111,
|
269 |
+
"grad_norm": 0.7907667013526878,
|
270 |
+
"learning_rate": 9.999400415406145e-06,
|
271 |
+
"loss": 0.7662,
|
272 |
+
"mean_token_accuracy": 0.7991914421319961,
|
273 |
+
"step": 165
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.21546261089987326,
|
277 |
+
"grad_norm": 0.8483269008499935,
|
278 |
+
"learning_rate": 9.998238023756727e-06,
|
279 |
+
"loss": 0.7597,
|
280 |
+
"mean_token_accuracy": 0.800473365187645,
|
281 |
+
"step": 170
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.2217997465145754,
|
285 |
+
"grad_norm": 0.8423617289320647,
|
286 |
+
"learning_rate": 9.996464020708734e-06,
|
287 |
+
"loss": 0.7598,
|
288 |
+
"mean_token_accuracy": 0.7996020078659057,
|
289 |
+
"step": 175
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.22813688212927757,
|
293 |
+
"grad_norm": 0.8057636513151334,
|
294 |
+
"learning_rate": 9.994078623338757e-06,
|
295 |
+
"loss": 0.7566,
|
296 |
+
"mean_token_accuracy": 0.800896917283535,
|
297 |
+
"step": 180
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.23447401774397972,
|
301 |
+
"grad_norm": 0.8990102449117932,
|
302 |
+
"learning_rate": 9.991082123536902e-06,
|
303 |
+
"loss": 0.7522,
|
304 |
+
"mean_token_accuracy": 0.8013818353414536,
|
305 |
+
"step": 185
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.24081115335868186,
|
309 |
+
"grad_norm": 0.9698242122380497,
|
310 |
+
"learning_rate": 9.987474887971067e-06,
|
311 |
+
"loss": 0.7463,
|
312 |
+
"mean_token_accuracy": 0.8028701841831207,
|
313 |
+
"step": 190
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.24714828897338403,
|
317 |
+
"grad_norm": 0.960138107922893,
|
318 |
+
"learning_rate": 9.983257358042076e-06,
|
319 |
+
"loss": 0.7401,
|
320 |
+
"mean_token_accuracy": 0.8041222214698791,
|
321 |
+
"step": 195
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.2534854245880862,
|
325 |
+
"grad_norm": 0.8305799821436418,
|
326 |
+
"learning_rate": 9.978430049829672e-06,
|
327 |
+
"loss": 0.7601,
|
328 |
+
"mean_token_accuracy": 0.8001280605793,
|
329 |
+
"step": 200
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.2598225602027883,
|
333 |
+
"grad_norm": 0.7129991697669212,
|
334 |
+
"learning_rate": 9.972993554029357e-06,
|
335 |
+
"loss": 0.7575,
|
336 |
+
"mean_token_accuracy": 0.8003058210015297,
|
337 |
+
"step": 205
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 0.2661596958174905,
|
341 |
+
"grad_norm": 0.8819778135317846,
|
342 |
+
"learning_rate": 9.966948535880118e-06,
|
343 |
+
"loss": 0.7444,
|
344 |
+
"mean_token_accuracy": 0.8032929092645645,
|
345 |
+
"step": 210
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.27249683143219267,
|
349 |
+
"grad_norm": 0.7833769376025013,
|
350 |
+
"learning_rate": 9.960295735083023e-06,
|
351 |
+
"loss": 0.7151,
|
352 |
+
"mean_token_accuracy": 0.8091372177004814,
|
353 |
+
"step": 215
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.2788339670468948,
|
357 |
+
"grad_norm": 1.2183716099383828,
|
358 |
+
"learning_rate": 9.953035965710707e-06,
|
359 |
+
"loss": 0.7346,
|
360 |
+
"mean_token_accuracy": 0.8045761153101921,
|
361 |
+
"step": 220
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.28517110266159695,
|
365 |
+
"grad_norm": 0.901875985078722,
|
366 |
+
"learning_rate": 9.945170116107758e-06,
|
367 |
+
"loss": 0.7337,
|
368 |
+
"mean_token_accuracy": 0.805341312289238,
|
369 |
+
"step": 225
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.2915082382762991,
|
373 |
+
"grad_norm": 0.8010789142797352,
|
374 |
+
"learning_rate": 9.936699148782018e-06,
|
375 |
+
"loss": 0.737,
|
376 |
+
"mean_token_accuracy": 0.8051745280623436,
|
377 |
+
"step": 230
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.29784537389100124,
|
381 |
+
"grad_norm": 0.7625075089546256,
|
382 |
+
"learning_rate": 9.927624100286795e-06,
|
383 |
+
"loss": 0.7288,
|
384 |
+
"mean_token_accuracy": 0.8064413368701935,
|
385 |
+
"step": 235
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.3041825095057034,
|
389 |
+
"grad_norm": 0.7665506308733163,
|
390 |
+
"learning_rate": 9.917946081094033e-06,
|
391 |
+
"loss": 0.7001,
|
392 |
+
"mean_token_accuracy": 0.8119662031531334,
|
393 |
+
"step": 240
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.3105196451204056,
|
397 |
+
"grad_norm": 0.8173005458001997,
|
398 |
+
"learning_rate": 9.907666275458432e-06,
|
399 |
+
"loss": 0.7171,
|
400 |
+
"mean_token_accuracy": 0.8087792381644249,
|
401 |
+
"step": 245
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.31685678073510776,
|
405 |
+
"grad_norm": 0.7944707699072153,
|
406 |
+
"learning_rate": 9.896785941272524e-06,
|
407 |
+
"loss": 0.7169,
|
408 |
+
"mean_token_accuracy": 0.808886106312275,
|
409 |
+
"step": 250
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.3231939163498099,
|
413 |
+
"grad_norm": 0.7652270272633694,
|
414 |
+
"learning_rate": 9.885306409912767e-06,
|
415 |
+
"loss": 0.7122,
|
416 |
+
"mean_token_accuracy": 0.8092179223895073,
|
417 |
+
"step": 255
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.32953105196451205,
|
421 |
+
"grad_norm": 0.8298720811434571,
|
422 |
+
"learning_rate": 9.87322908607661e-06,
|
423 |
+
"loss": 0.7106,
|
424 |
+
"mean_token_accuracy": 0.8099273145198822,
|
425 |
+
"step": 260
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.3358681875792142,
|
429 |
+
"grad_norm": 0.6635750146125453,
|
430 |
+
"learning_rate": 9.860555447610626e-06,
|
431 |
+
"loss": 0.7205,
|
432 |
+
"mean_token_accuracy": 0.8083759486675263,
|
433 |
+
"step": 265
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.34220532319391633,
|
437 |
+
"grad_norm": 0.7701167215766528,
|
438 |
+
"learning_rate": 9.847287045329665e-06,
|
439 |
+
"loss": 0.7178,
|
440 |
+
"mean_token_accuracy": 0.8084105476737022,
|
441 |
+
"step": 270
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.3485424588086185,
|
445 |
+
"grad_norm": 0.8129554147937268,
|
446 |
+
"learning_rate": 9.833425502827087e-06,
|
447 |
+
"loss": 0.7191,
|
448 |
+
"mean_token_accuracy": 0.8078344166278839,
|
449 |
+
"step": 275
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.3548795944233207,
|
453 |
+
"grad_norm": 0.7153635278024493,
|
454 |
+
"learning_rate": 9.818972516276096e-06,
|
455 |
+
"loss": 0.6973,
|
456 |
+
"mean_token_accuracy": 0.8126269072294235,
|
457 |
+
"step": 280
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.3612167300380228,
|
461 |
+
"grad_norm": 0.7019835045316667,
|
462 |
+
"learning_rate": 9.803929854222182e-06,
|
463 |
+
"loss": 0.704,
|
464 |
+
"mean_token_accuracy": 0.8114176645874978,
|
465 |
+
"step": 285
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.36755386565272496,
|
469 |
+
"grad_norm": 0.7615682616292789,
|
470 |
+
"learning_rate": 9.788299357366717e-06,
|
471 |
+
"loss": 0.7089,
|
472 |
+
"mean_token_accuracy": 0.8106587365269661,
|
473 |
+
"step": 290
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.37389100126742714,
|
477 |
+
"grad_norm": 0.9786947635111585,
|
478 |
+
"learning_rate": 9.772082938341706e-06,
|
479 |
+
"loss": 0.7014,
|
480 |
+
"mean_token_accuracy": 0.8121261984109879,
|
481 |
+
"step": 295
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.38022813688212925,
|
485 |
+
"grad_norm": 0.8212453521500733,
|
486 |
+
"learning_rate": 9.755282581475769e-06,
|
487 |
+
"loss": 0.7072,
|
488 |
+
"mean_token_accuracy": 0.8106094494462013,
|
489 |
+
"step": 300
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.3865652724968314,
|
493 |
+
"grad_norm": 0.865055505917381,
|
494 |
+
"learning_rate": 9.7379003425513e-06,
|
495 |
+
"loss": 0.7163,
|
496 |
+
"mean_token_accuracy": 0.8092033118009567,
|
497 |
+
"step": 305
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.3929024081115336,
|
501 |
+
"grad_norm": 0.6716631342519259,
|
502 |
+
"learning_rate": 9.71993834855293e-06,
|
503 |
+
"loss": 0.7045,
|
504 |
+
"mean_token_accuracy": 0.8109571009874343,
|
505 |
+
"step": 310
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 0.39923954372623577,
|
509 |
+
"grad_norm": 0.7649280200479434,
|
510 |
+
"learning_rate": 9.701398797407258e-06,
|
511 |
+
"loss": 0.7044,
|
512 |
+
"mean_token_accuracy": 0.8110996559262276,
|
513 |
+
"step": 315
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.4055766793409379,
|
517 |
+
"grad_norm": 0.732205588585856,
|
518 |
+
"learning_rate": 9.68228395771388e-06,
|
519 |
+
"loss": 0.6906,
|
520 |
+
"mean_token_accuracy": 0.8138323068618775,
|
521 |
+
"step": 320
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.41191381495564006,
|
525 |
+
"grad_norm": 0.8349157198044287,
|
526 |
+
"learning_rate": 9.662596168467823e-06,
|
527 |
+
"loss": 0.6963,
|
528 |
+
"mean_token_accuracy": 0.8128764078021049,
|
529 |
+
"step": 325
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.41825095057034223,
|
533 |
+
"grad_norm": 0.7284163977404773,
|
534 |
+
"learning_rate": 9.6423378387733e-06,
|
535 |
+
"loss": 0.6926,
|
536 |
+
"mean_token_accuracy": 0.8138028383255005,
|
537 |
+
"step": 330
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.42458808618504434,
|
541 |
+
"grad_norm": 0.6903566919121088,
|
542 |
+
"learning_rate": 9.621511447548946e-06,
|
543 |
+
"loss": 0.6992,
|
544 |
+
"mean_token_accuracy": 0.8125665381550788,
|
545 |
+
"step": 335
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.4309252217997465,
|
549 |
+
"grad_norm": 0.7031778472809708,
|
550 |
+
"learning_rate": 9.600119543224467e-06,
|
551 |
+
"loss": 0.6935,
|
552 |
+
"mean_token_accuracy": 0.8134042397141457,
|
553 |
+
"step": 340
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.4372623574144487,
|
557 |
+
"grad_norm": 0.8781454719155253,
|
558 |
+
"learning_rate": 9.578164743428808e-06,
|
559 |
+
"loss": 0.6938,
|
560 |
+
