bezir commited on
Commit
d07b4df
·
verified ·
1 Parent(s): db9a95d

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-7B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-7B-Open-R1-Distill-Turkish
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-7B-Open-R1-Distill-Turkish
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="bezir/Qwen2.5-7B-Open-R1-Distill-Turkish", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bezirglasgow/huggingface/runs/acb76vve)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.50.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 827207983300608.0,
3
+ "train_loss": 0.6521280055868006,
4
+ "train_runtime": 235151.6683,
5
+ "train_samples": 107561,
6
+ "train_samples_per_second": 1.718,
7
+ "train_steps_per_second": 0.007
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.50.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.50.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:701a82b0a9200ce3ea4e9fdf9126967514b3a797a3e0647b047d2ddc1e65269c
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28ea60c859938b41c604996047b23697afba5083c51a32713db0919c26d24e6e
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11dcc10fe0aaeb7238f18ae695f3e09f348f47d86410ec8ecc56615c3557689b
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c762518ab04a02e0bf4b3ad79e4493b6a21a008fefc8b407dc31595e69315951
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 827207983300608.0,
3
+ "train_loss": 0.6521280055868006,
4
+ "train_runtime": 235151.6683,
5
+ "train_samples": 107561,
6
+ "train_samples_per_second": 1.718,
7
+ "train_steps_per_second": 0.007
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 100,
6
+ "global_step": 1578,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0063371356147021544,
13
+ "grad_norm": 7.199723076955636,
14
+ "learning_rate": 3.164556962025317e-07,
15
+ "loss": 1.4397,
16
+ "mean_token_accuracy": 0.6951015710830688,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.012674271229404309,
21
+ "grad_norm": 7.116001217650177,
22
+ "learning_rate": 6.329113924050634e-07,
23
+ "loss": 1.4552,
24
+ "mean_token_accuracy": 0.6930991888046265,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.019011406844106463,
29
+ "grad_norm": 4.64551484224683,
30
+ "learning_rate": 9.493670886075951e-07,
31
+ "loss": 1.3993,
32
+ "mean_token_accuracy": 0.6986153647303581,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.025348542458808618,
37
+ "grad_norm": 3.0027875956032366,
38
+ "learning_rate": 1.2658227848101267e-06,
39
+ "loss": 1.3103,
40
+ "mean_token_accuracy": 0.7071203991770745,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.031685678073510776,
45
+ "grad_norm": 3.1251366551644244,
46
+ "learning_rate": 1.5822784810126585e-06,
47
+ "loss": 1.2458,
48
+ "mean_token_accuracy": 0.7130974352359771,
49
+ "step": 25
50
+ },
51
+ {
52
+ "epoch": 0.03802281368821293,
53
+ "grad_norm": 2.289149516732586,
54
+ "learning_rate": 1.8987341772151901e-06,
55
+ "loss": 1.1709,
56
+ "mean_token_accuracy": 0.7238569274544716,
57
+ "step": 30
58
+ },
59
+ {
60
+ "epoch": 0.044359949302915085,
61
+ "grad_norm": 2.0282034523858945,
62
+ "learning_rate": 2.2151898734177215e-06,
63
+ "loss": 1.1025,
64
+ "mean_token_accuracy": 0.7365155085921288,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.050697084917617236,
69
+ "grad_norm": 1.4393865600169713,
70
+ "learning_rate": 2.5316455696202535e-06,
71
+ "loss": 1.0754,
72
+ "mean_token_accuracy": 0.7417579337954521,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.057034220532319393,
77
+ "grad_norm": 0.9968108242787993,
78
+ "learning_rate": 2.848101265822785e-06,
79
+ "loss": 1.0382,
80
+ "mean_token_accuracy": 0.7486504480242729,
81
+ "step": 45
82
+ },
83
+ {
84
+ "epoch": 0.06337135614702155,
85
+ "grad_norm": 0.9450280587173171,
86
+ "learning_rate": 3.164556962025317e-06,
87
+ "loss": 1.0089,
88
+ "mean_token_accuracy": 0.7545697376132011,
89
+ "step": 50
90
+ },
91
+ {
92
+ "epoch": 0.0697084917617237,
93
+ "grad_norm": 0.9255531790602832,
94
+ "learning_rate": 3.4810126582278487e-06,
95
+ "loss": 0.974,
96
+ "mean_token_accuracy": 0.7610737249255181,
97
+ "step": 55
98
+ },
99
+ {
100
+ "epoch": 0.07604562737642585,
101
+ "grad_norm": 0.784862301963824,
102
+ "learning_rate": 3.7974683544303802e-06,
103
+ "loss": 0.9446,
104
+ "mean_token_accuracy": 0.7658546909689903,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.08238276299112801,
109
+ "grad_norm": 0.8654366770506445,
110
+ "learning_rate": 4.113924050632912e-06,
111
+ "loss": 0.9532,
112
+ "mean_token_accuracy": 0.764112365245819,
113
+ "step": 65
114
+ },
115
+ {
116
+ "epoch": 0.08871989860583017,
117
+ "grad_norm": 0.8440093108811262,
118
+ "learning_rate": 4.430379746835443e-06,
119
+ "loss": 0.9019,
120
+ "mean_token_accuracy": 0.7735387146472931,
121
+ "step": 70
122
+ },
123
+ {
124
+ "epoch": 0.09505703422053231,
125
+ "grad_norm": 0.7242515634546599,
126
+ "learning_rate": 4.746835443037975e-06,
127
+ "loss": 0.8972,
128
+ "mean_token_accuracy": 0.7742968738079071,
129
+ "step": 75
130
+ },
131
+ {
132
+ "epoch": 0.10139416983523447,
133
+ "grad_norm": 0.7207614994286641,
134
+ "learning_rate": 5.063291139240507e-06,
135
+ "loss": 0.8872,
136
+ "mean_token_accuracy": 0.7761535227298737,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.10773130544993663,
141
+ "grad_norm": 0.742791199954622,
142
+ "learning_rate": 5.379746835443038e-06,
143
+ "loss": 0.8559,
144
+ "mean_token_accuracy": 0.7819930538535118,
145
+ "step": 85
146
+ },
147
+ {
148
+ "epoch": 0.11406844106463879,
149
+ "grad_norm": 0.7678641716925835,
150
+ "learning_rate": 5.69620253164557e-06,
151
+ "loss": 0.8473,
152
+ "mean_token_accuracy": 0.7834332928061485,
153
+ "step": 90
154
+ },
155
+ {
156
+ "epoch": 0.12040557667934093,
157
+ "grad_norm": 0.71180994773894,
158
+ "learning_rate": 6.012658227848101e-06,
159
+ "loss": 0.8352,
160
+ "mean_token_accuracy": 0.7855397373437881,
161
+ "step": 95
162
+ },
163
+ {
164
+ "epoch": 0.1267427122940431,
165
+ "grad_norm": 0.7993738785147041,
166
+ "learning_rate": 6.329113924050634e-06,
167
+ "loss": 0.8589,
168
+ "mean_token_accuracy": 0.7812221512198448,
169
+ "step": 100
170
+ },
171
+ {
172
+ "epoch": 0.13307984790874525,
173
+ "grad_norm": 0.7568194042750847,
174
+ "learning_rate": 6.645569620253165e-06,
175
+ "loss": 0.8431,
176
+ "mean_token_accuracy": 0.7850423708558083,
177
+ "step": 105
178
+ },
179
+ {
180
+ "epoch": 0.1394169835234474,
181
+ "grad_norm": 0.7969657403354691,
182
+ "learning_rate": 6.962025316455697e-06,
183
+ "loss": 0.8146,
184
+ "mean_token_accuracy": 0.7894491747021675,
185
+ "step": 110
186
+ },
187
+ {
188
+ "epoch": 0.14575411913814956,
189
+ "grad_norm": 0.7814384559927074,