"mean_token_accuracy": 0.8132070809602737,
|
561 |
+
"step": 345
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.4435994930291508,
|
565 |
+
"grad_norm": 0.8306105321262149,
|
566 |
+
"learning_rate": 9.55564973466984e-06,
|
567 |
+
"loss": 0.6928,
|
568 |
+
"mean_token_accuracy": 0.8133361831307411,
|
569 |
+
"step": 350
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.449936628643853,
|
573 |
+
"grad_norm": 0.7046997598602632,
|
574 |
+
"learning_rate": 9.532577272005637e-06,
|
575 |
+
"loss": 0.679,
|
576 |
+
"mean_token_accuracy": 0.8159057974815369,
|
577 |
+
"step": 355
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.45627376425855515,
|
581 |
+
"grad_norm": 0.889929783644245,
|
582 |
+
"learning_rate": 9.508950178707335e-06,
|
583 |
+
"loss": 0.6872,
|
584 |
+
"mean_token_accuracy": 0.8148621737957,
|
585 |
+
"step": 360
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.46261089987325726,
|
589 |
+
"grad_norm": 0.9776823189593525,
|
590 |
+
"learning_rate": 9.484771345913673e-06,
|
591 |
+
"loss": 0.6902,
|
592 |
+
"mean_token_accuracy": 0.8141683742403985,
|
593 |
+
"step": 365
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.46894803548795944,
|
597 |
+
"grad_norm": 0.7706175050493524,
|
598 |
+
"learning_rate": 9.460043732277213e-06,
|
599 |
+
"loss": 0.6908,
|
600 |
+
"mean_token_accuracy": 0.8145220652222633,
|
601 |
+
"step": 370
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.4752851711026616,
|
605 |
+
"grad_norm": 0.6524214668295174,
|
606 |
+
"learning_rate": 9.434770363602307e-06,
|
607 |
+
"loss": 0.6983,
|
608 |
+
"mean_token_accuracy": 0.8123016864061355,
|
609 |
+
"step": 375
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.4816223067173637,
|
613 |
+
"grad_norm": 0.717843515473759,
|
614 |
+
"learning_rate": 9.408954332474845e-06,
|
615 |
+
"loss": 0.6677,
|
616 |
+
"mean_token_accuracy": 0.8185531318187713,
|
617 |
+
"step": 380
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.4879594423320659,
|
621 |
+
"grad_norm": 0.7618453217486776,
|
622 |
+
"learning_rate": 9.382598797883811e-06,
|
623 |
+
"loss": 0.6795,
|
624 |
+
"mean_token_accuracy": 0.8164624303579331,
|
625 |
+
"step": 385
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.49429657794676807,
|
629 |
+
"grad_norm": 0.7324610745032628,
|
630 |
+
"learning_rate": 9.355706984834765e-06,
|
631 |
+
"loss": 0.6836,
|
632 |
+
"mean_token_accuracy": 0.8149291038513183,
|
633 |
+
"step": 390
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.5006337135614702,
|
637 |
+
"grad_norm": 0.6779242960146721,
|
638 |
+
"learning_rate": 9.328282183955179e-06,
|
639 |
+
"loss": 0.6884,
|
640 |
+
"mean_token_accuracy": 0.8146958678960801,
|
641 |
+
"step": 395
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.5069708491761724,
|
645 |
+
"grad_norm": 0.827105664596769,
|
646 |
+
"learning_rate": 9.300327751091806e-06,
|
647 |
+
"loss": 0.6873,
|
648 |
+
"mean_token_accuracy": 0.814927139878273,
|
649 |
+
"step": 400
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.5133079847908745,
|
653 |
+
"grad_norm": 0.6798030291558349,
|
654 |
+
"learning_rate": 9.271847106900022e-06,
|
655 |
+
"loss": 0.6659,
|
656 |
+
"mean_token_accuracy": 0.8187542855739594,
|
657 |
+
"step": 405
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.5196451204055766,
|
661 |
+
"grad_norm": 0.6549281773308409,
|
662 |
+
"learning_rate": 9.242843736425269e-06,
|
663 |
+
"loss": 0.6749,
|
664 |
+
"mean_token_accuracy": 0.8172334164381028,
|
665 |
+
"step": 410
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 0.5259822560202788,
|
669 |
+
"grad_norm": 0.702757870059226,
|
670 |
+
"learning_rate": 9.213321188676595e-06,
|
671 |
+
"loss": 0.6799,
|
672 |
+
"mean_token_accuracy": 0.8162769109010697,
|
673 |
+
"step": 415
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.532319391634981,
|
677 |
+
"grad_norm": 0.663720096138884,
|
678 |
+
"learning_rate": 9.183283076192386e-06,
|
679 |
+
"loss": 0.6688,
|
680 |
+
"mean_token_accuracy": 0.8184930950403213,
|
681 |
+
"step": 420
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.5386565272496832,
|
685 |
+
"grad_norm": 0.6874302061015839,
|
686 |
+
"learning_rate": 9.152733074598312e-06,
|
687 |
+
"loss": 0.6742,
|
688 |
+
"mean_token_accuracy": 0.8174020066857338,
|
689 |
+
"step": 425
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.5449936628643853,
|
693 |
+
"grad_norm": 0.7315428759079102,
|
694 |
+
"learning_rate": 9.121674922157558e-06,
|
695 |
+
"loss": 0.6738,
|
696 |
+
"mean_token_accuracy": 0.817636775970459,
|
697 |
+
"step": 430
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.5513307984790875,
|
701 |
+
"grad_norm": 0.786643495084509,
|
702 |
+
"learning_rate": 9.090112419313395e-06,
|
703 |
+
"loss": 0.6736,
|
704 |
+
"mean_token_accuracy": 0.817160977423191,
|
705 |
+
"step": 435
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.5576679340937896,
|
709 |
+
"grad_norm": 0.6591137928729695,
|
710 |
+
"learning_rate": 9.058049428224128e-06,
|
711 |
+
"loss": 0.6617,
|
712 |
+
"mean_token_accuracy": 0.8197388723492622,
|
713 |
+
"step": 440
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.5640050697084917,
|
717 |
+
"grad_norm": 0.7812371618484959,
|
718 |
+
"learning_rate": 9.025489872290511e-06,
|
719 |
+
"loss": 0.6634,
|
720 |
+
"mean_token_accuracy": 0.8193035304546357,
|
721 |
+
"step": 445
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.5703422053231939,
|
725 |
+
"grad_norm": 0.6845961589145344,
|
726 |
+
"learning_rate": 8.99243773567565e-06,
|
727 |
+
"loss": 0.6834,
|
728 |
+
"mean_token_accuracy": 0.8159178540110588,
|
729 |
+
"step": 450
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.5766793409378961,
|
733 |
+
"grad_norm": 0.6657472122738636,
|
734 |
+
"learning_rate": 8.958897062817491e-06,
|
735 |
+
"loss": 0.6892,
|
736 |
+
"mean_token_accuracy": 0.8144657433032989,
|
737 |
+
"step": 455
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.5830164765525983,
|
741 |
+
"grad_norm": 0.6161660996953076,
|
742 |
+
"learning_rate": 8.924871957933904e-06,
|
743 |
+
"loss": 0.6746,
|
744 |
+
"mean_token_accuracy": 0.8171708762645722,
|
745 |
+
"step": 460
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.5893536121673004,
|
749 |
+
"grad_norm": 0.702287591616562,
|
750 |
+
"learning_rate": 8.890366584520482e-06,
|
751 |
+
"loss": 0.6696,
|
752 |
+
"mean_token_accuracy": 0.8184025406837463,
|
753 |
+
"step": 465
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.5956907477820025,
|
757 |
+
"grad_norm": 0.6857028656369465,
|
758 |
+
"learning_rate": 8.855385164841072e-06,
|
759 |
+
"loss": 0.6758,
|
760 |
+
"mean_token_accuracy": 0.8170812010765076,
|
761 |
+
"step": 470
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.6020278833967047,
|
765 |
+
"grad_norm": 0.6231296442226781,
|
766 |
+
"learning_rate": 8.819931979411107e-06,
|
767 |
+
"loss": 0.6734,
|
768 |
+
"mean_token_accuracy": 0.81716128885746,
|
769 |
+
"step": 475
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.6083650190114068,
|
773 |
+
"grad_norm": 0.6948180768376443,
|
774 |
+
"learning_rate": 8.78401136647383e-06,
|
775 |
+
"loss": 0.654,
|
776 |
+
"mean_token_accuracy": 0.8216980487108231,
|
777 |
+
"step": 480
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.614702154626109,
|
781 |
+
"grad_norm": 0.6911375954678098,
|
782 |
+
"learning_rate": 8.747627721469437e-06,
|
783 |
+
"loss": 0.6635,
|
784 |
+
"mean_token_accuracy": 0.8201975762844086,
|
785 |
+
"step": 485
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 0.6210392902408112,
|
789 |
+
"grad_norm": 0.7213580744708442,
|
790 |
+
"learning_rate": 8.710785496497226e-06,
|
791 |
+
"loss": 0.6651,
|
792 |
+
"mean_token_accuracy": 0.8194010749459266,
|
793 |
+
"step": 490
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.6273764258555133,
|
797 |
+
"grad_norm": 0.6543956981962712,
|
798 |
+
"learning_rate": 8.673489199770819e-06,
|
799 |
+
"loss": 0.6607,
|
800 |
+
"mean_token_accuracy": 0.8201611772179603,
|
801 |
+
"step": 495
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.6337135614702155,
|
805 |
+
"grad_norm": 0.7036498788596002,
|
806 |
+
"learning_rate": 8.635743395066511e-06,
|
807 |
+
"loss": 0.651,
|
808 |
+
"mean_token_accuracy": 0.8222277790307999,
|
809 |
+
"step": 500
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.6400506970849176,
|
813 |
+
"grad_norm": 0.6168799535449692,
|
814 |
+
"learning_rate": 8.597552701164818e-06,
|
815 |
+
"loss": 0.6592,
|
816 |
+
"mean_token_accuracy": 0.8199419066309929,
|
817 |
+
"step": 505
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.6463878326996197,
|
821 |
+
"grad_norm": 0.697481072279894,
|
822 |
+
"learning_rate": 8.558921791285304e-06,
|
823 |
+
"loss": 0.6513,
|
824 |
+
"mean_token_accuracy": 0.8216616123914718,
|
825 |
+
"step": 510
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.6527249683143219,
|
829 |
+
"grad_norm": 0.7978637983888536,
|
830 |
+
"learning_rate": 8.519855392514734e-06,
|
831 |
+
"loss": 0.6469,
|
832 |
+
"mean_token_accuracy": 0.8225123390555382,
|
833 |
+
"step": 515
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 0.6590621039290241,
|
837 |
+
"grad_norm": 0.709080907162204,
|
838 |
+
"learning_rate": 8.480358285228648e-06,
|
839 |
+
"loss": 0.6656,
|
840 |
+
"mean_token_accuracy": 0.8191539570689201,
|
841 |
+
"step": 520
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 0.6653992395437263,
|
845 |
+
"grad_norm": 0.7897211062263881,
|
846 |
+
"learning_rate": 8.440435302506405e-06,
|
847 |
+
"loss": 0.6412,
|
848 |
+
"mean_token_accuracy": 0.8238195776939392,
|
849 |
+
"step": 525
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.6717363751584284,
|
853 |
+
"grad_norm": 0.6661911891034582,