190
+ "learning_rate": 7.2784810126582285e-06,
191
+ "loss": 0.816,
192
+ "mean_token_accuracy": 0.7893038675189018,
193
+ "step": 115
194
+ },
195
+ {
196
+ "epoch": 0.1520912547528517,
197
+ "grad_norm": 0.7970973600599863,
198
+ "learning_rate": 7.5949367088607605e-06,
199
+ "loss": 0.8168,
200
+ "mean_token_accuracy": 0.7892953917384148,
201
+ "step": 120
202
+ },
203
+ {
204
+ "epoch": 0.15842839036755388,
205
+ "grad_norm": 0.7289531586042841,
206
+ "learning_rate": 7.911392405063292e-06,
207
+ "loss": 0.8036,
208
+ "mean_token_accuracy": 0.7918314695358276,
209
+ "step": 125
210
+ },
211
+ {
212
+ "epoch": 0.16476552598225602,
213
+ "grad_norm": 0.8996289034177167,
214
+ "learning_rate": 8.227848101265824e-06,
215
+ "loss": 0.7886,
216
+ "mean_token_accuracy": 0.7948763906955719,
217
+ "step": 130
218
+ },
219
+ {
220
+ "epoch": 0.17110266159695817,
221
+ "grad_norm": 0.9505048466982942,
222
+ "learning_rate": 8.544303797468356e-06,
223
+ "loss": 0.7765,
224
+ "mean_token_accuracy": 0.7972663462162017,
225
+ "step": 135
226
+ },
227
+ {
228
+ "epoch": 0.17743979721166034,
229
+ "grad_norm": 0.8547089186827208,
230
+ "learning_rate": 8.860759493670886e-06,
231
+ "loss": 0.7778,
232
+ "mean_token_accuracy": 0.7966541960835457,
233
+ "step": 140
234
+ },
235
+ {
236
+ "epoch": 0.18377693282636248,
237
+ "grad_norm": 0.8115832093940138,
238
+ "learning_rate": 9.177215189873418e-06,
239
+ "loss": 0.7755,
240
+ "mean_token_accuracy": 0.7976241648197174,
241
+ "step": 145
242
+ },
243
+ {
244
+ "epoch": 0.19011406844106463,
245
+ "grad_norm": 0.7240367508508893,
246
+ "learning_rate": 9.49367088607595e-06,
247
+ "loss": 0.7679,
248
+ "mean_token_accuracy": 0.7988486766815186,
249
+ "step": 150
250
+ },
251
+ {
252
+ "epoch": 0.1964512040557668,
253
+ "grad_norm": 0.8604548037210017,
254
+ "learning_rate": 9.810126582278482e-06,
255
+ "loss": 0.7666,
256
+ "mean_token_accuracy": 0.7985615819692612,
257
+ "step": 155
258
+ },
259
+ {
260
+ "epoch": 0.20278833967046894,
261
+ "grad_norm": 0.7650650036074902,
262
+ "learning_rate": 9.99995105342046e-06,
263
+ "loss": 0.7615,
264
+ "mean_token_accuracy": 0.8001444712281227,
265
+ "step": 160
266
+ },
267
+ {
268
+ "epoch": 0.20912547528517111,
269
+ "grad_norm": 0.7907667013526878,
270
+ "learning_rate": 9.999400415406145e-06,
271
+ "loss": 0.7662,
272
+ "mean_token_accuracy": 0.7991914421319961,
273
+ "step": 165
274
+ },
275
+ {
276
+ "epoch": 0.21546261089987326,
277
+ "grad_norm": 0.8483269008499935,
278
+ "learning_rate": 9.998238023756727e-06,
279
+ "loss": 0.7597,
280
+ "mean_token_accuracy": 0.800473365187645,
281
+ "step": 170
282
+ },
283
+ {
284
+ "epoch": 0.2217997465145754,
285
+ "grad_norm": 0.8423617289320647,
286
+ "learning_rate": 9.996464020708734e-06,
287
+ "loss": 0.7598,
288
+ "mean_token_accuracy": 0.7996020078659057,
289
+ "step": 175
290
+ },
291
+ {
292
+ "epoch": 0.22813688212927757,
293
+ "grad_norm": 0.8057636513151334,
294
+ "learning_rate": 9.994078623338757e-06,
295
+ "loss": 0.7566,
296
+ "mean_token_accuracy": 0.800896917283535,
297
+ "step": 180
298
+ },
299
+ {
300
+ "epoch": 0.23447401774397972,
301
+ "grad_norm": 0.8990102449117932,
302
+ "learning_rate": 9.991082123536902e-06,
303
+ "loss": 0.7522,
304
+ "mean_token_accuracy": 0.8013818353414536,
305
+ "step": 185
306
+ },
307
+ {
308
+ "epoch": 0.24081115335868186,
309
+ "grad_norm": 0.9698242122380497,
310
+ "learning_rate": 9.987474887971067e-06,
311
+ "loss": 0.7463,
312
+ "mean_token_accuracy": 0.8028701841831207,
313
+ "step": 190
314
+ },
315
+ {
316
+ "epoch": 0.24714828897338403,
317
+ "grad_norm": 0.960138107922893,
318
+ "learning_rate": 9.983257358042076e-06,
319
+ "loss": 0.7401,
320
+ "mean_token_accuracy": 0.8041222214698791,
321
+ "step": 195
322
+ },
323
+ {
324
+ "epoch": 0.2534854245880862,
325
+ "grad_norm": 0.8305799821436418,
326
+ "learning_rate": 9.978430049829672e-06,
327
+ "loss": 0.7601,
328
+ "mean_token_accuracy": 0.8001280605793,
329
+ "step": 200
330
+ },
331
+ {
332
+ "epoch": 0.2598225602027883,
333
+ "grad_norm": 0.7129991697669212,
334
+ "learning_rate": 9.972993554029357e-06,
335
+ "loss": 0.7575,
336
+ "mean_token_accuracy": 0.8003058210015297,
337
+ "step": 205
338
+ },
339
+ {
340
+ "epoch": 0.2661596958174905,
341
+ "grad_norm": 0.8819778135317846,
342
+ "learning_rate": 9.966948535880118e-06,
343
+ "loss": 0.7444,
344
+ "mean_token_accuracy": 0.8032929092645645,
345
+ "step": 210
346
+ },
347
+ {
348
+ "epoch": 0.27249683143219267,
349
+ "grad_norm": 0.7833769376025013,
350
+ "learning_rate": 9.960295735083023e-06,
351
+ "loss": 0.7151,
352
+ "mean_token_accuracy": 0.8091372177004814,
353
+ "step": 215
354
+ },
355
+ {
356
+ "epoch": 0.2788339670468948,
357
+ "grad_norm": 1.2183716099383828,
358
+ "learning_rate": 9.953035965710707e-06,
359
+ "loss": 0.7346,
360
+ "mean_token_accuracy": 0.8045761153101921,
361
+ "step": 220
362
+ },
363
+ {
364
+ "epoch": 0.28517110266159695,
365
+ "grad_norm": 0.901875985078722,
366
+ "learning_rate": 9.945170116107758e-06,
367
+ "loss": 0.7337,
368
+ "mean_token_accuracy": 0.805341312289238,
369
+ "step": 225
370
+ },
371
+ {
372
+ "epoch": 0.2915082382762991,
373
+ "grad_norm": 0.8010789142797352,
374
+ "learning_rate": 9.936699148782018e-06,
375
+ "loss": 0.737,
376
+ "mean_token_accuracy": 0.8051745280623436,
377
+ "step": 230
378
+ },
379
+ {
380
+ "epoch": 0.29784537389100124,
381
+ "grad_norm": 0.7625075089546256,
382
+ "learning_rate": 9.927624100286795e-06,
383
+ "loss": 0.7288,
384
+ "mean_token_accuracy": 0.8064413368701935,
385
+ "step": 235
386
+ },
387
+ {
388
+ "epoch": 0.3041825095057034,
389
+ "grad_norm": 0.7665506308733163,
390
+ "learning_rate": 9.917946081094033e-06,
391
+ "loss": 0.7001,
392
+ "mean_token_accuracy": 0.8119662031531334,
393
+ "step": 240
394
+ },
395
+ {
396
+ "epoch": 0.3105196451204056,
397
+ "grad_norm": 0.8173005458001997,
398
+ "learning_rate": 9.907666275458432e-06,
399
+ "loss": 0.7171,
400
+ "mean_token_accuracy": 0.8087792381644249,
401
+ "step": 245
402
+ },
403
+ {
404
+ "epoch": 0.31685678073510776,
405
+ "grad_norm": 0.7944707699072153,
406
+ "learning_rate": 9.896785941272524e-06,
407
+ "loss": 0.7169,
408
+ "mean_token_accuracy": 0.808886106312275,
409
+ "step": 250
410
+ },
411
+ {
412
+ "epoch": 0.3231939163498099,
413
+ "grad_norm": 0.7652270272633694,
414
+ "learning_rate": 9.885306409912767e-06,
415
+ "loss": 0.7122,
416
+ "mean_token_accuracy": 0.8092179223895073,
417
+ "step": 255
418
+ },
419
+ {
420
+ "epoch": 0.32953105196451205,
421
+ "grad_norm": 0.8298720811434571,
422
+ "learning_rate": 9.87322908607661e-06,
423
+ "loss": 0.7106,
424
+ "mean_token_accuracy": 0.8099273145198822,
425
+ "step": 260
426
+ },
427
+ {
428
+ "epoch": 0.3358681875792142,
429
+ "grad_norm": 0.6635750146125453,
430
+ "learning_rate": 9.860555447610626e-06,
431
+ "loss": 0.7205,
432
+ "mean_token_accuracy": 0.8083759486675263,
433
+ "step": 265
434
+ },
435
+ {
436
+ "epoch": 0.34220532319391633,
437
+ "grad_norm": 0.7701167215766528,
438
+ "learning_rate": 9.847287045329665e-06,
439
+ "loss": 0.7178,
440
+ "mean_token_accuracy": 0.8084105476737022,
441
+ "step": 270
442
+ },
443
+ {
444
+ "epoch": 0.3485424588086185,
445
+ "grad_norm": 0.8129554147937268,
446
+ "learning_rate": 9.833425502827087e-06,
447
+ "loss": 0.7191,
448
+ "mean_token_accuracy": 0.8078344166278839,
449
+ "step": 275
450
+ },
451
+ {
452
+ "epoch": 0.3548795944233207,
453
+ "grad_norm": 0.7153635278024493,
454
+ "learning_rate": 9.818972516276096e-06,
455
+ "loss": 0.6973,
456
+ "mean_token_accuracy": 0.8126269072294235,
457
+ "step": 280
458
+ },
459
+ {
460
+ "epoch": 0.3612167300380228,
461
+ "grad_norm": 0.7019835045316667,
462
+ "learning_rate": 9.803929854222182e-06,
463
+ "loss": 0.704,
464
+ "mean_token_accuracy": 0.8114176645874978,
465
+ "step": 285
466
+ },
467
+ {
468
+ "epoch": 0.36755386565272496,
469
+ "grad_norm": 0.7615682616292789,
470
+ "learning_rate": 9.788299357366717e-06,
471
+ "loss": 0.7089,
472
+ "mean_token_accuracy": 0.8106587365269661,
473
+ "step": 290
474
+ },
475
+ {
476
+ "epoch": 0.37389100126742714,
477
+ "grad_norm": 0.9786947635111585,
478
+ "learning_rate": 9.772082938341706e-06,
479
+ "loss": 0.7014,
480
+ "mean_token_accuracy": 0.8121261984109879,
481
+ "step": 295
482
+ },
483
+ {
484
+ "epoch": 0.38022813688212925,
485
+ "grad_norm": 0.8212453521500733,
486
+ "learning_rate": 9.755282581475769e-06,
487
+ "loss": 0.7072,
488
+ "mean_token_accuracy": 0.8106094494462013,
489
+ "step": 300
490
+ },
491
+ {
492
+ "epoch": 0.3865652724968314,
493
+ "grad_norm": 0.865055505917381,
494
+ "learning_rate": 9.7379003425513e-06,
495
+ "loss": 0.7163,
496
+ "mean_token_accuracy": 0.8092033118009567,
497
+ "step": 305
498
+ },
499
+ {
500
+ "epoch": 0.3929024081115336,
501
+ "grad_norm": 0.6716631342519259,
502
+ "learning_rate": 9.71993834855293e-06,
503
+ "loss": 0.7045,
504
+ "mean_token_accuracy": 0.8109571009874343,
505
+ "step": 310
506
+ },
507
+ {
508
+ "epoch": 0.39923954372623577,
509
+ "grad_norm": 0.7649280200479434,
510
+ "learning_rate": 9.701398797407258e-06,
511
+ "loss": 0.7044,
512
+ "mean_token_accuracy": 0.8110996559262276,
513
+ "step": 315
514
+ },
515
+ {
516
+ "epoch": 0.4055766793409379,
517
+ "grad_norm": 0.732205588585856,
518
+ "learning_rate": 9.68228395771388e-06,
519
+ "loss": 0.6906,
520
+ "mean_token_accuracy": 0.8138323068618775,
521
+ "step": 320
522
+ },
523
+ {
524
+ "epoch": 0.41191381495564006,
525
+ "grad_norm": 0.8349157198044287,
526
+ "learning_rate": 9.662596168467823e-06,
527
+ "loss": 0.6963,
528
+ "mean_token_accuracy": 0.8128764078021049,
529
+ "step": 325
530
+ },
531
+ {
532
+ "epoch": 0.41825095057034223,
533
+ "grad_norm": 0.7284163977404773,
534
+ "learning_rate": 9.6423378387733e-06,
535
+ "loss": 0.6926,
536
+ "mean_token_accuracy": 0.8138028383255005,
537
+ "step": 330
538
+ },
539
+ {
540
+ "epoch": 0.42458808618504434,
541
+ "grad_norm": 0.6903566919121088,
542
+ "learning_rate": 9.621511447548946e-06,
543
+ "loss": 0.6992,
544
+ "mean_token_accuracy": 0.8125665381550788,
545
+ "step": 335
546
+ },
547
+ {
548
+ "epoch": 0.4309252217997465,
549
+ "grad_norm": 0.7031778472809708,
550
+ "learning_rate": 9.600119543224467e-06,
551
+ "loss": 0.6935,
552
+ "mean_token_accuracy": 0.8134042397141457,
553
+ "step": 340
554
+ },
555
+ {
556
+ "epoch": 0.4372623574144487,
557
+ "grad_norm": 0.8781454719155253,
558
+ "learning_rate": 9.578164743428808e-06,
559
+ "loss": 0.6938,
560
+ "mean_token_accuracy": 0.8132070809602737,
561
+ "step": 345
562
+ },
563
+ {
564
+ "epoch": 0.4435994930291508,
565
+ "grad_norm": 0.8306105321262149,
566
+ "learning_rate": 9.55564973466984e-06,
567
+ "loss": 0.6928,
568
+ "mean_token_accuracy": 0.8133361831307411,
569
+ "step": 350
570
+ },
571
+ {
572
+ "epoch": 0.449936628643853,
573
+ "grad_norm": 0.7046997598602632,
574
+ "learning_rate": 9.532577272005637e-06,
575
+ "loss": 0.679,
576
+ "mean_token_accuracy": 0.8159057974815369,
577
+ "step": 355
578
+ },
579
+ {
580
+ "epoch": 0.45627376425855515,
581
+ "grad_norm": 0.889929783644245,
582
+ "learning_rate": 9.508950178707335e-06,
583
+ "loss": 0.6872,
584
+ "mean_token_accuracy": 0.8148621737957,
585
+ "step": 360
586
+ },
587
+ {
588
+ "epoch": 0.46261089987325726,
589
+ "grad_norm": 0.9776823189593525,
590
+ "learning_rate": 9.484771345913673e-06,
591
+ "loss": 0.6902,
592
+ "mean_token_accuracy": 0.8141683742403985,
593
+ "step": 365
594
+ },
595
+ {
596
+ "epoch": 0.46894803548795944,
597
+ "grad_norm": 0.7706175050493524,
598
+ "learning_rate": 9.460043732277213e-06,
599
+ "loss": 0.6908,
600
+ "mean_token_accuracy": 0.8145220652222633,
601
+ "step": 370
602
+ },
603
+ {
604
+ "epoch": 0.4752851711026616,
605
+ "grad_norm": 0.6524214668295174,
606
+ "learning_rate": 9.434770363602307e-06,
607
+ "loss": 0.6983,
608
+ "mean_token_accuracy": 0.8123016864061355,
609
+ "step": 375
610
+ },
611
+ {
612
+ "epoch": 0.4816223067173637,
613
+ "grad_norm": 0.717843515473759,
614
+ "learning_rate": 9.408954332474845e-06,
615
+ "loss": 0.6677,
616
+ "mean_token_accuracy": 0.8185531318187713,
617
+ "step": 380
618
+ },
619
+ {
620
+ "epoch": 0.4879594423320659,
621
+ "grad_norm": 0.7618453217486776,
622
+ "learning_rate": 9.382598797883811e-06,
623
+ "loss": 0.6795,
624
+ "mean_token_accuracy": 0.8164624303579331,
625
+ "step": 385
626
+ },
627
+ {
628
+ "epoch": 0.49429657794676807,
629
+ "grad_norm": 0.7324610745032628,
630
+ "learning_rate": 9.355706984834765e-06,
631
+ "loss": 0.6836,
632
+ "mean_token_accuracy": 0.8149291038513183,
633
+ "step": 390
634
+ },
635
+ {
636
+ "epoch": 0.5006337135614702,
637
+ "grad_norm": 0.6779242960146721,
638
+ "learning_rate": 9.328282183955179e-06,
639
+ "loss": 0.6884,
640
+ "mean_token_accuracy": 0.8146958678960801,
641
+ "step": 395
642
+ },
643
+ {
644
+ "epoch": 0.5069708491761724,
645
+ "grad_norm": 0.827105664596769,
646
+ "learning_rate": 9.300327751091806e-06,
647
+ "loss": 0.6873,
648
+ "mean_token_accuracy": 0.814927139878273,
649
+ "step": 400
650
+ },
651
+ {
652
+ "epoch": 0.5133079847908745,
653
+ "grad_norm": 0.6798030291558349,
654
+ "learning_rate": 9.271847106900022e-06,
655
+ "loss": 0.6659,
656
+ "mean_token_accuracy": 0.8187542855739594,
657
+ "step": 405
658
+ },
659
+ {
660
+ "epoch": 0.5196451204055766,
661
+ "grad_norm": 0.6549281773308409,
662
+ "learning_rate": 9.242843736425269e-06,
663
+ "loss": 0.6749,
664
+ "mean_token_accuracy": 0.8172334164381028,