|
854 |
+
"learning_rate": 8.400091329539784e-06,
|
855 |
+
"loss": 0.6611,
|
856 |
+
"mean_token_accuracy": 0.8201816022396088,
|
857 |
+
"step": 530
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.6780735107731305,
|
861 |
+
"grad_norm": 0.6195761512766995,
|
862 |
+
"learning_rate": 8.359331303035205e-06,
|
863 |
+
"loss": 0.6593,
|
864 |
+
"mean_token_accuracy": 0.8203893005847931,
|
865 |
+
"step": 535
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.6844106463878327,
|
869 |
+
"grad_norm": 0.6310438648482855,
|
870 |
+
"learning_rate": 8.31816021060964e-06,
|
871 |
+
"loss": 0.6634,
|
872 |
+
"mean_token_accuracy": 0.8192948743700981,
|
873 |
+
"step": 540
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.6907477820025348,
|
877 |
+
"grad_norm": 0.6512895144306936,
|
878 |
+
"learning_rate": 8.276583090180311e-06,
|
879 |
+
"loss": 0.6666,
|
880 |
+
"mean_token_accuracy": 0.8186753287911415,
|
881 |
+
"step": 545
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 0.697084917617237,
|
885 |
+
"grad_norm": 0.6124105415248355,
|
886 |
+
"learning_rate": 8.234605029348224e-06,
|
887 |
+
"loss": 0.6511,
|
888 |
+
"mean_token_accuracy": 0.8219994261860848,
|
889 |
+
"step": 550
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.7034220532319392,
|
893 |
+
"grad_norm": 0.6601442192692848,
|
894 |
+
"learning_rate": 8.192231164775609e-06,
|
895 |
+
"loss": 0.6391,
|
896 |
+
"mean_token_accuracy": 0.8252027094364166,
|
897 |
+
"step": 555
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.7097591888466414,
|
901 |
+
"grad_norm": 0.7028934088221325,
|
902 |
+
"learning_rate": 8.149466681557384e-06,
|
903 |
+
"loss": 0.6558,
|
904 |
+
"mean_token_accuracy": 0.8209778189659118,
|
905 |
+
"step": 560
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.7160963244613435,
|
909 |
+
"grad_norm": 0.7857750596740971,
|
910 |
+
"learning_rate": 8.106316812586676e-06,
|
911 |
+
"loss": 0.6486,
|
912 |
+
"mean_token_accuracy": 0.8220974311232567,
|
913 |
+
"step": 565
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.7224334600760456,
|
917 |
+
"grad_norm": 0.8961234969300941,
|
918 |
+
"learning_rate": 8.062786837914492e-06,
|
919 |
+
"loss": 0.6386,
|
920 |
+
"mean_token_accuracy": 0.824979268014431,
|
921 |
+
"step": 570
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.7287705956907478,
|
925 |
+
"grad_norm": 0.686280664966789,
|
926 |
+
"learning_rate": 8.01888208410362e-06,
|
927 |
+
"loss": 0.6622,
|
928 |
+
"mean_token_accuracy": 0.8198226556181908,
|
929 |
+
"step": 575
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.7351077313054499,
|
933 |
+
"grad_norm": 0.8344864616701414,
|
934 |
+
"learning_rate": 7.974607923576859e-06,
|
935 |
+
"loss": 0.6537,
|
936 |
+
"mean_token_accuracy": 0.821578212082386,
|
937 |
+
"step": 580
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"epoch": 0.7414448669201521,
|
941 |
+
"grad_norm": 0.9938826585970929,
|
942 |
+
"learning_rate": 7.9299697739596e-06,
|
943 |
+
"loss": 0.6544,
|
944 |
+
"mean_token_accuracy": 0.8208117336034775,
|
945 |
+
"step": 585
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.7477820025348543,
|
949 |
+
"grad_norm": 0.6249233717628465,
|
950 |
+
"learning_rate": 7.884973097416908e-06,
|
951 |
+
"loss": 0.6591,
|
952 |
+
"mean_token_accuracy": 0.8208227157592773,
|
953 |
+
"step": 590
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 0.7541191381495564,
|
957 |
+
"grad_norm": 0.6761543444596165,
|
958 |
+
"learning_rate": 7.83962339998514e-06,
|
959 |
+
"loss": 0.6439,
|
960 |
+
"mean_token_accuracy": 0.8236203759908676,
|
961 |
+
"step": 595
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.7604562737642585,
|
965 |
+
"grad_norm": 0.8850862666109794,
|
966 |
+
"learning_rate": 7.793926230898187e-06,
|
967 |
+
"loss": 0.6418,
|
968 |
+
"mean_token_accuracy": 0.8238036289811135,
|
969 |
+
"step": 600
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.7667934093789607,
|
973 |
+
"grad_norm": 0.6931013119334469,
|
974 |
+
"learning_rate": 7.747887181908464e-06,
|
975 |
+
"loss": 0.6513,
|
976 |
+
"mean_token_accuracy": 0.8221172288060188,
|
977 |
+
"step": 605
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.7731305449936628,
|
981 |
+
"grad_norm": 0.9142852384539434,
|
982 |
+
"learning_rate": 7.701511886602643e-06,
|
983 |
+
"loss": 0.6522,
|
984 |
+
"mean_token_accuracy": 0.8214233443140984,
|
985 |
+
"step": 610
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.779467680608365,
|
989 |
+
"grad_norm": 0.693942629552867,
|
990 |
+
"learning_rate": 7.65480601971232e-06,
|
991 |
+
"loss": 0.6555,
|
992 |
+
"mean_token_accuracy": 0.8214162334799766,
|
993 |
+
"step": 615
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.7858048162230672,
|
997 |
+
"grad_norm": 0.7185534733688809,
|
998 |
+
"learning_rate": 7.6077752964196095e-06,
|
999 |
+
"loss": 0.6514,
|
1000 |
+
"mean_token_accuracy": 0.821819719672203,
|
1001 |
+
"step": 620
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 0.7921419518377694,
|
1005 |
+
"grad_norm": 0.7933553753697458,
|
1006 |
+
"learning_rate": 7.560425471657814e-06,
|
1007 |
+
"loss": 0.6507,
|
1008 |
+
"mean_token_accuracy": 0.8215969070792198,
|
1009 |
+
"step": 625
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.7984790874524715,
|
1013 |
+
"grad_norm": 0.9942445013974323,
|
1014 |
+
"learning_rate": 7.512762339407214e-06,
|
1015 |
+
"loss": 0.6426,
|
1016 |
+
"mean_token_accuracy": 0.8233709827065467,
|
1017 |
+
"step": 630
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.8048162230671736,
|
1021 |
+
"grad_norm": 0.7111122316238967,
|
1022 |
+
"learning_rate": 7.464791731986084e-06,
|
1023 |
+
"loss": 0.6446,
|
1024 |
+
"mean_token_accuracy": 0.8233424022793769,
|
1025 |
+
"step": 635
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.8111533586818758,
|
1029 |
+
"grad_norm": 0.6760326829400325,
|
1030 |
+
"learning_rate": 7.4165195193370245e-06,
|
1031 |
+
"loss": 0.6411,
|
1032 |
+
"mean_token_accuracy": 0.8234749510884285,
|
1033 |
+
"step": 640
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.8174904942965779,
|
1037 |
+
"grad_norm": 0.7157859491675397,
|
1038 |
+
"learning_rate": 7.3679516083086785e-06,
|
1039 |
+
"loss": 0.6403,
|
1040 |
+
"mean_token_accuracy": 0.8245514526963234,
|
1041 |
+
"step": 645
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.8238276299112801,
|
1045 |
+
"grad_norm": 0.6125130117848593,
|
1046 |
+
"learning_rate": 7.319093941932941e-06,
|
1047 |
+
"loss": 0.648,
|
1048 |
+
"mean_token_accuracy": 0.8229272648692131,
|
1049 |
+
"step": 650
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 0.8301647655259823,
|
1053 |
+
"grad_norm": 0.6193392226038144,
|
1054 |
+
"learning_rate": 7.269952498697734e-06,
|
1055 |
+
"loss": 0.6568,
|
1056 |
+
"mean_token_accuracy": 0.8208993718028068,
|
1057 |
+
"step": 655
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 0.8365019011406845,
|
1061 |
+
"grad_norm": 0.5569382668639404,
|
1062 |
+
"learning_rate": 7.2205332918154525e-06,
|
1063 |
+
"loss": 0.6471,
|
1064 |
+
"mean_token_accuracy": 0.8230623930692673,
|
1065 |
+
"step": 660
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.8428390367553865,
|
1069 |
+
"grad_norm": 0.6854397276184668,
|
1070 |
+
"learning_rate": 7.170842368487145e-06,
|
1071 |
+
"loss": 0.6394,
|
1072 |
+
"mean_token_accuracy": 0.8240847915410996,
|
1073 |
+
"step": 665
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.8491761723700887,
|
1077 |
+
"grad_norm": 0.7247430930413721,
|
1078 |
+
"learning_rate": 7.120885809162561e-06,
|
1079 |
+
"loss": 0.6496,
|
1080 |
+
"mean_token_accuracy": 0.8226393803954124,
|
1081 |
+
"step": 670
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.8555133079847909,
|
1085 |
+
"grad_norm": 0.5833185802048395,
|
1086 |
+
"learning_rate": 7.070669726796095e-06,
|
1087 |
+
"loss": 0.644,
|
1088 |
+
"mean_token_accuracy": 0.8238432243466377,
|
1089 |
+
"step": 675
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.861850443599493,
|
1093 |
+
"grad_norm": 0.6587621871435737,
|
1094 |
+
"learning_rate": 7.020200266098791e-06,
|
1095 |
+
"loss": 0.6367,
|
1096 |
+
"mean_token_accuracy": 0.8251640364527703,
|
1097 |
+
"step": 680
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.8681875792141952,
|
1101 |
+
"grad_norm": 0.9240470458812879,
|
1102 |
+
"learning_rate": 6.969483602786429e-06,
|
1103 |
+
"loss": 0.6335,
|
1104 |
+
"mean_token_accuracy": 0.8250990778207778,
|
1105 |
+
"step": 685
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 0.8745247148288974,
|
1109 |
+
"grad_norm": 0.6647921620988979,
|
1110 |
+
"learning_rate": 6.918525942823836e-06,
|
1111 |
+
"loss": 0.6358,
|
1112 |
+
"mean_token_accuracy": 0.8253032699227333,
|
1113 |
+
"step": 690
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.8808618504435995,
|
1117 |
+
"grad_norm": 0.7460235517208977,
|
1118 |
+
"learning_rate": 6.8673335216654945e-06,
|
1119 |
+
"loss": 0.6364,
|
1120 |
+
"mean_token_accuracy": 0.8251613467931748,
|
1121 |
+
"step": 695
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 0.8871989860583016,
|
1125 |
+
"grad_norm": 0.5692165964237054,
|
1126 |
+
"learning_rate": 6.815912603492531e-06,
|
1127 |
+
"loss": 0.63,
|
1128 |
+
"mean_token_accuracy": 0.8269012838602066,
|
1129 |
+
"step": 700
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.8935361216730038,
|
1133 |
+
"grad_norm": 0.7678044598257266,
|
1134 |
+
"learning_rate": 6.7642694804462026e-06,
|
1135 |
+
"loss": 0.641,
|
1136 |
+
"mean_token_accuracy": 0.8240568235516548,
|
1137 |
+
"step": 705
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.899873257287706,
|
1141 |
+
"grad_norm": 0.6476587911488177,
|
1142 |
+
"learning_rate": 6.712410471857955e-06,
|
1143 |
+
"loss": 0.6389,
|
1144 |
+
"mean_token_accuracy": 0.8243090897798538,
|
1145 |
+
"step": 710
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 0.9062103929024081,
|
1149 |
+
"grad_norm": 0.6996232991940935,
|
1150 |
+
"learning_rate": 6.660341923476152e-06,
|
1151 |
+
"loss": 0.6309,
|
1152 |
+
"mean_token_accuracy": 0.8264057099819183,
|
1153 |
+
"step": 715
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.9125475285171103,
|
1157 |
+
"grad_norm": 0.6140056059724183,
|
1158 |
+
"learning_rate": 6.608070206689583e-06,
|
1159 |
+
"loss": 0.6284,
|
1160 |
+
"mean_token_accuracy": 0.826878672838211,
|
1161 |
+
"step": 720
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.9188846641318125,
|
1165 |
+
"grad_norm": 0.5994244215051143,
|
1166 |
+
"learning_rate": 6.555601717747815e-06,
|
1167 |
+
"loss": 0.6469,
|
1168 |
+
"mean_token_accuracy": 0.8231760680675506,
|
1169 |
+
"step": 725
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 0.9252217997465145,
|
1173 |
+
"grad_norm": 0.671715865180922,
|
1174 |
+
"learning_rate": 6.502942876978524e-06,
|
1175 |
+
"loss": 0.626,
|
1176 |
+
"mean_token_accuracy": 0.8275385439395905,
|
1177 |
+
"step": 730
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"epoch": 0.9315589353612167,
|
1181 |
+
"grad_norm": 0.6964725986892187,
|
1182 |
+
"learning_rate": 6.450100128001861e-06,
|
1183 |
+
"loss": 0.615,
|
1184 |
+
"mean_token_accuracy": 0.8296460658311844,
|
1185 |
+
"step": 735
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.9378960709759189,
|
1189 |
+
"grad_norm": 0.6643867039068622,
|
1190 |
+
"learning_rate": 6.397079936941975e-06,
|
1191 |
+
"loss": 0.6425,
|
1192 |
+
"mean_token_accuracy": 0.823666226863861,
|
1193 |
+
"step": 740
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.944233206590621,
|
1197 |
+
"grad_norm": 0.612108400302355,
|
1198 |
+
"learning_rate": 6.343888791635797e-06,
|
1199 |
+
"loss": 0.6222,
|
1200 |
+
"mean_token_accuracy": 0.8274678066372871,
|
1201 |
+
"step": 745
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 0.9505703422053232,
|
1205 |
+
"grad_norm": 0.5888135214791528,
|
1206 |
+
"learning_rate": 6.2905332008391304e-06,
|
1207 |
+
"loss": 0.6457,
|
1208 |
+
"mean_token_accuracy": 0.8232318565249443,
|
1209 |
+
"step": 750
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.9569074778200254,
|
1213 |
+
"grad_norm": 0.6023978340437303,
|
1214 |
+
"learning_rate": 6.237019693430227e-06,
|
1215 |
+
"loss": 0.6244,
|
1216 |
+
"mean_token_accuracy": 0.8275379940867424,
|
1217 |
+
"step": 755
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 0.9632446134347274,
|
1221 |
+
"grad_norm": 0.5860893552553069,
|
1222 |
+
"learning_rate": 6.18335481761086e-06,
|
1223 |
+
"loss": 0.6258,
|
1224 |
+
"mean_token_accuracy": 0.8275753378868103,
|
1225 |
+
"step": 760
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"epoch": 0.9695817490494296,
|
1229 |
+
"grad_norm": 0.6183329734308459,
|
1230 |
+
"learning_rate": 6.1295451401050645e-06,
|
1231 |
+
"loss": 0.6487,
|
1232 |
+
"mean_token_accuracy": 0.8231626331806183,
|
1233 |
+
"step": 765
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.9759188846641318,
|
1237 |
+
"grad_norm": 0.6472859730529533,
|
1238 |
+
"learning_rate": 6.075597245355589e-06,
|
1239 |
+
"loss": 0.6367,
|
1240 |
+
"mean_token_accuracy": 0.8252906337380409,
|
1241 |
+
"step": 770
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.982256020278834,
|
1245 |
+
"grad_norm": 0.7048827333728572,
|
1246 |
+
"learning_rate": 6.021517734718193e-06,
|
1247 |
+
"loss": 0.6331,
|
1248 |
+
"mean_token_accuracy": 0.8252324685454369,
|
1249 |
+
"step": 775
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.9885931558935361,
|
1253 |
+
"grad_norm": 0.670917489168749,
|
1254 |
+
"learning_rate": 5.967313225653863e-06,
|
1255 |
+
"loss": 0.6311,
|
1256 |
+
"mean_token_accuracy": 0.8262254923582077,
|
1257 |
+
"step": 780
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.9949302915082383,
|
1261 |
+
"grad_norm": 0.6294039276801214,
|
1262 |
+
"learning_rate": 5.912990350919075e-06,
|
1263 |
+
"loss": 0.6366,
|
1264 |
+
"mean_token_accuracy": 0.8250793889164925,
|
1265 |
+
"step": 785
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 1.0012674271229405,
|
1269 |
+
"grad_norm": 0.5750660780176277,
|
1270 |
+
"learning_rate": 5.85855575775416e-06,
|
1271 |
+
"loss": 0.6356,
|
1272 |
+
"mean_token_accuracy": 0.8255759388208389,
|
1273 |
+
"step": 790
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 1.0076045627376427,
|
1277 |
+
"grad_norm": 0.5873083803261483,
|
1278 |
+
"learning_rate": 5.804016107069922e-06,
|
1279 |
+
"loss": 0.5899,
|
1280 |
+
"mean_token_accuracy": 0.8365576922893524,
|
1281 |
+
"step": 795
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.0139416983523448,
|
1285 |
+
"grad_norm": 0.7245732012982048,
|
1286 |
+
"learning_rate": 5.749378072632572e-06,
|
1287 |
+
"loss": 0.5924,
|
1288 |
+
"mean_token_accuracy": 0.8353384211659431,
|
1289 |
+
"step": 800
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 1.020278833967047,
|
1293 |
+
"grad_norm": 0.5625102045050165,
|
1294 |
+
"learning_rate": 5.694648340247087e-06,
|
1295 |
+
"loss": 0.5855,
|
1296 |
+
"mean_token_accuracy": 0.8365451633930207,
|
1297 |
+
"step": 805
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.026615969581749,
|
1301 |
+
"grad_norm": 0.5811796962078384,
|
1302 |
+
"learning_rate": 5.639833606939103e-06,
|
1303 |
+
"loss": 0.5835,
|
1304 |
+
"mean_token_accuracy": 0.8374374285340309,
|
1305 |
+
"step": 810
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.0329531051964511,
|
1309 |
+
"grad_norm": 0.6064815307080854,
|
1310 |
+
"learning_rate": 5.584940580135423e-06,
|
1311 |
+
"loss": 0.5918,
|
1312 |
+
"mean_token_accuracy": 0.835510890185833,
|
1313 |
+
"step": 815
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 1.0392902408111533,
|
1317 |
+
"grad_norm": 0.5469353793310435,
|
1318 |
+
"learning_rate": 5.529975976843268e-06,
|
1319 |
+
"loss": 0.5765,
|
1320 |
+
"mean_token_accuracy": 0.839336322247982,
|
1321 |
+
"step": 820
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 1.0456273764258555,
|
1325 |
+
"grad_norm": 0.591194718615289,
|
1326 |
+
"learning_rate": 5.474946522828344e-06,
|
1327 |
+
"loss": 0.571,
|
1328 |
+
"mean_token_accuracy": 0.8397138401865959,
|
1329 |
+
"step": 825
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 1.0519645120405576,
|
1333 |
+
"grad_norm": 0.6529351075330402,
|
1334 |
+
"learning_rate": 5.419858951791842e-06,
|
1335 |
+
"loss": 0.587,
|
1336 |
+
"mean_token_accuracy": 0.8367372244596482,
|
1337 |
+
"step": 830
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 1.0583016476552598,
|
1341 |
+
"grad_norm": 0.5750159656566077,
|
1342 |
+
"learning_rate": 5.364720004546467e-06,
|
1343 |
+
"loss": 0.5713,
|
1344 |
+
"mean_token_accuracy": 0.8396085217595101,
|
1345 |
+
"step": 835
|
1346 |
+
},
|
1347 |
+
{
|
1348 |
+
"epoch": 1.064638783269962,
|
1349 |
+
"grad_norm": 0.5356356446036812,
|
1350 |
+
"learning_rate": 5.3095364281915905e-06,
|
1351 |
+
"loss": 0.5743,
|
1352 |
+
"mean_token_accuracy": 0.8390779420733452,
|
1353 |
+
"step": 840
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.0709759188846641,
|
1357 |
+
"grad_norm": 0.5657627605570825,
|
1358 |
+
"learning_rate": 5.254314975287649e-06,
|
1359 |
+
"loss": 0.5768,
|
1360 |
+
"mean_token_accuracy": 0.8388962477445603,
|
1361 |
+
"step": 845
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.0773130544993663,
|
1365 |
+
"grad_norm": 0.5994046834255601,
|
1366 |
+
"learning_rate": 5.199062403029851e-06,
|
1367 |
+
"loss": 0.5779,
|
1368 |
+
"mean_token_accuracy": 0.838576190173626,
|
1369 |
+
"step": 850
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"epoch": 1.0836501901140685,
|
1373 |
+
"grad_norm": 0.5512378922303693,
|
1374 |
+
"learning_rate": 5.143785472421341e-06,
|
1375 |
+
"loss": 0.5736,
|
1376 |
+
"mean_token_accuracy": 0.8392498835921287,
|
1377 |
+
"step": 855
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.0899873257287707,
|
1381 |
+
"grad_norm": 0.6231063067990558,
|
1382 |
+
"learning_rate": 5.088490947445884e-06,
|
1383 |
+
"loss": 0.5787,
|
1384 |
+
"mean_token_accuracy": 0.8382582783699035,
|
1385 |
+
"step": 860
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 1.0963244613434728,
|
1389 |
+
"grad_norm": 0.6258759211004005,
|
1390 |
+
"learning_rate": 5.033185594240184e-06,
|
1391 |
+
"loss": 0.5867,
|
1392 |
+
"mean_token_accuracy": 0.8368578165769577,
|
1393 |
+
"step": 865
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 1.102661596958175,
|
1397 |
+
"grad_norm": 0.5758426513877979,
|
1398 |
+
"learning_rate": 4.977876180265948e-06,
|
1399 |
+
"loss": 0.5781,
|
1400 |
+
"mean_token_accuracy": 0.8380098447203637,
|
1401 |
+
"step": 870
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.1089987325728772,
|
1405 |
+
"grad_norm": 0.5362099307940532,
|
1406 |
+
"learning_rate": 4.922569473481779e-06,
|
1407 |
+
"loss": 0.579,
|
1408 |
+
"mean_token_accuracy": 0.8374864637851716,
|
1409 |
+
"step": 875
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.1153358681875791,
|
1413 |
+
"grad_norm": 0.6117359275633708,
|
1414 |
+
"learning_rate": 4.867272241515013e-06,
|
1415 |
+
"loss": 0.5745,
|
1416 |
+
"mean_token_accuracy": 0.8394086301326752,
|
1417 |
+
"step": 880
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 1.1216730038022813,
|
1421 |
+
"grad_norm": 0.6163525031585341,
|
1422 |
+
"learning_rate": 4.811991250833598e-06,
|
1423 |
+
"loss": 0.575,
|
1424 |
+
"mean_token_accuracy": 0.8387202203273774,
|
1425 |
+
"step": 885
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 1.1280101394169835,