665
+ "step": 410
666
+ },
667
+ {
668
+ "epoch": 0.5259822560202788,
669
+ "grad_norm": 0.702757870059226,
670
+ "learning_rate": 9.213321188676595e-06,
671
+ "loss": 0.6799,
672
+ "mean_token_accuracy": 0.8162769109010697,
673
+ "step": 415
674
+ },
675
+ {
676
+ "epoch": 0.532319391634981,
677
+ "grad_norm": 0.663720096138884,
678
+ "learning_rate": 9.183283076192386e-06,
679
+ "loss": 0.6688,
680
+ "mean_token_accuracy": 0.8184930950403213,
681
+ "step": 420
682
+ },
683
+ {
684
+ "epoch": 0.5386565272496832,
685
+ "grad_norm": 0.6874302061015839,
686
+ "learning_rate": 9.152733074598312e-06,
687
+ "loss": 0.6742,
688
+ "mean_token_accuracy": 0.8174020066857338,
689
+ "step": 425
690
+ },
691
+ {
692
+ "epoch": 0.5449936628643853,
693
+ "grad_norm": 0.7315428759079102,
694
+ "learning_rate": 9.121674922157558e-06,
695
+ "loss": 0.6738,
696
+ "mean_token_accuracy": 0.817636775970459,
697
+ "step": 430
698
+ },
699
+ {
700
+ "epoch": 0.5513307984790875,
701
+ "grad_norm": 0.786643495084509,
702
+ "learning_rate": 9.090112419313395e-06,
703
+ "loss": 0.6736,
704
+ "mean_token_accuracy": 0.817160977423191,
705
+ "step": 435
706
+ },
707
+ {
708
+ "epoch": 0.5576679340937896,
709
+ "grad_norm": 0.6591137928729695,
710
+ "learning_rate": 9.058049428224128e-06,
711
+ "loss": 0.6617,
712
+ "mean_token_accuracy": 0.8197388723492622,
713
+ "step": 440
714
+ },
715
+ {
716
+ "epoch": 0.5640050697084917,
717
+ "grad_norm": 0.7812371618484959,
718
+ "learning_rate": 9.025489872290511e-06,
719
+ "loss": 0.6634,
720
+ "mean_token_accuracy": 0.8193035304546357,
721
+ "step": 445
722
+ },
723
+ {
724
+ "epoch": 0.5703422053231939,
725
+ "grad_norm": 0.6845961589145344,
726
+ "learning_rate": 8.99243773567565e-06,
727
+ "loss": 0.6834,
728
+ "mean_token_accuracy": 0.8159178540110588,
729
+ "step": 450
730
+ },
731
+ {
732
+ "epoch": 0.5766793409378961,
733
+ "grad_norm": 0.6657472122738636,
734
+ "learning_rate": 8.958897062817491e-06,
735
+ "loss": 0.6892,
736
+ "mean_token_accuracy": 0.8144657433032989,
737
+ "step": 455
738
+ },
739
+ {
740
+ "epoch": 0.5830164765525983,
741
+ "grad_norm": 0.6161660996953076,
742
+ "learning_rate": 8.924871957933904e-06,
743
+ "loss": 0.6746,
744
+ "mean_token_accuracy": 0.8171708762645722,
745
+ "step": 460
746
+ },
747
+ {
748
+ "epoch": 0.5893536121673004,
749
+ "grad_norm": 0.702287591616562,
750
+ "learning_rate": 8.890366584520482e-06,
751
+ "loss": 0.6696,
752
+ "mean_token_accuracy": 0.8184025406837463,
753
+ "step": 465
754
+ },
755
+ {
756
+ "epoch": 0.5956907477820025,
757
+ "grad_norm": 0.6857028656369465,
758
+ "learning_rate": 8.855385164841072e-06,
759
+ "loss": 0.6758,
760
+ "mean_token_accuracy": 0.8170812010765076,
761
+ "step": 470
762
+ },
763
+ {
764
+ "epoch": 0.6020278833967047,
765
+ "grad_norm": 0.6231296442226781,
766
+ "learning_rate": 8.819931979411107e-06,
767
+ "loss": 0.6734,
768
+ "mean_token_accuracy": 0.81716128885746,
769
+ "step": 475
770
+ },
771
+ {
772
+ "epoch": 0.6083650190114068,
773
+ "grad_norm": 0.6948180768376443,
774
+ "learning_rate": 8.78401136647383e-06,
775
+ "loss": 0.654,
776
+ "mean_token_accuracy": 0.8216980487108231,
777
+ "step": 480
778
+ },
779
+ {
780
+ "epoch": 0.614702154626109,
781
+ "grad_norm": 0.6911375954678098,
782
+ "learning_rate": 8.747627721469437e-06,
783
+ "loss": 0.6635,
784
+ "mean_token_accuracy": 0.8201975762844086,
785
+ "step": 485
786
+ },
787
+ {
788
+ "epoch": 0.6210392902408112,
789
+ "grad_norm": 0.7213580744708442,
790
+ "learning_rate": 8.710785496497226e-06,
791
+ "loss": 0.6651,
792
+ "mean_token_accuracy": 0.8194010749459266,
793
+ "step": 490
794
+ },
795
+ {
796
+ "epoch": 0.6273764258555133,
797
+ "grad_norm": 0.6543956981962712,
798
+ "learning_rate": 8.673489199770819e-06,
799
+ "loss": 0.6607,
800
+ "mean_token_accuracy": 0.8201611772179603,
801
+ "step": 495
802
+ },
803
+ {
804
+ "epoch": 0.6337135614702155,
805
+ "grad_norm": 0.7036498788596002,
806
+ "learning_rate": 8.635743395066511e-06,
807
+ "loss": 0.651,
808
+ "mean_token_accuracy": 0.8222277790307999,
809
+ "step": 500
810
+ },
811
+ {
812
+ "epoch": 0.6400506970849176,
813
+ "grad_norm": 0.6168799535449692,
814
+ "learning_rate": 8.597552701164818e-06,
815
+ "loss": 0.6592,
816
+ "mean_token_accuracy": 0.8199419066309929,
817
+ "step": 505
818
+ },
819
+ {
820
+ "epoch": 0.6463878326996197,
821
+ "grad_norm": 0.697481072279894,
822
+ "learning_rate": 8.558921791285304e-06,
823
+ "loss": 0.6513,
824
+ "mean_token_accuracy": 0.8216616123914718,
825
+ "step": 510
826
+ },
827
+ {
828
+ "epoch": 0.6527249683143219,
829
+ "grad_norm": 0.7978637983888536,
830
+ "learning_rate": 8.519855392514734e-06,
831
+ "loss": 0.6469,
832
+ "mean_token_accuracy": 0.8225123390555382,
833
+ "step": 515
834
+ },
835
+ {
836
+ "epoch": 0.6590621039290241,
837
+ "grad_norm": 0.709080907162204,
838
+ "learning_rate": 8.480358285228648e-06,
839
+ "loss": 0.6656,
840
+ "mean_token_accuracy": 0.8191539570689201,
841
+ "step": 520
842
+ },
843
+ {
844
+ "epoch": 0.6653992395437263,
845
+ "grad_norm": 0.7897211062263881,
846
+ "learning_rate": 8.440435302506405e-06,
847
+ "loss": 0.6412,
848
+ "mean_token_accuracy": 0.8238195776939392,
849
+ "step": 525
850
+ },
851
+ {
852
+ "epoch": 0.6717363751584284,
853
+ "grad_norm": 0.6661911891034582,
854
+ "learning_rate": 8.400091329539784e-06,
855
+ "loss": 0.6611,
856
+ "mean_token_accuracy": 0.8201816022396088,
857
+ "step": 530
858
+ },
859
+ {
860
+ "epoch": 0.6780735107731305,
861
+ "grad_norm": 0.6195761512766995,
862
+ "learning_rate": 8.359331303035205e-06,
863
+ "loss": 0.6593,
864
+ "mean_token_accuracy": 0.8203893005847931,
865
+ "step": 535
866
+ },
867
+ {
868
+ "epoch": 0.6844106463878327,
869
+ "grad_norm": 0.6310438648482855,
870
+ "learning_rate": 8.31816021060964e-06,
871
+ "loss": 0.6634,
872
+ "mean_token_accuracy": 0.8192948743700981,
873
+ "step": 540
874
+ },
875
+ {
876
+ "epoch": 0.6907477820025348,
877
+ "grad_norm": 0.6512895144306936,
878
+ "learning_rate": 8.276583090180311e-06,
879
+ "loss": 0.6666,
880
+ "mean_token_accuracy": 0.8186753287911415,
881
+ "step": 545
882
+ },
883
+ {
884
+ "epoch": 0.697084917617237,
885
+ "grad_norm": 0.6124105415248355,
886
+ "learning_rate": 8.234605029348224e-06,
887
+ "loss": 0.6511,
888
+ "mean_token_accuracy": 0.8219994261860848,
889
+ "step": 550
890
+ },
891
+ {
892
+ "epoch": 0.7034220532319392,
893
+ "grad_norm": 0.6601442192692848,
894
+ "learning_rate": 8.192231164775609e-06,
895
+ "loss": 0.6391,
896
+ "mean_token_accuracy": 0.8252027094364166,
897
+ "step": 555
898
+ },
899
+ {
900
+ "epoch": 0.7097591888466414,
901
+ "grad_norm": 0.7028934088221325,
902
+ "learning_rate": 8.149466681557384e-06,
903
+ "loss": 0.6558,