|
1429 |
+
"grad_norm": 0.5344005108748248,
|
1430 |
+
"learning_rate": 4.756733265918111e-06,
|
1431 |
+
"loss": 0.5805,
|
1432 |
+
"mean_token_accuracy": 0.8385160818696022,
|
1433 |
+
"step": 890
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 1.1343472750316856,
|
1437 |
+
"grad_norm": 0.5606427842219186,
|
1438 |
+
"learning_rate": 4.701505048434017e-06,
|
1439 |
+
"loss": 0.58,
|
1440 |
+
"mean_token_accuracy": 0.837983712553978,
|
1441 |
+
"step": 895
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 1.1406844106463878,
|
1445 |
+
"grad_norm": 0.5635525365545201,
|
1446 |
+
"learning_rate": 4.646313356404278e-06,
|
1447 |
+
"loss": 0.5721,
|
1448 |
+
"mean_token_accuracy": 0.8402201250195503,
|
1449 |
+
"step": 900
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.14702154626109,
|
1453 |
+
"grad_norm": 0.5279253266696204,
|
1454 |
+
"learning_rate": 4.5911649433824055e-06,
|
1455 |
+
"loss": 0.5722,
|
1456 |
+
"mean_token_accuracy": 0.8398120388388634,
|
1457 |
+
"step": 905
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 1.1533586818757922,
|
1461 |
+
"grad_norm": 0.5355638715895371,
|
1462 |
+
"learning_rate": 4.536066557626057e-06,
|
1463 |
+
"loss": 0.5717,
|
1464 |
+
"mean_token_accuracy": 0.8396236389875412,
|
1465 |
+
"step": 910
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.1596958174904943,
|
1469 |
+
"grad_norm": 0.5298050755566127,
|
1470 |
+
"learning_rate": 4.481024941271283e-06,
|
1471 |
+
"loss": 0.5825,
|
1472 |
+
"mean_token_accuracy": 0.837471354007721,
|
1473 |
+
"step": 915
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.1660329531051965,
|
1477 |
+
"grad_norm": 0.6099091835516977,
|
1478 |
+
"learning_rate": 4.426046829507525e-06,
|
1479 |
+
"loss": 0.5739,
|
1480 |
+
"mean_token_accuracy": 0.8395572647452354,
|
1481 |
+
"step": 920
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 1.1723700887198987,
|
1485 |
+
"grad_norm": 0.5282685583180019,
|
1486 |
+
"learning_rate": 4.371138949753457e-06,
|
1487 |
+
"loss": 0.5758,
|
1488 |
+
"mean_token_accuracy": 0.8386889979243278,
|
1489 |
+
"step": 925
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 1.1787072243346008,
|
1493 |
+
"grad_norm": 0.5498053929758666,
|
1494 |
+
"learning_rate": 4.316308020833788e-06,
|
1495 |
+
"loss": 0.5717,
|
1496 |
+
"mean_token_accuracy": 0.8401581376791001,
|
1497 |
+
"step": 930
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 1.1850443599493028,
|
1501 |
+
"grad_norm": 0.545684866299052,
|
1502 |
+
"learning_rate": 4.261560752157106e-06,
|
1503 |
+
"loss": 0.5821,
|
1504 |
+
"mean_token_accuracy": 0.8375889748334885,
|
1505 |
+
"step": 935
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 1.1913814955640052,
|
1509 |
+
"grad_norm": 0.5275676276739754,
|
1510 |
+
"learning_rate": 4.20690384289488e-06,
|
1511 |
+
"loss": 0.5865,
|
1512 |
+
"mean_token_accuracy": 0.8369634434580803,
|
1513 |
+
"step": 940
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 1.1977186311787071,
|
1517 |
+
"grad_norm": 0.5147709084468725,
|
1518 |
+
"learning_rate": 4.152343981161713e-06,
|
1519 |
+
"loss": 0.5735,
|
1520 |
+
"mean_token_accuracy": 0.8388126537203788,
|
1521 |
+
"step": 945
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.2040557667934093,
|
1525 |
+
"grad_norm": 0.5553445767071536,
|
1526 |
+
"learning_rate": 4.097887843196949e-06,
|
1527 |
+
"loss": 0.5706,
|
1528 |
+
"mean_token_accuracy": 0.8400391504168511,
|
1529 |
+
"step": 950
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 1.2103929024081115,
|
1533 |
+
"grad_norm": 0.5755093000837989,
|
1534 |
+
"learning_rate": 4.043542092547729e-06,
|
1535 |
+
"loss": 0.5738,
|
1536 |
+
"mean_token_accuracy": 0.8393745362758637,
|
1537 |
+
"step": 955
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"epoch": 1.2167300380228137,
|
1541 |
+
"grad_norm": 0.5323369182306833,
|
1542 |
+
"learning_rate": 3.989313379253609e-06,
|
1543 |
+
"loss": 0.5707,
|
1544 |
+
"mean_token_accuracy": 0.8395906254649163,
|
1545 |
+
"step": 960
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 1.2230671736375158,
|
1549 |
+
"grad_norm": 0.5398923057065517,
|
1550 |
+
"learning_rate": 3.935208339032819e-06,
|
1551 |
+
"loss": 0.5773,
|
1552 |
+
"mean_token_accuracy": 0.8380544230341911,
|
1553 |
+
"step": 965
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 1.229404309252218,
|
1557 |
+
"grad_norm": 0.5138506118324425,
|
1558 |
+
"learning_rate": 3.881233592470287e-06,
|
1559 |
+
"loss": 0.5697,
|
1560 |
+
"mean_token_accuracy": 0.8401115134358406,
|
1561 |
+
"step": 970
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 1.2357414448669202,
|
1565 |
+
"grad_norm": 0.531254594806762,
|
1566 |
+
"learning_rate": 3.827395744207504e-06,
|
1567 |
+
"loss": 0.5802,
|
1568 |
+
"mean_token_accuracy": 0.8385789826512337,
|
1569 |
+
"step": 975
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.2420785804816223,
|
1573 |
+
"grad_norm": 0.5209427066358759,
|
1574 |
+
"learning_rate": 3.773701382134345e-06,
|
1575 |
+
"loss": 0.5788,
|
1576 |
+
"mean_token_accuracy": 0.8383644595742226,
|
1577 |
+
"step": 980
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.2484157160963245,
|
1581 |
+
"grad_norm": 0.4981386065382922,
|
1582 |
+
"learning_rate": 3.7201570765829405e-06,
|
1583 |
+
"loss": 0.5803,
|
1584 |
+
"mean_token_accuracy": 0.8378679618239403,
|
1585 |
+
"step": 985
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 1.2547528517110267,
|
1589 |
+
"grad_norm": 0.5310216835837045,
|
1590 |
+
"learning_rate": 3.666769379523695e-06,
|
1591 |
+
"loss": 0.5816,
|
1592 |
+
"mean_token_accuracy": 0.8382963240146637,
|
1593 |
+
"step": 990
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.2610899873257289,
|
1597 |
+
"grad_norm": 0.5302964748937399,
|
1598 |
+
"learning_rate": 3.6135448237635505e-06,
|
1599 |
+
"loss": 0.568,
|
1600 |
+
"mean_token_accuracy": 0.8408621445298194,
|
1601 |
+
"step": 995
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 1.2674271229404308,
|
1605 |
+
"grad_norm": 0.6043312455865852,
|
1606 |
+
"learning_rate": 3.5604899221466003e-06,
|
1607 |
+
"loss": 0.5797,
|
1608 |
+
"mean_token_accuracy": 0.837955892086029,
|
1609 |
+
"step": 1000
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 1.2737642585551332,
|
1613 |
+
"grad_norm": 0.5404711838738012,
|
1614 |
+
"learning_rate": 3.507611166757141e-06,
|
1615 |
+
"loss": 0.577,
|
1616 |
+
"mean_token_accuracy": 0.8382121488451958,
|
1617 |
+
"step": 1005
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 1.2801013941698351,
|
1621 |
+
"grad_norm": 0.5313905403777647,
|
1622 |
+
"learning_rate": 3.4549150281252635e-06,
|
1623 |
+
"loss": 0.5759,
|
1624 |
+
"mean_token_accuracy": 0.8386555135250091,
|
1625 |
+
"step": 1010
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 1.2864385297845373,
|
1629 |
+
"grad_norm": 0.5312545340451698,
|
1630 |
+
"learning_rate": 3.4024079544350874e-06,
|
1631 |
+
"loss": 0.5766,
|
1632 |
+
"mean_token_accuracy": 0.8384982272982597,
|
1633 |
+
"step": 1015
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.2927756653992395,
|
1637 |
+
"grad_norm": 0.574010488002488,
|
1638 |
+
"learning_rate": 3.3500963707357236e-06,
|
1639 |
+
"loss": 0.5817,
|
1640 |
+
"mean_token_accuracy": 0.838199020922184,
|
1641 |
+
"step": 1020
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.2991128010139417,
|
1645 |
+
"grad_norm": 0.5162313236359333,
|
1646 |
+
"learning_rate": 3.297986678155074e-06,
|
1647 |
+
"loss": 0.5596,
|
1648 |
+
"mean_token_accuracy": 0.8421908557415009,
|
1649 |
+
"step": 1025
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 1.3054499366286438,
|
1653 |
+
"grad_norm": 0.6187258006031299,
|
1654 |
+
"learning_rate": 3.24608525311655e-06,
|
1655 |
+
"loss": 0.5633,
|
1656 |
+
"mean_token_accuracy": 0.842179323732853,
|
1657 |
+
"step": 1030
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 1.311787072243346,
|
1661 |
+
"grad_norm": 0.5140882862368508,
|
1662 |
+
"learning_rate": 3.1943984465588253e-06,
|
1663 |
+
"loss": 0.5704,
|
1664 |
+
"mean_token_accuracy": 0.8403183802962303,
|
1665 |
+
"step": 1035
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 1.3181242078580482,
|
1669 |
+
"grad_norm": 0.5261806551468972,
|
1670 |
+
"learning_rate": 3.142932583158693e-06,
|
1671 |
+
"loss": 0.5664,
|
1672 |
+
"mean_token_accuracy": 0.8412504211068154,
|
1673 |
+
"step": 1040
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 1.3244613434727504,
|
1677 |
+
"grad_norm": 0.5355046745744655,
|
1678 |
+
"learning_rate": 3.0916939605571534e-06,
|
1679 |
+
"loss": 0.5668,
|
1680 |
+
"mean_token_accuracy": 0.8411947041749954,
|
1681 |
+
"step": 1045
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 1.3307984790874525,
|
1685 |
+
"grad_norm": 0.5828342485781398,
|
1686 |
+
"learning_rate": 3.040688848588788e-06,
|
1687 |
+
"loss": 0.5683,
|
1688 |
+
"mean_token_accuracy": 0.8403848618268966,
|
1689 |
+
"step": 1050
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.3371356147021547,
|
1693 |
+
"grad_norm": 0.515568887419182,
|
1694 |
+
"learning_rate": 2.989923488514566e-06,
|
1695 |
+
"loss": 0.5734,
|
1696 |
+
"mean_token_accuracy": 0.8396067947149277,
|
1697 |
+
"step": 1055
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 1.3434727503168569,
|
1701 |
+
"grad_norm": 0.533119717549416,
|
1702 |
+
"learning_rate": 2.9394040922581123e-06,
|
1703 |
+
"loss": 0.5788,
|
1704 |
+
"mean_token_accuracy": 0.8387560814619064,
|
1705 |
+
"step": 1060
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 1.3498098859315588,
|
1709 |
+
"grad_norm": 0.5574493299249907,
|
1710 |
+
"learning_rate": 2.889136841645592e-06,
|
1711 |
+
"loss": 0.5738,
|
1712 |
+
"mean_token_accuracy": 0.839569516479969,
|
1713 |
+
"step": 1065
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 1.3561470215462612,
|
1717 |
+
"grad_norm": 0.5301348229908708,
|
1718 |
+
"learning_rate": 2.839127887649271e-06,
|
1719 |
+
"loss": 0.5751,
|
1720 |
+
"mean_token_accuracy": 0.8394772946834564,
|
1721 |
+
"step": 1070
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 1.3624841571609632,
|
1725 |
+
"grad_norm": 0.5071728571486687,
|
1726 |
+
"learning_rate": 2.789383349634841e-06,
|
1727 |
+
"loss": 0.5711,
|
1728 |
+
"mean_token_accuracy": 0.8398226588964463,
|
1729 |
+
"step": 1075
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 1.3688212927756653,
|
1733 |
+
"grad_norm": 0.4997381831510659,
|
1734 |
+
"learning_rate": 2.73990931461263e-06,
|
1735 |
+
"loss": 0.5783,
|
1736 |
+
"mean_token_accuracy": 0.8384912863373757,
|
1737 |
+
"step": 1080
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.3751584283903675,
|
1741 |
+
"grad_norm": 0.5019388182436546,
|
1742 |
+
"learning_rate": 2.690711836492758e-06,
|
1743 |
+
"loss": 0.5711,
|
1744 |
+
"mean_token_accuracy": 0.8396464511752129,
|
1745 |
+
"step": 1085
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.3814955640050697,
|
1749 |
+
"grad_norm": 0.5165116686484276,
|
1750 |
+
"learning_rate": 2.6417969353443484e-06,
|
1751 |
+
"loss": 0.5721,
|
1752 |
+
"mean_token_accuracy": 0.8395859107375145,
|
1753 |
+
"step": 1090
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 1.3878326996197718,
|
1757 |
+
"grad_norm": 0.5372603660779312,
|
1758 |
+
"learning_rate": 2.5931705966588803e-06,
|
1759 |
+
"loss": 0.5826,
|
1760 |
+
"mean_token_accuracy": 0.8370852112770081,
|
1761 |
+
"step": 1095
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.394169835234474,
|
1765 |
+
"grad_norm": 0.5104565997924485,
|
1766 |
+
"learning_rate": 2.544838770617772e-06,
|
1767 |
+
"loss": 0.5785,
|
1768 |
+
"mean_token_accuracy": 0.8393797069787979,
|
1769 |
+
"step": 1100
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 1.4005069708491762,
|
1773 |
+
"grad_norm": 0.5336610190327751,
|
1774 |
+
"learning_rate": 2.496807371364283e-06,
|
1775 |
+
"loss": 0.5759,
|
1776 |
+
"mean_token_accuracy": 0.8390834912657738,
|
1777 |
+
"step": 1105
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 1.4068441064638784,
|
1781 |
+
"grad_norm": 0.662951455066245,
|
1782 |
+
"learning_rate": 2.44908227627983e-06,
|
1783 |
+
"loss": 0.5712,
|
1784 |
+
"mean_token_accuracy": 0.8397842928767204,
|
1785 |
+
"step": 1110
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.4131812420785805,
|
1789 |
+
"grad_norm": 0.5438222471825553,
|
1790 |
+
"learning_rate": 2.4016693252647954e-06,
|
1791 |
+
"loss": 0.5703,
|
1792 |
+
"mean_token_accuracy": 0.8397609844803811,
|
1793 |
+
"step": 1115
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 1.4195183776932827,
|
1797 |
+
"grad_norm": 0.5457903944622784,
|
1798 |
+
"learning_rate": 2.3545743200239303e-06,
|
1799 |
+
"loss": 0.5756,
|
1800 |
+
"mean_token_accuracy": 0.8387856274843216,
|
1801 |
+
"step": 1120
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 1.4258555133079849,
|
1805 |
+
"grad_norm": 0.5413159299268847,
|
1806 |
+
"learning_rate": 2.3078030233564203e-06,
|
1807 |
+
"loss": 0.5796,
|
1808 |
+
"mean_token_accuracy": 0.8379950270056724,
|
1809 |
+
"step": 1125
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 1.4321926489226868,
|
1813 |
+
"grad_norm": 0.5017485230997426,
|
1814 |
+
"learning_rate": 2.2613611584507227e-06,
|
1815 |
+
"loss": 0.5843,
|
1816 |
+
"mean_token_accuracy": 0.8371415048837662,
|
1817 |
+
"step": 1130
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 1.4385297845373892,
|
1821 |
+
"grad_norm": 0.5036035556859302,
|
1822 |
+
"learning_rate": 2.215254408184249e-06,
|
1823 |
+
"loss": 0.5733,
|
1824 |
+
"mean_token_accuracy": 0.8397385001182556,
|
1825 |
+
"step": 1135
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 1.4448669201520912,
|
1829 |
+
"grad_norm": 0.5512472367603704,
|
1830 |
+
"learning_rate": 2.169488414427969e-06,
|
1831 |
+
"loss": 0.5665,
|
1832 |
+
"mean_token_accuracy": 0.8411229193210602,
|
1833 |
+
"step": 1140
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 1.4512040557667933,
|
1837 |
+
"grad_norm": 0.5122324337296091,
|
1838 |
+
"learning_rate": 2.1240687773560476e-06,
|
1839 |
+
"loss": 0.5754,
|
1840 |
+
"mean_token_accuracy": 0.838901475071907,
|
1841 |
+
"step": 1145
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 1.4575411913814955,
|
1845 |
+
"grad_norm": 0.514428924855705,
|
1846 |
+
"learning_rate": 2.0790010547605743e-06,
|
1847 |
+
"loss": 0.5773,
|
1848 |
+
"mean_token_accuracy": 0.8385174334049225,
|
1849 |
+
"step": 1150
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 1.4638783269961977,
|
1853 |
+
"grad_norm": 0.541489817693485,
|
1854 |
+
"learning_rate": 2.0342907613714837e-06,
|
1855 |
+
"loss": 0.5724,
|
1856 |
+
"mean_token_accuracy": 0.839878860116005,
|
1857 |
+
"step": 1155
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.4702154626108999,
|
1861 |
+
"grad_norm": 0.5233399327286699,
|
1862 |
+
"learning_rate": 1.989943368181741e-06,
|
1863 |
+
"loss": 0.5683,
|
1864 |
+
"mean_token_accuracy": 0.8406485706567765,
|
1865 |
+
"step": 1160
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 1.476552598225602,
|
1869 |
+
"grad_norm": 0.4977622157535387,
|
1870 |
+
"learning_rate": 1.945964301777883e-06,
|
1871 |
+
"loss": 0.5568,
|
1872 |
+
"mean_token_accuracy": 0.8429565221071244,
|
1873 |
+
"step": 1165
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 1.4828897338403042,
|
1877 |
+
"grad_norm": 0.502171168050283,
|
1878 |
+
"learning_rate": 1.9023589436759954e-06,
|
1879 |
+
"loss": 0.555,
|
1880 |
+
"mean_token_accuracy": 0.8435925453901291,
|
1881 |
+
"step": 1170
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 1.4892268694550064,
|
1885 |
+
"grad_norm": 0.5026240018805591,
|
1886 |
+
"learning_rate": 1.859132629663194e-06,
|
1887 |
+
"loss": 0.5609,
|
1888 |
+
"mean_token_accuracy": 0.8420811951160431,
|
1889 |
+
"step": 1175
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 1.4955640050697085,
|
1893 |
+
"grad_norm": 0.5071369135189446,
|
1894 |
+
"learning_rate": 1.8162906491447136e-06,
|
1895 |
+
"loss": 0.5751,
|
1896 |
+
"mean_token_accuracy": 0.8397066414356231,
|
1897 |
+
"step": 1180
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 1.5019011406844105,
|
1901 |
+
"grad_norm": 0.5012155091792143,
|
1902 |
+
"learning_rate": 1.7738382444966668e-06,
|
1903 |
+
"loss": 0.5714,
|
1904 |
+
"mean_token_accuracy": 0.839833353459835,
|
1905 |
+
"step": 1185
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 1.508238276299113,
|
1909 |
+
"grad_norm": 0.4943163959620169,
|
1910 |
+
"learning_rate": 1.7317806104245599e-06,
|
1911 |
+
"loss": 0.5614,
|
1912 |
+
"mean_token_accuracy": 0.8422631338238716,
|
1913 |
+
"step": 1190
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 1.5145754119138148,
|
1917 |
+
"grad_norm": 0.5168969148185261,
|
1918 |
+
"learning_rate": 1.6901228933276381e-06,
|
1919 |
+
"loss": 0.5734,
|
1920 |
+
"mean_token_accuracy": 0.8398737594485283,
|
1921 |
+
"step": 1195
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 1.5209125475285172,
|
1925 |
+
"grad_norm": 0.5085722470934201,
|
1926 |
+
"learning_rate": 1.6488701906691462e-06,
|
1927 |
+
"loss": 0.5743,
|
1928 |
+
"mean_token_accuracy": 0.8395018294453621,
|
1929 |
+
"step": 1200
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 1.5272496831432192,
|
1933 |
+
"grad_norm": 0.5145560441594629,
|
1934 |
+
"learning_rate": 1.6080275503525754e-06,
|
1935 |
+
"loss": 0.5714,
|
1936 |
+
"mean_token_accuracy": 0.8400074362754821,
|
1937 |
+
"step": 1205
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 1.5335868187579216,
|
1941 |
+
"grad_norm": 0.5142209477213089,
|
1942 |
+
"learning_rate": 1.5675999701039734e-06,
|
1943 |
+
"loss": 0.5731,
|
1944 |
+
"mean_token_accuracy": 0.8395378664135933,
|
1945 |
+
"step": 1210
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"epoch": 1.5399239543726235,
|
1949 |
+
"grad_norm": 0.4817695083655761,
|
1950 |
+
"learning_rate": 1.5275923968603967e-06,
|
1951 |
+
"loss": 0.5668,
|
1952 |
+
"mean_token_accuracy": 0.840859878063202,
|
1953 |
+
"step": 1215
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 1.5462610899873257,
|
1957 |
+
"grad_norm": 0.4958218170076731,
|
1958 |
+
"learning_rate": 1.4880097261645765e-06,
|
1959 |
+
"loss": 0.575,
|
1960 |
+
"mean_token_accuracy": 0.8392793446779251,
|
1961 |
+
"step": 1220
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 1.5525982256020279,
|
1965 |
+
"grad_norm": 0.5150469794513786,
|
1966 |
+
"learning_rate": 1.4488568015658738e-06,
|
1967 |
+
"loss": 0.5702,
|
1968 |
+
"mean_token_accuracy": 0.8403733685612679,
|
1969 |
+
"step": 1225
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 1.55893536121673,
|
1973 |
+
"grad_norm": 0.5415616286404993,
|
1974 |
+
"learning_rate": 1.4101384140275947e-06,
|
1975 |
+
"loss": 0.5724,
|
1976 |
+
"mean_token_accuracy": 0.8399771124124527,
|
1977 |
+
"step": 1230
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.5652724968314322,
|
1981 |
+
"grad_norm": 0.5125659970580118,
|
1982 |
+
"learning_rate": 1.3718593013407455e-06,
|
1983 |
+
"loss": 0.565,
|
1984 |
+
"mean_token_accuracy": 0.8413113921880722,
|
1985 |
+
"step": 1235
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 1.5716096324461344,
|
1989 |
+
"grad_norm": 0.5172557001838594,
|
1990 |
+
"learning_rate": 1.3340241475442889e-06,
|
1991 |
+
"loss": 0.5666,
|
1992 |
+
"mean_token_accuracy": 0.8413270160555839,
|
1993 |
+
"step": 1240
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 1.5779467680608366,
|
1997 |
+
"grad_norm": 0.5218390924731011,