904
+ "mean_token_accuracy": 0.8209778189659118,
905
+ "step": 560
906
+ },
907
+ {
908
+ "epoch": 0.7160963244613435,
909
+ "grad_norm": 0.7857750596740971,
910
+ "learning_rate": 8.106316812586676e-06,
911
+ "loss": 0.6486,
912
+ "mean_token_accuracy": 0.8220974311232567,
913
+ "step": 565
914
+ },
915
+ {
916
+ "epoch": 0.7224334600760456,
917
+ "grad_norm": 0.8961234969300941,
918
+ "learning_rate": 8.062786837914492e-06,
919
+ "loss": 0.6386,
920
+ "mean_token_accuracy": 0.824979268014431,
921
+ "step": 570
922
+ },
923
+ {
924
+ "epoch": 0.7287705956907478,
925
+ "grad_norm": 0.686280664966789,
926
+ "learning_rate": 8.01888208410362e-06,
927
+ "loss": 0.6622,
928
+ "mean_token_accuracy": 0.8198226556181908,
929
+ "step": 575
930
+ },
931
+ {
932
+ "epoch": 0.7351077313054499,
933
+ "grad_norm": 0.8344864616701414,
934
+ "learning_rate": 7.974607923576859e-06,
935
+ "loss": 0.6537,
936
+ "mean_token_accuracy": 0.821578212082386,
937
+ "step": 580
938
+ },
939
+ {
940
+ "epoch": 0.7414448669201521,
941
+ "grad_norm": 0.9938826585970929,
942
+ "learning_rate": 7.9299697739596e-06,
943
+ "loss": 0.6544,
944
+ "mean_token_accuracy": 0.8208117336034775,
945
+ "step": 585
946
+ },
947
+ {
948
+ "epoch": 0.7477820025348543,
949
+ "grad_norm": 0.6249233717628465,
950
+ "learning_rate": 7.884973097416908e-06,
951
+ "loss": 0.6591,
952
+ "mean_token_accuracy": 0.8208227157592773,
953
+ "step": 590
954
+ },
955
+ {
956
+ "epoch": 0.7541191381495564,
957
+ "grad_norm": 0.6761543444596165,
958
+ "learning_rate": 7.83962339998514e-06,
959
+ "loss": 0.6439,
960
+ "mean_token_accuracy": 0.8236203759908676,
961
+ "step": 595
962
+ },
963
+ {
964
+ "epoch": 0.7604562737642585,
965
+ "grad_norm": 0.8850862666109794,
966
+ "learning_rate": 7.793926230898187e-06,
967
+ "loss": 0.6418,
968
+ "mean_token_accuracy": 0.8238036289811135,
969
+ "step": 600
970
+ },
971
+ {
972
+ "epoch": 0.7667934093789607,
973
+ "grad_norm": 0.6931013119334469,
974
+ "learning_rate": 7.747887181908464e-06,
975
+ "loss": 0.6513,
976
+ "mean_token_accuracy": 0.8221172288060188,
977
+ "step": 605
978
+ },
979
+ {
980
+ "epoch": 0.7731305449936628,
981
+ "grad_norm": 0.9142852384539434,
982
+ "learning_rate": 7.701511886602643e-06,
983
+ "loss": 0.6522,
984
+ "mean_token_accuracy": 0.8214233443140984,
985
+ "step": 610
986
+ },
987
+ {
988
+ "epoch": 0.779467680608365,
989
+ "grad_norm": 0.693942629552867,
990
+ "learning_rate": 7.65480601971232e-06,
991
+ "loss": 0.6555,
992
+ "mean_token_accuracy": 0.8214162334799766,
993
+ "step": 615
994
+ },
995
+ {
996
+ "epoch": 0.7858048162230672,
997
+ "grad_norm": 0.7185534733688809,
998
+ "learning_rate": 7.6077752964196095e-06,
999
+ "loss": 0.6514,
1000
+ "mean_token_accuracy": 0.821819719672203,
1001
+ "step": 620
1002
+ },
1003
+ {
1004
+ "epoch": 0.7921419518377694,
1005
+ "grad_norm": 0.7933553753697458,
1006
+ "learning_rate": 7.560425471657814e-06,
1007
+ "loss": 0.6507,
1008
+ "mean_token_accuracy": 0.8215969070792198,
1009
+ "step": 625
1010
+ },
1011
+ {
1012
+ "epoch": 0.7984790874524715,
1013
+ "grad_norm": 0.9942445013974323,
1014
+ "learning_rate": 7.512762339407214e-06,
1015
+ "loss": 0.6426,
1016
+ "mean_token_accuracy": 0.8233709827065467,
1017
+ "step": 630
1018
+ },
1019
+ {
1020
+ "epoch": 0.8048162230671736,
1021
+ "grad_norm": 0.7111122316238967,
1022
+ "learning_rate": 7.464791731986084e-06,
1023
+ "loss": 0.6446,
1024
+ "mean_token_accuracy": 0.8233424022793769,
1025
+ "step": 635
1026
+ },
1027
+ {
1028
+ "epoch": 0.8111533586818758,
1029
+ "grad_norm": 0.6760326829400325,
1030
+ "learning_rate": 7.4165195193370245e-06,
1031
+ "loss": 0.6411,
1032
+ "mean_token_accuracy": 0.8234749510884285,
1033
+ "step": 640
1034
+ },
1035
+ {
1036
+ "epoch": 0.8174904942965779,
1037
+ "grad_norm": 0.7157859491675397,
1038
+ "learning_rate": 7.3679516083086785e-06,
1039
+ "loss": 0.6403,
1040
+ "mean_token_accuracy": 0.8245514526963234,
1041
+ "step": 645
1042
+ },
1043
+ {
1044
+ "epoch": 0.8238276299112801,
1045
+ "grad_norm": 0.6125130117848593,
1046
+ "learning_rate": 7.319093941932941e-06,
1047
+ "loss": 0.648,
1048
+ "mean_token_accuracy": 0.8229272648692131,
1049
+ "step": 650
1050
+ },
1051
+ {
1052
+ "epoch": 0.8301647655259823,
1053
+ "grad_norm": 0.6193392226038144,
1054
+ "learning_rate": 7.269952498697734e-06,
1055
+ "loss": 0.6568,
1056
+ "mean_token_accuracy": 0.8208993718028068,
1057
+ "step": 655
1058
+ },
1059
+ {
1060
+ "epoch": 0.8365019011406845,
1061
+ "grad_norm": 0.5569382668639404,
1062
+ "learning_rate": 7.2205332918154525e-06,
1063
+ "loss": 0.6471,
1064
+ "mean_token_accuracy": 0.8230623930692673,
1065
+ "step": 660
1066
+ },
1067
+ {
1068
+ "epoch": 0.8428390367553865,
1069
+ "grad_norm": 0.6854397276184668,
1070
+ "learning_rate": 7.170842368487145e-06,
1071
+ "loss": 0.6394,
1072
+ "mean_token_accuracy": 0.8240847915410996,
1073
+ "step": 665
1074
+ },
1075
+ {
1076
+ "epoch": 0.8491761723700887,
1077
+ "grad_norm": 0.7247430930413721,
1078
+ "learning_rate": 7.120885809162561e-06,
1079
+ "loss": 0.6496,
1080
+ "mean_token_accuracy": 0.8226393803954124,
1081
+ "step": 670
1082
+ },
1083
+ {
1084
+ "epoch": 0.8555133079847909,
1085
+ "grad_norm": 0.5833185802048395,
1086
+ "learning_rate": 7.070669726796095e-06,
1087
+ "loss": 0.644,
1088
+ "mean_token_accuracy": 0.8238432243466377,
1089
+ "step": 675
1090
+ },
1091
+ {
1092
+ "epoch": 0.861850443599493,
1093
+ "grad_norm": 0.6587621871435737,
1094
+ "learning_rate": 7.020200266098791e-06,
1095
+ "loss": 0.6367,
1096
+ "mean_token_accuracy": 0.8251640364527703,
1097
+ "step": 680
1098
+ },
1099
+ {
1100
+ "epoch": 0.8681875792141952,
1101
+ "grad_norm": 0.9240470458812879,
1102
+ "learning_rate": 6.969483602786429e-06,
1103
+ "loss": 0.6335,
1104
+ "mean_token_accuracy": 0.8250990778207778,
1105
+ "step": 685
1106
+ },
1107
+ {
1108
+ "epoch": 0.8745247148288974,
1109
+ "grad_norm": 0.6647921620988979,
1110
+ "learning_rate": 6.918525942823836e-06,
1111
+ "loss": 0.6358,
1112
+ "mean_token_accuracy": 0.8253032699227333,
1113
+ "step": 690
1114
+ },
1115
+ {
1116
+ "epoch": 0.8808618504435995,
1117
+ "grad_norm": 0.7460235517208977,
1118
+ "learning_rate": 6.8673335216654945e-06,
1119
+ "loss": 0.6364,
1120
+ "mean_token_accuracy": 0.8251613467931748,
1121
+ "step": 695
1122
+ },
1123
+ {
1124
+ "epoch": 0.8871989860583016,
1125
+ "grad_norm": 0.5692165964237054,
1126
+ "learning_rate": 6.815912603492531e-06,
1127
+ "loss": 0.63,
1128
+ "mean_token_accuracy": 0.8269012838602066,
1129
+ "step": 700
1130
+ },
1131
+ {
1132
+ "epoch": 0.8935361216730038,
1133
+ "grad_norm": 0.7678044598257266,
1134
+ "learning_rate": 6.7642694804462026e-06,
1135
+ "loss": 0.641,
1136
+ "mean_token_accuracy": 0.8240568235516548,