|
1998 |
+
"learning_rate": 1.296637582351979e-06,
|
1999 |
+
"loss": 0.5811,
|
2000 |
+
"mean_token_accuracy": 0.8378918588161468,
|
2001 |
+
"step": 1245
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 1.5842839036755385,
|
2005 |
+
"grad_norm": 0.49941956793616216,
|
2006 |
+
"learning_rate": 1.2597041805858469e-06,
|
2007 |
+
"loss": 0.5597,
|
2008 |
+
"mean_token_accuracy": 0.8421694174408912,
|
2009 |
+
"step": 1250
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 1.590621039290241,
|
2013 |
+
"grad_norm": 0.4810003693281146,
|
2014 |
+
"learning_rate": 1.2232284616163986e-06,
|
2015 |
+
"loss": 0.5646,
|
2016 |
+
"mean_token_accuracy": 0.8418364375829697,
|
2017 |
+
"step": 1255
|
2018 |
+
},
|
2019 |
+
{
|
2020 |
+
"epoch": 1.5969581749049429,
|
2021 |
+
"grad_norm": 0.49642278969512443,
|
2022 |
+
"learning_rate": 1.1872148888096024e-06,
|
2023 |
+
"loss": 0.5686,
|
2024 |
+
"mean_token_accuracy": 0.840269310772419,
|
2025 |
+
"step": 1260
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.6032953105196452,
|
2029 |
+
"grad_norm": 0.5258808050772633,
|
2030 |
+
"learning_rate": 1.1516678689807249e-06,
|
2031 |
+
"loss": 0.5665,
|
2032 |
+
"mean_token_accuracy": 0.8409392833709717,
|
2033 |
+
"step": 1265
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 1.6096324461343472,
|
2037 |
+
"grad_norm": 0.4807160453689938,
|
2038 |
+
"learning_rate": 1.1165917518550913e-06,
|
2039 |
+
"loss": 0.5671,
|
2040 |
+
"mean_token_accuracy": 0.8411058440804482,
|
2041 |
+
"step": 1270
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 1.6159695817490496,
|
2045 |
+
"grad_norm": 0.48965855513910594,
|
2046 |
+
"learning_rate": 1.0819908295358284e-06,
|
2047 |
+
"loss": 0.5588,
|
2048 |
+
"mean_token_accuracy": 0.8429983571171761,
|
2049 |
+
"step": 1275
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 1.6223067173637515,
|
2053 |
+
"grad_norm": 0.5202990154276527,
|
2054 |
+
"learning_rate": 1.0478693359786612e-06,
|
2055 |
+
"loss": 0.5716,
|
2056 |
+
"mean_token_accuracy": 0.8400727063417435,
|
2057 |
+
"step": 1280
|
2058 |
+
},
|
2059 |
+
{
|
2060 |
+
"epoch": 1.6286438529784537,
|
2061 |
+
"grad_norm": 0.5171890350253132,
|
2062 |
+
"learning_rate": 1.0142314464738195e-06,
|
2063 |
+
"loss": 0.5517,
|
2064 |
+
"mean_token_accuracy": 0.8443869799375534,
|
2065 |
+
"step": 1285
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"epoch": 1.6349809885931559,
|
2069 |
+
"grad_norm": 0.48132181865431867,
|
2070 |
+
"learning_rate": 9.810812771351335e-07,
|
2071 |
+
"loss": 0.5784,
|
2072 |
+
"mean_token_accuracy": 0.8387523666024208,
|
2073 |
+
"step": 1290
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 1.641318124207858,
|
2077 |
+
"grad_norm": 0.48031587809861415,
|
2078 |
+
"learning_rate": 9.484228843963577e-07,
|
2079 |
+
"loss": 0.5609,
|
2080 |
+
"mean_token_accuracy": 0.8421882972121238,
|
2081 |
+
"step": 1295
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 1.6476552598225602,
|
2085 |
+
"grad_norm": 0.48862410273482815,
|
2086 |
+
"learning_rate": 9.16260264514805e-07,
|
2087 |
+
"loss": 0.5739,
|
2088 |
+
"mean_token_accuracy": 0.8393760696053505,
|
2089 |
+
"step": 1300
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 1.6539923954372624,
|
2093 |
+
"grad_norm": 0.4974345984726092,
|
2094 |
+
"learning_rate": 8.845973530823443e-07,
|
2095 |
+
"loss": 0.5623,
|
2096 |
+
"mean_token_accuracy": 0.842260554432869,
|
2097 |
+
"step": 1305
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 1.6603295310519646,
|
2101 |
+
"grad_norm": 0.4969870292569671,
|
2102 |
+
"learning_rate": 8.534380245438212e-07,
|
2103 |
+
"loss": 0.5806,
|
2104 |
+
"mean_token_accuracy": 0.8379565149545669,
|
2105 |
+
"step": 1310
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"epoch": 1.6666666666666665,
|
2109 |
+
"grad_norm": 0.51170305488906,
|
2110 |
+
"learning_rate": 8.22786091722958e-07,
|
2111 |
+
"loss": 0.5744,
|
2112 |
+
"mean_token_accuracy": 0.8394851118326188,
|
2113 |
+
"step": 1315
|
2114 |
+
},
|
2115 |
+
{
|
2116 |
+
"epoch": 1.673003802281369,
|
2117 |
+
"grad_norm": 0.4882536601279716,
|
2118 |
+
"learning_rate": 7.926453053557948e-07,
|
2119 |
+
"loss": 0.5694,
|
2120 |
+
"mean_token_accuracy": 0.8412208631634712,
|
2121 |
+
"step": 1320
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 1.6793409378960709,
|
2125 |
+
"grad_norm": 0.5201633381345815,
|
2126 |
+
"learning_rate": 7.630193536317354e-07,
|
2127 |
+
"loss": 0.5779,
|
2128 |
+
"mean_token_accuracy": 0.8387572214007377,
|
2129 |
+
"step": 1325
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 1.6856780735107733,
|
2133 |
+
"grad_norm": 0.4872309884092355,
|
2134 |
+
"learning_rate": 7.339118617422325e-07,
|
2135 |
+
"loss": 0.5721,
|
2136 |
+
"mean_token_accuracy": 0.840134784579277,
|
2137 |
+
"step": 1330
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 1.6920152091254752,
|
2141 |
+
"grad_norm": 0.4742262519043048,
|
2142 |
+
"learning_rate": 7.05326391437195e-07,
|
2143 |
+
"loss": 0.567,
|
2144 |
+
"mean_token_accuracy": 0.8408115699887275,
|
2145 |
+
"step": 1335
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 1.6983523447401776,
|
2149 |
+
"grad_norm": 0.48084605496078786,
|
2150 |
+
"learning_rate": 6.772664405891505e-07,
|
2151 |
+
"loss": 0.5739,
|
2152 |
+
"mean_token_accuracy": 0.8401078969240189,
|
2153 |
+
"step": 1340
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"epoch": 1.7046894803548795,
|
2157 |
+
"grad_norm": 0.4836055364313366,
|
2158 |
+
"learning_rate": 6.49735442765228e-07,
|
2159 |
+
"loss": 0.5771,
|
2160 |
+
"mean_token_accuracy": 0.8388657510280609,
|
2161 |
+
"step": 1345
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 1.7110266159695817,
|
2165 |
+
"grad_norm": 0.4955193703741457,
|
2166 |
+
"learning_rate": 6.227367668070084e-07,
|
2167 |
+
"loss": 0.5641,
|
2168 |
+
"mean_token_accuracy": 0.8420116931200028,
|
2169 |
+
"step": 1350
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 1.717363751584284,
|
2173 |
+
"grad_norm": 0.47888043666477453,
|
2174 |
+
"learning_rate": 5.962737164182942e-07,
|
2175 |
+
"loss": 0.5695,
|
2176 |
+
"mean_token_accuracy": 0.8411467924714089,
|
2177 |
+
"step": 1355
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 1.723700887198986,
|
2181 |
+
"grad_norm": 0.48358100558875267,
|
2182 |
+
"learning_rate": 5.703495297608486e-07,
|
2183 |
+
"loss": 0.5672,
|
2184 |
+
"mean_token_accuracy": 0.8408854246139527,
|
2185 |
+
"step": 1360
|
2186 |
+
},
|
2187 |
+
{
|
2188 |
+
"epoch": 1.7300380228136882,
|
2189 |
+
"grad_norm": 0.48450381732440073,
|
2190 |
+
"learning_rate": 5.449673790581611e-07,
|
2191 |
+
"loss": 0.5756,
|
2192 |
+
"mean_token_accuracy": 0.8394671693444252,
|
2193 |
+
"step": 1365
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 1.7363751584283904,
|
2197 |
+
"grad_norm": 0.524224789009983,
|
2198 |
+
"learning_rate": 5.201303702072724e-07,
|
2199 |
+
"loss": 0.564,
|
2200 |
+
"mean_token_accuracy": 0.8414558693766594,
|
2201 |
+
"step": 1370
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 1.7427122940430926,
|
2205 |
+
"grad_norm": 0.47448699280100953,
|
2206 |
+
"learning_rate": 4.958415423987229e-07,
|
2207 |
+
"loss": 0.5576,
|
2208 |
+
"mean_token_accuracy": 0.8432327851653099,
|
2209 |
+
"step": 1375
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"epoch": 1.7490494296577945,
|
2213 |
+
"grad_norm": 0.4999589058798834,
|
2214 |
+
"learning_rate": 4.721038677446599e-07,
|
2215 |
+
"loss": 0.5543,
|
2216 |
+
"mean_token_accuracy": 0.8434969082474708,
|
2217 |
+
"step": 1380
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 1.755386565272497,
|
2221 |
+
"grad_norm": 0.49519130319734356,
|
2222 |
+
"learning_rate": 4.4892025091515465e-07,
|
2223 |
+
"loss": 0.5744,
|
2224 |
+
"mean_token_accuracy": 0.8392727747559547,
|
2225 |
+
"step": 1385
|
2226 |
+
},
|
2227 |
+
{
|
2228 |
+
"epoch": 1.7617237008871989,
|
2229 |
+
"grad_norm": 0.47996153862103574,
|
2230 |
+
"learning_rate": 4.2629352878276964e-07,
|
2231 |
+
"loss": 0.5757,
|
2232 |
+
"mean_token_accuracy": 0.8395681723952293,
|
2233 |
+
"step": 1390
|
2234 |
+
},
|
2235 |
+
{
|
2236 |
+
"epoch": 1.7680608365019013,
|
2237 |
+
"grad_norm": 0.4743677174789034,
|
2238 |
+
"learning_rate": 4.04226470075425e-07,
|
2239 |
+
"loss": 0.5793,
|
2240 |
+
"mean_token_accuracy": 0.8383775666356087,
|
2241 |
+
"step": 1395
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 1.7743979721166032,
|
2245 |
+
"grad_norm": 0.47358657093352546,
|
2246 |
+
"learning_rate": 3.8272177503760277e-07,
|
2247 |
+
"loss": 0.5666,
|
2248 |
+
"mean_token_accuracy": 0.8409555062651635,
|
2249 |
+
"step": 1400
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 1.7807351077313056,
|
2253 |
+
"grad_norm": 0.47898043422535136,
|
2254 |
+
"learning_rate": 3.6178207509992623e-07,
|
2255 |
+
"loss": 0.5588,
|
2256 |
+
"mean_token_accuracy": 0.8429359510540962,
|
2257 |
+
"step": 1405
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 1.7870722433460076,
|
2261 |
+
"grad_norm": 0.48612638069980213,
|
2262 |
+
"learning_rate": 3.4140993255717123e-07,
|
2263 |
+
"loss": 0.5687,
|
2264 |
+
"mean_token_accuracy": 0.840995529294014,
|
2265 |
+
"step": 1410
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 1.7934093789607097,
|
2269 |
+
"grad_norm": 0.47802067614271637,
|
2270 |
+
"learning_rate": 3.216078402547218e-07,
|
2271 |
+
"loss": 0.5651,
|
2272 |
+
"mean_token_accuracy": 0.8413813829421997,
|
2273 |
+
"step": 1415
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 1.799746514575412,
|
2277 |
+
"grad_norm": 0.45575767680162316,
|
2278 |
+
"learning_rate": 3.0237822128353744e-07,
|
2279 |
+
"loss": 0.5551,
|
2280 |
+
"mean_token_accuracy": 0.8439073666930199,