1137
+ "step": 705
1138
+ },
1139
+ {
1140
+ "epoch": 0.899873257287706,
1141
+ "grad_norm": 0.6476587911488177,
1142
+ "learning_rate": 6.712410471857955e-06,
1143
+ "loss": 0.6389,
1144
+ "mean_token_accuracy": 0.8243090897798538,
1145
+ "step": 710
1146
+ },
1147
+ {
1148
+ "epoch": 0.9062103929024081,
1149
+ "grad_norm": 0.6996232991940935,
1150
+ "learning_rate": 6.660341923476152e-06,
1151
+ "loss": 0.6309,
1152
+ "mean_token_accuracy": 0.8264057099819183,
1153
+ "step": 715
1154
+ },
1155
+ {
1156
+ "epoch": 0.9125475285171103,
1157
+ "grad_norm": 0.6140056059724183,
1158
+ "learning_rate": 6.608070206689583e-06,
1159
+ "loss": 0.6284,
1160
+ "mean_token_accuracy": 0.826878672838211,
1161
+ "step": 720
1162
+ },
1163
+ {
1164
+ "epoch": 0.9188846641318125,
1165
+ "grad_norm": 0.5994244215051143,
1166
+ "learning_rate": 6.555601717747815e-06,
1167
+ "loss": 0.6469,
1168
+ "mean_token_accuracy": 0.8231760680675506,
1169
+ "step": 725
1170
+ },
1171
+ {
1172
+ "epoch": 0.9252217997465145,
1173
+ "grad_norm": 0.671715865180922,
1174
+ "learning_rate": 6.502942876978524e-06,
1175
+ "loss": 0.626,
1176
+ "mean_token_accuracy": 0.8275385439395905,
1177
+ "step": 730
1178
+ },
1179
+ {
1180
+ "epoch": 0.9315589353612167,
1181
+ "grad_norm": 0.6964725986892187,
1182
+ "learning_rate": 6.450100128001861e-06,
1183
+ "loss": 0.615,
1184
+ "mean_token_accuracy": 0.8296460658311844,
1185
+ "step": 735
1186
+ },
1187
+ {
1188
+ "epoch": 0.9378960709759189,
1189
+ "grad_norm": 0.6643867039068622,
1190
+ "learning_rate": 6.397079936941975e-06,
1191
+ "loss": 0.6425,
1192
+ "mean_token_accuracy": 0.823666226863861,
1193
+ "step": 740
1194
+ },
1195
+ {
1196
+ "epoch": 0.944233206590621,
1197
+ "grad_norm": 0.612108400302355,
1198
+ "learning_rate": 6.343888791635797e-06,
1199
+ "loss": 0.6222,
1200
+ "mean_token_accuracy": 0.8274678066372871,
1201
+ "step": 745
1202
+ },
1203
+ {
1204
+ "epoch": 0.9505703422053232,
1205
+ "grad_norm": 0.5888135214791528,
1206
+ "learning_rate": 6.2905332008391304e-06,
1207
+ "loss": 0.6457,
1208
+ "mean_token_accuracy": 0.8232318565249443,
1209
+ "step": 750
1210
+ },
1211
+ {
1212
+ "epoch": 0.9569074778200254,
1213
+ "grad_norm": 0.6023978340437303,
1214
+ "learning_rate": 6.237019693430227e-06,
1215
+ "loss": 0.6244,
1216
+ "mean_token_accuracy": 0.8275379940867424,
1217
+ "step": 755
1218
+ },
1219
+ {
1220
+ "epoch": 0.9632446134347274,
1221
+ "grad_norm": 0.5860893552553069,
1222
+ "learning_rate": 6.18335481761086e-06,
1223
+ "loss": 0.6258,
1224
+ "mean_token_accuracy": 0.8275753378868103,
1225
+ "step": 760
1226
+ },
1227
+ {
1228
+ "epoch": 0.9695817490494296,
1229
+ "grad_norm": 0.6183329734308459,
1230
+ "learning_rate": 6.1295451401050645e-06,
1231
+ "loss": 0.6487,
1232
+ "mean_token_accuracy": 0.8231626331806183,
1233
+ "step": 765
1234
+ },
1235
+ {
1236
+ "epoch": 0.9759188846641318,
1237
+ "grad_norm": 0.6472859730529533,
1238
+ "learning_rate": 6.075597245355589e-06,
1239
+ "loss": 0.6367,
1240
+ "mean_token_accuracy": 0.8252906337380409,
1241
+ "step": 770
1242
+ },
1243
+ {
1244
+ "epoch": 0.982256020278834,
1245
+ "grad_norm": 0.7048827333728572,
1246
+ "learning_rate": 6.021517734718193e-06,
1247
+ "loss": 0.6331,
1248
+ "mean_token_accuracy": 0.8252324685454369,
1249
+ "step": 775
1250
+ },
1251
+ {
1252
+ "epoch": 0.9885931558935361,
1253
+ "grad_norm": 0.670917489168749,
1254
+ "learning_rate": 5.967313225653863e-06,
1255
+ "loss": 0.6311,
1256
+ "mean_token_accuracy": 0.8262254923582077,
1257
+ "step": 780
1258
+ },
1259
+ {
1260
+ "epoch": 0.9949302915082383,
1261
+ "grad_norm": 0.6294039276801214,
1262
+ "learning_rate": 5.912990350919075e-06,
1263
+ "loss": 0.6366,
1264
+ "mean_token_accuracy": 0.8250793889164925,
1265
+ "step": 785
1266
+ },
1267
+ {
1268
+ "epoch": 1.0012674271229405,
1269
+ "grad_norm": 0.5750660780176277,
1270
+ "learning_rate": 5.85855575775416e-06,
1271
+ "loss": 0.6356,
1272
+ "mean_token_accuracy": 0.8255759388208389,
1273
+ "step": 790
1274
+ },
1275
+ {
1276
+ "epoch": 1.0076045627376427,
1277
+ "grad_norm": 0.5873083803261483,
1278
+ "learning_rate": 5.804016107069922e-06,
1279
+ "loss": 0.5899,
1280
+ "mean_token_accuracy": 0.8365576922893524,
1281
+ "step": 795
1282
+ },
1283
+ {
1284
+ "epoch": 1.0139416983523448,
1285
+ "grad_norm": 0.7245732012982048,
1286
+ "learning_rate": 5.749378072632572e-06,
1287
+ "loss": 0.5924,
1288
+ "mean_token_accuracy": 0.8353384211659431,
1289
+ "step": 800
1290
+ },
1291
+ {
1292
+ "epoch": 1.020278833967047,
1293
+ "grad_norm": 0.5625102045050165,
1294
+ "learning_rate": 5.694648340247087e-06,
1295
+ "loss": 0.5855,
1296
+ "mean_token_accuracy": 0.8365451633930207,
1297
+ "step": 805
1298
+ },
1299
+ {
1300
+ "epoch": 1.026615969581749,
1301
+ "grad_norm": 0.5811796962078384,
1302
+ "learning_rate": 5.639833606939103e-06,
1303
+ "loss": 0.5835,
1304
+ "mean_token_accuracy": 0.8374374285340309,
1305
+ "step": 810
1306
+ },
1307
+ {
1308
+ "epoch": 1.0329531051964511,
1309
+ "grad_norm": 0.6064815307080854,
1310
+ "learning_rate": 5.584940580135423e-06,
1311
+ "loss": 0.5918,
1312
+ "mean_token_accuracy": 0.835510890185833,
1313
+ "step": 815
1314
+ },
1315
+ {
1316
+ "epoch": 1.0392902408111533,
1317
+ "grad_norm": 0.5469353793310435,
1318
+ "learning_rate": 5.529975976843268e-06,
1319
+ "loss": 0.5765,
1320
+ "mean_token_accuracy": 0.839336322247982,
1321
+ "step": 820
1322
+ },
1323
+ {
1324
+ "epoch": 1.0456273764258555,
1325
+ "grad_norm": 0.591194718615289,
1326
+ "learning_rate": 5.474946522828344e-06,
1327
+ "loss": 0.571,
1328
+ "mean_token_accuracy": 0.8397138401865959,
1329
+ "step": 825
1330
+ },
1331
+ {
1332
+ "epoch": 1.0519645120405576,
1333
+ "grad_norm": 0.6529351075330402,
1334
+ "learning_rate": 5.419858951791842e-06,
1335
+ "loss": 0.587,
1336
+ "mean_token_accuracy": 0.8367372244596482,
1337
+ "step": 830
1338
+ },
1339
+ {
1340
+ "epoch": 1.0583016476552598,
1341
+ "grad_norm": 0.5750159656566077,
1342
+ "learning_rate": 5.364720004546467e-06,
1343
+ "loss": 0.5713,
1344
+ "mean_token_accuracy": 0.8396085217595101,
1345
+ "step": 835
1346
+ },
1347
+ {
1348
+ "epoch": 1.064638783269962,
1349
+ "grad_norm": 0.5356356446036812,
1350
+ "learning_rate": 5.3095364281915905e-06,
1351
+ "loss": 0.5743,
1352
+ "mean_token_accuracy": 0.8390779420733452,
1353
+ "step": 840
1354
+ },
1355
+ {
1356
+ "epoch": 1.0709759188846641,
1357
+ "grad_norm": 0.5657627605570825,
1358
+ "learning_rate": 5.254314975287649e-06,
1359
+ "loss": 0.5768,
1360
+ "mean_token_accuracy": 0.8388962477445603,
1361
+ "step": 845
1362
+ },
1363
+ {
1364
+ "epoch": 1.0773130544993663,
1365
+ "grad_norm": 0.5994046834255601,
1366
+ "learning_rate": 5.199062403029851e-06,
1367
+ "loss": 0.5779,
1368
+ "mean_token_accuracy": 0.838576190173626,
1369
+ "step": 850
1370
+ },
1371
+ {
1372
+ "epoch": 1.0836501901140685,
1373
+ "grad_norm": 0.5512378922303693,
1374
+ "learning_rate": 5.143785472421341e-06,
1375
+ "loss": 0.5736,
1376
+ "mean_token_accuracy": 0.8392498835921287,
1377
+ "step": 855
1378
+ },
1379
+ {
1380
+ "epoch": 1.0899873257287707,
1381
+ "grad_norm": 0.6231063067990558,
1382
+ "learning_rate": 5.088490947445884e-06,
1383
+ "loss": 0.5787,
1384
+ "mean_token_accuracy": 0.8382582783699035,
1385
+ "step": 860
1386
+ },
1387
+ {
1388
+ "epoch": 1.0963244613434728,
1389
+ "grad_norm": 0.6258759211004005,
1390
+ "learning_rate": 5.033185594240184e-06,
1391
+ "loss": 0.5867,
1392
+ "mean_token_accuracy": 0.8368578165769577,
1393
+ "step": 865
1394
+ },
1395
+ {
1396
+ "epoch": 1.102661596958175,
1397
+ "grad_norm": 0.5758426513877979,
1398
+ "learning_rate": 4.977876180265948e-06,
1399
+ "loss": 0.5781,
1400
+ "mean_token_accuracy": 0.8380098447203637,
1401
+ "step": 870
1402
+ },
1403
+ {
1404
+ "epoch": 1.1089987325728772,
1405
+ "grad_norm": 0.5362099307940532,
1406
+ "learning_rate": 4.922569473481779e-06,
1407
+ "loss": 0.579,
1408
+ "mean_token_accuracy": 0.8374864637851716,
1409
+ "step": 875
1410
+ },
1411
+ {
1412
+ "epoch": 1.1153358681875791,
1413
+ "grad_norm": 0.6117359275633708,
1414
+ "learning_rate": 4.867272241515013e-06,
1415
+ "loss": 0.5745,
1416
+ "mean_token_accuracy": 0.8394086301326752,
1417
+ "step": 880
1418
+ },
1419
+ {
1420
+ "epoch": 1.1216730038022813,
1421
+ "grad_norm": 0.6163525031585341,
1422
+ "learning_rate": 4.811991250833598e-06,
1423
+ "loss": 0.575,
1424
+ "mean_token_accuracy": 0.8387202203273774,
1425
+ "step": 885
1426
+ },
1427
+ {
1428
+ "epoch": 1.1280101394169835,
1429
+ "grad_norm": 0.5344005108748248,
1430
+ "learning_rate": 4.756733265918111e-06,
1431
+ "loss": 0.5805,
1432
+ "mean_token_accuracy": 0.8385160818696022,
1433
+ "step": 890
1434
+ },
1435
+ {
1436
+ "epoch": 1.1343472750316856,
1437
+ "grad_norm": 0.5606427842219186,
1438
+ "learning_rate": 4.701505048434017e-06,
1439
+ "loss": 0.58,
1440
+ "mean_token_accuracy": 0.837983712553978,
1441
+ "step": 895
1442
+ },
1443
+ {
1444
+ "epoch": 1.1406844106463878,
1445
+ "grad_norm": 0.5635525365545201,
1446
+ "learning_rate": 4.646313356404278e-06,
1447
+ "loss": 0.5721,
1448
+ "mean_token_accuracy": 0.8402201250195503,
1449
+ "step": 900
1450
+ },
1451
+ {
1452
+ "epoch": 1.14702154626109,
1453
+ "grad_norm": 0.5279253266696204,
1454
+ "learning_rate": 4.5911649433824055e-06,
1455
+ "loss": 0.5722,
1456
+ "mean_token_accuracy": 0.8398120388388634,
1457
+ "step": 905
1458
+ },
1459
+ {
1460
+ "epoch": 1.1533586818757922,
1461
+ "grad_norm": 0.5355638715895371,
1462
+ "learning_rate": 4.536066557626057e-06,
1463
+ "loss": 0.5717,
1464
+ "mean_token_accuracy": 0.8396236389875412,
1465
+ "step": 910
1466
+ },
1467
+ {
1468
+ "epoch": 1.1596958174904943,
1469
+ "grad_norm": 0.5298050755566127,
1470
+ "learning_rate": 4.481024941271283e-06,
1471
+ "loss": 0.5825,
1472
+ "mean_token_accuracy": 0.837471354007721,
1473
+ "step": 915
1474
+ },
1475
+ {
1476
+ "epoch": 1.1660329531051965,
1477
+ "grad_norm": 0.6099091835516977,
1478
+ "learning_rate": 4.426046829507525e-06,
1479
+ "loss": 0.5739,
1480
+ "mean_token_accuracy": 0.8395572647452354,
1481
+ "step": 920
1482
+ },
1483
+ {
1484
+ "epoch": 1.1723700887198987,
1485
+ "grad_norm": 0.5282685583180019,
1486
+ "learning_rate": 4.371138949753457e-06,
1487
+ "loss": 0.5758,
1488
+ "mean_token_accuracy": 0.8386889979243278,
1489
+ "step": 925
1490
+ },
1491
+ {
1492
+ "epoch": 1.1787072243346008,
1493
+ "grad_norm": 0.5498053929758666,
1494
+ "learning_rate": 4.316308020833788e-06,
1495
+ "loss": 0.5717,
1496
+ "mean_token_accuracy": 0.8401581376791001,
1497
+ "step": 930
1498
+ },
1499
+ {
1500
+ "epoch": 1.1850443599493028,
1501
+ "grad_norm": 0.545684866299052,
1502
+ "learning_rate": 4.261560752157106e-06,
1503
+ "loss": 0.5821,
1504
+ "mean_token_accuracy": 0.8375889748334885,
1505
+ "step": 935
1506
+ },
1507
+ {
1508
+ "epoch": 1.1913814955640052,
1509
+ "grad_norm": 0.5275676276739754,
1510
+ "learning_rate": 4.20690384289488e-06,
1511
+ "loss": 0.5865,
1512
+ "mean_token_accuracy": 0.8369634434580803,
1513
+ "step": 940
1514
+ },
1515
+ {
1516
+ "epoch": 1.1977186311787071,
1517
+ "grad_norm": 0.5147709084468725,
1518
+ "learning_rate": 4.152343981161713e-06,
1519
+ "loss": 0.5735,
1520
+ "mean_token_accuracy": 0.8388126537203788,
1521
+ "step": 945
1522
+ },
1523
+ {
1524
+ "epoch": 1.2040557667934093,
1525
+ "grad_norm": 0.5553445767071536,
1526
+ "learning_rate": 4.097887843196949e-06,
1527
+ "loss": 0.5706,
1528
+ "mean_token_accuracy": 0.8400391504168511,
1529
+ "step": 950
1530
+ },
1531
+ {
1532
+ "epoch": 1.2103929024081115,
1533
+ "grad_norm": 0.5755093000837989,
1534
+ "learning_rate": 4.043542092547729e-06,
1535
+ "loss": 0.5738,
1536
+ "mean_token_accuracy": 0.8393745362758637,
1537
+ "step": 955
1538
+ },
1539
+ {
1540
+ "epoch": 1.2167300380228137,
1541
+ "grad_norm": 0.5323369182306833,
1542
+ "learning_rate": 3.989313379253609e-06,
1543
+ "loss": 0.5707,
1544
+ "mean_token_accuracy": 0.8395906254649163,
1545
+ "step": 960
1546
+ },
1547
+ {
1548
+ "epoch": 1.2230671736375158,
1549
+ "grad_norm": 0.5398923057065517,
1550
+ "learning_rate": 3.935208339032819e-06,
1551
+ "loss": 0.5773,
1552
+ "mean_token_accuracy": 0.8380544230341911,
1553
+ "step": 965
1554
+ },
1555
+ {
1556
+ "epoch": 1.229404309252218,
1557
+ "grad_norm": 0.5138506118324425,
1558
+ "learning_rate": 3.881233592470287e-06,
1559
+ "loss": 0.5697,
1560
+ "mean_token_accuracy": 0.8401115134358406,
1561
+ "step": 970
1562
+ },
1563
+ {
1564
+ "epoch": 1.2357414448669202,
1565
+ "grad_norm": 0.531254594806762,
1566
+ "learning_rate": 3.827395744207504e-06,
1567
+ "loss": 0.5802,
1568
+ "mean_token_accuracy": 0.8385789826512337,
1569
+ "step": 975
1570
+ },
1571
+ {
1572
+ "epoch": 1.2420785804816223,
1573
+ "grad_norm": 0.5209427066358759,
1574
+ "learning_rate": 3.773701382134345e-06,
1575
+ "loss": 0.5788,
1576
+ "mean_token_accuracy": 0.8383644595742226,
1577
+ "step": 980
1578
+ },
1579
+ {
1580
+ "epoch": 1.2484157160963245,
1581
+ "grad_norm": 0.4981386065382922,
1582
+ "learning_rate": 3.7201570765829405e-06,
1583
+ "loss": 0.5803,
1584
+ "mean_token_accuracy": 0.8378679618239403,
1585
+ "step": 985
1586
+ },
1587
+ {
1588
+ "epoch": 1.2547528517110267,
1589
+ "grad_norm": 0.5310216835837045,
1590
+ "learning_rate": 3.666769379523695e-06,
1591
+ "loss": 0.5816,
1592
+ "mean_token_accuracy": 0.8382963240146637,
1593
+ "step": 990
1594
+ },
1595
+ {
1596
+ "epoch": 1.2610899873257289,
1597
+ "grad_norm": 0.5302964748937399,
1598