|
2281 |
+
"step": 1420
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 1.806083650190114,
|
2285 |
+
"grad_norm": 0.5008888425261698,
|
2286 |
+
"learning_rate": 2.8372342868364934e-07,
|
2287 |
+
"loss": 0.5763,
|
2288 |
+
"mean_token_accuracy": 0.8394736155867577,
|
2289 |
+
"step": 1425
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 1.8124207858048162,
|
2293 |
+
"grad_norm": 0.47883052147679717,
|
2294 |
+
"learning_rate": 2.656457451562283e-07,
|
2295 |
+
"loss": 0.5847,
|
2296 |
+
"mean_token_accuracy": 0.8371838569641114,
|
2297 |
+
"step": 1430
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 1.8187579214195184,
|
2301 |
+
"grad_norm": 0.48136837053701437,
|
2302 |
+
"learning_rate": 2.4814738278426287e-07,
|
2303 |
+
"loss": 0.5713,
|
2304 |
+
"mean_token_accuracy": 0.8400285989046097,
|
2305 |
+
"step": 1435
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 1.8250950570342206,
|
2309 |
+
"grad_norm": 0.47630227923243995,
|
2310 |
+
"learning_rate": 2.3123048276187722e-07,
|
2311 |
+
"loss": 0.5663,
|
2312 |
+
"mean_token_accuracy": 0.8415055811405182,
|
2313 |
+
"step": 1440
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 1.8314321926489225,
|
2317 |
+
"grad_norm": 0.48067639897927306,
|
2318 |
+
"learning_rate": 2.1489711513232038e-07,
|
2319 |
+
"loss": 0.5702,
|
2320 |
+
"mean_token_accuracy": 0.8404717803001404,
|
2321 |
+
"step": 1445
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 1.837769328263625,
|
2325 |
+
"grad_norm": 0.48817733468841595,
|
2326 |
+
"learning_rate": 1.991492785346677e-07,
|
2327 |
+
"loss": 0.5659,
|
2328 |
+
"mean_token_accuracy": 0.8410487651824952,
|
2329 |
+
"step": 1450
|
2330 |
+
},
|
2331 |
+
{
|
2332 |
+
"epoch": 1.8441064638783269,
|
2333 |
+
"grad_norm": 0.4753854139627654,
|
2334 |
+
"learning_rate": 1.8398889995925428e-07,
|
2335 |
+
"loss": 0.5612,
|
2336 |
+
"mean_token_accuracy": 0.842425537109375,
|
2337 |
+
"step": 1455
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 1.8504435994930293,
|
2341 |
+
"grad_norm": 0.4979097318389579,
|
2342 |
+
"learning_rate": 1.694178345118791e-07,
|
2343 |
+
"loss": 0.5554,
|
2344 |
+
"mean_token_accuracy": 0.843775661289692,
|
2345 |
+
"step": 1460
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 1.8567807351077312,
|
2349 |
+
"grad_norm": 0.4829356927499738,
|
2350 |
+
"learning_rate": 1.5543786518680436e-07,
|
2351 |
+
"loss": 0.556,
|
2352 |
+
"mean_token_accuracy": 0.8434767201542854,
|
2353 |
+
"step": 1465
|
2354 |
+
},
|
2355 |
+
{
|
2356 |
+
"epoch": 1.8631178707224336,
|
2357 |
+
"grad_norm": 0.4651233227253299,
|
2358 |
+
"learning_rate": 1.4205070264857901e-07,
|
2359 |
+
"loss": 0.5704,
|
2360 |
+
"mean_token_accuracy": 0.8402711316943169,
|
2361 |
+
"step": 1470
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 1.8694550063371356,
|
2365 |
+
"grad_norm": 0.47253676852018517,
|
2366 |
+
"learning_rate": 1.292579850227099e-07,
|
2367 |
+
"loss": 0.5777,
|
2368 |
+
"mean_token_accuracy": 0.8392020970582962,
|
2369 |
+
"step": 1475
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 1.8757921419518377,
|
2373 |
+
"grad_norm": 0.4800740772721781,
|
2374 |
+
"learning_rate": 1.170612776952168e-07,
|
2375 |
+
"loss": 0.566,
|
2376 |
+
"mean_token_accuracy": 0.8414452761411667,
|
2377 |
+
"step": 1480
|
2378 |
+
},
|
2379 |
+
{
|
2380 |
+
"epoch": 1.88212927756654,
|
2381 |
+
"grad_norm": 0.46528025174750537,
|
2382 |
+
"learning_rate": 1.0546207312107814e-07,
|
2383 |
+
"loss": 0.5636,
|
2384 |
+
"mean_token_accuracy": 0.8416185140609741,
|
2385 |
+
"step": 1485
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 1.888466413181242,
|
2389 |
+
"grad_norm": 0.47693097112640276,
|
2390 |
+
"learning_rate": 9.44617906416101e-08,
|
2391 |
+
"loss": 0.5727,
|
2392 |
+
"mean_token_accuracy": 0.8405211389064788,
|
2393 |
+
"step": 1490
|
2394 |
+
},
|
2395 |
+
{
|
2396 |
+
"epoch": 1.8948035487959443,
|
2397 |
+
"grad_norm": 0.4787485103517413,
|
2398 |
+
"learning_rate": 8.406177631078594e-08,
|
2399 |
+
"loss": 0.5708,
|
2400 |
+
"mean_token_accuracy": 0.8403903424739838,
|
2401 |
+
"step": 1495
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 1.9011406844106464,
|
2405 |
+
"grad_norm": 0.45967120152380847,
|
2406 |
+
"learning_rate": 7.426330273052618e-08,
|
2407 |
+
"loss": 0.5496,
|
2408 |
+
"mean_token_accuracy": 0.8449963420629502,
|
2409 |
+
"step": 1500
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 1.9074778200253486,
|
2413 |
+
"grad_norm": 0.46451147059266606,
|
2414 |
+
"learning_rate": 6.506756889497756e-08,
|
2415 |
+
"loss": 0.5608,
|
2416 |
+
"mean_token_accuracy": 0.8425014033913613,
|
2417 |
+
"step": 1505
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 1.9138149556400506,
|
2421 |
+
"grad_norm": 0.5057760468937542,
|
2422 |
+
"learning_rate": 5.647570004379432e-08,
|
2423 |
+
"loss": 0.5602,
|
2424 |
+
"mean_token_accuracy": 0.8427406966686248,
|
2425 |
+
"step": 1510
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 1.920152091254753,
|
2429 |
+
"grad_norm": 0.48061481353459495,
|
2430 |
+
"learning_rate": 4.848874752445221e-08,
|
2431 |
+
"loss": 0.5675,
|
2432 |
+
"mean_token_accuracy": 0.8411912024021149,
|
2433 |
+
"step": 1515
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 1.926489226869455,
|
2437 |
+
"grad_norm": 0.4689935228428535,
|
2438 |
+
"learning_rate": 4.110768866359638e-08,
|
2439 |
+
"loss": 0.5631,
|
2440 |
+
"mean_token_accuracy": 0.8418816044926644,
|
2441 |
+
"step": 1520
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"epoch": 1.9328263624841573,
|
2445 |
+
"grad_norm": 0.4698265767310371,
|
2446 |
+
"learning_rate": 3.43334266474521e-08,
|
2447 |
+
"loss": 0.5635,
|
2448 |
+
"mean_token_accuracy": 0.8423062637448311,
|
2449 |
+
"step": 1525
|
2450 |
+
},
|
2451 |
+
{
|
2452 |
+
"epoch": 1.9391634980988592,
|
2453 |
+
"grad_norm": 0.49190745957035076,
|
2454 |
+
"learning_rate": 2.8166790411304766e-08,
|
2455 |
+
"loss": 0.5644,
|
2456 |
+
"mean_token_accuracy": 0.8418506249785424,
|
2457 |
+
"step": 1530
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 1.9455006337135616,
|
2461 |
+
"grad_norm": 0.4676519055114557,
|
2462 |
+
"learning_rate": 2.260853453806944e-08,
|
2463 |
+
"loss": 0.5691,
|
2464 |
+
"mean_token_accuracy": 0.8408907786011696,
|
2465 |
+
"step": 1535
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 1.9518377693282636,
|
2469 |
+
"grad_norm": 0.4857147511585138,
|
2470 |
+
"learning_rate": 1.7659339165952417e-08,
|
2471 |
+
"loss": 0.5699,
|
2472 |
+
"mean_token_accuracy": 0.8406305849552155,
|
2473 |
+
"step": 1540
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 1.9581749049429658,
|
2477 |
+
"grad_norm": 0.48303973039403075,
|
2478 |
+
"learning_rate": 1.3319809905228409e-08,
|
2479 |
+
"loss": 0.5765,
|
2480 |
+
"mean_token_accuracy": 0.8395203098654747,
|
2481 |
+
"step": 1545
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 1.964512040557668,
|
2485 |
+
"grad_norm": 0.47745966065458134,
|
2486 |
+
"learning_rate": 9.590477764135353e-09,
|
2487 |
+
"loss": 0.5641,
|
2488 |
+
"mean_token_accuracy": 0.8417988792061806,
|
2489 |
+
"step": 1550
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 1.97084917617237,
|
2493 |
+
"grad_norm": 0.4675012014451023,
|
2494 |
+
"learning_rate": 6.47179908389417e-09,
|
2495 |
+
"loss": 0.5699,
|
2496 |
+
"mean_token_accuracy": 0.8404615536332131,
|
2497 |
+
"step": 1555
|
2498 |
+
},
|
2499 |
+
{
|
2500 |
+
"epoch": 1.9771863117870723,
|
2501 |
+
"grad_norm": 0.4956658011789385,
|
2502 |
+
"learning_rate": 3.964155482871213e-09,
|
2503 |
+
"loss": 0.5592,
|
2504 |
+
"mean_token_accuracy": 0.842540180683136,
|
2505 |
+
"step": 1560
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 1.9835234474017744,
|
2509 |
+
"grad_norm": 0.4689038627708401,
|
2510 |
+
"learning_rate": 2.0678538098806158e-09,
|
2511 |
+
"loss": 0.5745,
|
2512 |
+
"mean_token_accuracy": 0.8394525855779648,
|
2513 |
+
"step": 1565
|
2514 |
+
},
|
2515 |
+
{
|
2516 |
+
"epoch": 1.9898605830164766,
|
2517 |
+
"grad_norm": 0.4660374899806601,
|
2518 |
+
"learning_rate": 7.83126106637111e-10,
|
2519 |
+
"loss": 0.5643,
|
2520 |
+
"mean_token_accuracy": 0.8416339352726936,
|
2521 |
+
"step": 1570
|
2522 |
+
},
|
2523 |
+
{
|
2524 |
+
"epoch": 1.9961977186311786,
|
2525 |
+
"grad_norm": 0.4729664926744204,
|
2526 |
+
"learning_rate": 1.1012957935985224e-10,
|
2527 |
+
"loss": 0.5636,
|
2528 |
+
"mean_token_accuracy": 0.8414568796753883,
|
2529 |
+
"step": 1575
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 2.0,
|
2533 |
+
"mean_token_accuracy": 0.8406301041444143,
|
2534 |
+
"step": 1578,
|
2535 |
+
"total_flos": 827207983300608.0,
|
2536 |
+
"train_loss": 0.6521280055868006,
|
2537 |
+
"train_runtime": 235151.6683,
|
2538 |
+
"train_samples_per_second": 1.718,
|
2539 |
+
"train_steps_per_second": 0.007
|
2540 |
+
}
|
2541 |
+
],
|
2542 |
+
"logging_steps": 5,
|
2543 |
+
"max_steps": 1578,
|
2544 |
+
"num_input_tokens_seen": 0,
|
2545 |
+
"num_train_epochs": 2,
|
2546 |
+
"save_steps": 50,
|
2547 |
+
"stateful_callbacks": {
|
2548 |
+
"TrainerControl": {
|
2549 |
+
"args": {
|
2550 |
+
"should_epoch_stop": false,
|
2551 |
+
"should_evaluate": false,
|
2552 |
+
"should_log": false,
|
2553 |
+
"should_save": false,
|
2554 |
+
"should_training_stop": false
|
2555 |
+
},
|
2556 |
+
"attributes": {}
|
2557 |
+
}
|
2558 |
+
},
|
2559 |
+
"total_flos": 827207983300608.0,
|
2560 |
+
"train_batch_size": 4,
|
2561 |
+
"trial_name": null,
|
2562 |
+
"trial_params": null
|
2563 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d431cc457b16c5ce24099cbd6522bff4ccf6c2ff1f3967a214c7990c342e6e2e
|
3 |
+
size 7480
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|