+ "learning_rate": 3.6135448237635505e-06,
1599
+ "loss": 0.568,
1600
+ "mean_token_accuracy": 0.8408621445298194,
1601
+ "step": 995
1602
+ },
1603
+ {
1604
+ "epoch": 1.2674271229404308,
1605
+ "grad_norm": 0.6043312455865852,
1606
+ "learning_rate": 3.5604899221466003e-06,
1607
+ "loss": 0.5797,
1608
+ "mean_token_accuracy": 0.837955892086029,
1609
+ "step": 1000
1610
+ },
1611
+ {
1612
+ "epoch": 1.2737642585551332,
1613
+ "grad_norm": 0.5404711838738012,
1614
+ "learning_rate": 3.507611166757141e-06,
1615
+ "loss": 0.577,
1616
+ "mean_token_accuracy": 0.8382121488451958,
1617
+ "step": 1005
1618
+ },
1619
+ {
1620
+ "epoch": 1.2801013941698351,
1621
+ "grad_norm": 0.5313905403777647,
1622
+ "learning_rate": 3.4549150281252635e-06,
1623
+ "loss": 0.5759,
1624
+ "mean_token_accuracy": 0.8386555135250091,
1625
+ "step": 1010
1626
+ },
1627
+ {
1628
+ "epoch": 1.2864385297845373,
1629
+ "grad_norm": 0.5312545340451698,
1630
+ "learning_rate": 3.4024079544350874e-06,
1631
+ "loss": 0.5766,
1632
+ "mean_token_accuracy": 0.8384982272982597,
1633
+ "step": 1015
1634
+ },
1635
+ {
1636
+ "epoch": 1.2927756653992395,
1637
+ "grad_norm": 0.574010488002488,
1638
+ "learning_rate": 3.3500963707357236e-06,
1639
+ "loss": 0.5817,
1640
+ "mean_token_accuracy": 0.838199020922184,
1641
+ "step": 1020
1642
+ },
1643
+ {
1644
+ "epoch": 1.2991128010139417,
1645
+ "grad_norm": 0.5162313236359333,
1646
+ "learning_rate": 3.297986678155074e-06,
1647
+ "loss": 0.5596,
1648
+ "mean_token_accuracy": 0.8421908557415009,
1649
+ "step": 1025
1650
+ },
1651
+ {
1652
+ "epoch": 1.3054499366286438,
1653
+ "grad_norm": 0.6187258006031299,
1654
+ "learning_rate": 3.24608525311655e-06,
1655
+ "loss": 0.5633,
1656
+ "mean_token_accuracy": 0.842179323732853,
1657
+ "step": 1030
1658
+ },
1659
+ {
1660
+ "epoch": 1.311787072243346,
1661
+ "grad_norm": 0.5140882862368508,
1662
+ "learning_rate": 3.1943984465588253e-06,
1663
+ "loss": 0.5704,
1664
+ "mean_token_accuracy": 0.8403183802962303,
1665
+ "step": 1035
1666
+ },
1667
+ {
1668
+ "epoch": 1.3181242078580482,
1669
+ "grad_norm": 0.5261806551468972,
1670
+ "learning_rate": 3.142932583158693e-06,
1671
+ "loss": 0.5664,
1672
+ "mean_token_accuracy": 0.8412504211068154,
1673
+ "step": 1040
1674
+ },
1675
+ {
1676
+ "epoch": 1.3244613434727504,
1677
+ "grad_norm": 0.5355046745744655,
1678
+ "learning_rate": 3.0916939605571534e-06,
1679
+ "loss": 0.5668,
1680
+ "mean_token_accuracy": 0.8411947041749954,
1681
+ "step": 1045
1682
+ },
1683
+ {
1684
+ "epoch": 1.3307984790874525,
1685
+ "grad_norm": 0.5828342485781398,
1686
+ "learning_rate": 3.040688848588788e-06,
1687
+ "loss": 0.5683,
1688
+ "mean_token_accuracy": 0.8403848618268966,
1689
+ "step": 1050
1690
+ },
1691
+ {
1692
+ "epoch": 1.3371356147021547,
1693
+ "grad_norm": 0.515568887419182,
1694
+ "learning_rate": 2.989923488514566e-06,
1695
+ "loss": 0.5734,
1696
+ "mean_token_accuracy": 0.8396067947149277,
1697
+ "step": 1055
1698
+ },
1699
+ {
1700
+ "epoch": 1.3434727503168569,
1701
+ "grad_norm": 0.533119717549416,
1702
+ "learning_rate": 2.9394040922581123e-06,
1703
+ "loss": 0.5788,
1704
+ "mean_token_accuracy": 0.8387560814619064,
1705
+ "step": 1060
1706
+ },
1707
+ {
1708
+ "epoch": 1.3498098859315588,
1709
+ "grad_norm": 0.5574493299249907,
1710
+ "learning_rate": 2.889136841645592e-06,
1711
+ "loss": 0.5738,
1712
+ "mean_token_accuracy": 0.839569516479969,
1713
+ "step": 1065
1714
+ },
1715
+ {
1716
+ "epoch": 1.3561470215462612,
1717
+ "grad_norm": 0.5301348229908708,
1718
+ "learning_rate": 2.839127887649271e-06,
1719
+ "loss": 0.5751,
1720
+ "mean_token_accuracy": 0.8394772946834564,
1721
+ "step": 1070
1722
+ },
1723
+ {
1724
+ "epoch": 1.3624841571609632,
1725
+ "grad_norm": 0.5071728571486687,
1726
+ "learning_rate": 2.789383349634841e-06,
1727
+ "loss": 0.5711,
1728
+ "mean_token_accuracy": 0.8398226588964463,
1729
+ "step": 1075
1730
+ },
1731
+ {
1732
+ "epoch": 1.3688212927756653,
1733
+ "grad_norm": 0.4997381831510659,
1734
+ "learning_rate": 2.73990931461263e-06,
1735
+ "loss": 0.5783,
1736
+ "mean_token_accuracy": 0.8384912863373757,
1737
+ "step": 1080
1738
+ },
1739
+ {
1740
+ "epoch": 1.3751584283903675,
1741
+ "grad_norm": 0.5019388182436546,
1742
+ "learning_rate": 2.690711836492758e-06,
1743
+ "loss": 0.5711,
1744
+ "mean_token_accuracy": 0.8396464511752129,
1745
+ "step": 1085
1746
+ },
1747
+ {
1748
+ "epoch": 1.3814955640050697,
1749
+ "grad_norm": 0.5165116686484276,
1750
+ "learning_rate": 2.6417969353443484e-06,
1751
+ "loss": 0.5721,
1752
+ "mean_token_accuracy": 0.8395859107375145,
1753
+ "step": 1090
1754
+ },
1755
+ {
1756
+ "epoch": 1.3878326996197718,
1757
+ "grad_norm": 0.5372603660779312,
1758
+ "learning_rate": 2.5931705966588803e-06,
1759
+ "loss": 0.5826,
1760
+ "mean_token_accuracy": 0.8370852112770081,
1761
+ "step": 1095
1762
+ },
1763
+ {
1764
+ "epoch": 1.394169835234474,
1765
+ "grad_norm": 0.5104565997924485,
1766
+ "learning_rate": 2.544838770617772e-06,
1767
+ "loss": 0.5785,
1768
+ "mean_token_accuracy": 0.8393797069787979,
1769
+ "step": 1100
1770
+ },
1771
+ {
1772
+ "epoch": 1.4005069708491762,
1773
+ "grad_norm": 0.5336610190327751,
1774
+ "learning_rate": 2.496807371364283e-06,
1775
+ "loss": 0.5759,
1776
+ "mean_token_accuracy": 0.8390834912657738,
1777
+ "step": 1105
1778
+ },
1779
+ {
1780
+ "epoch": 1.4068441064638784,
1781
+ "grad_norm": 0.662951455066245,
1782
+ "learning_rate": 2.44908227627983e-06,
1783
+ "loss": 0.5712,
1784
+ "mean_token_accuracy": 0.8397842928767204,
1785
+ "step": 1110
1786
+ },
1787
+ {
1788
+ "epoch": 1.4131812420785805,
1789
+ "grad_norm": 0.5438222471825553,
1790
+ "learning_rate": 2.4016693252647954e-06,
1791
+ "loss": 0.5703,
1792
+ "mean_token_accuracy": 0.8397609844803811,
1793
+ "step": 1115
1794
+ },
1795
+ {
1796
+ "epoch": 1.4195183776932827,
1797
+ "grad_norm": 0.5457903944622784,
1798
+ "learning_rate": 2.3545743200239303e-06,
1799
+ "loss": 0.5756,
1800
+ "mean_token_accuracy": 0.8387856274843216,
1801
+ "step": 1120
1802
+ },
1803
+ {
1804
+ "epoch": 1.4258555133079849,
1805
+ "grad_norm": 0.5413159299268847,
1806
+ "learning_rate": 2.3078030233564203e-06,
1807
+ "loss": 0.5796,
1808
+ "mean_token_accuracy": 0.8379950270056724,
1809
+ "step": 1125
1810
+ },
1811
+ {
1812
+ "epoch": 1.4321926489226868,
1813
+ "grad_norm": 0.5017485230997426,
1814
+ "learning_rate": 2.2613611584507227e-06,
1815
+ "loss": 0.5843,
1816
+ "mean_token_accuracy": 0.8371415048837662,
1817
+ "step": 1130
1818
+ },
1819
+ {
1820
+ "epoch": 1.4385297845373892,
1821
+ "grad_norm": 0.5036035556859302,
1822
+ "learning_rate": 2.215254408184249e-06,
1823
+ "loss": 0.5733,
1824
+ "mean_token_accuracy": 0.8397385001182556,
1825
+ "step": 1135
1826
+ },
1827
+ {
1828
+ "epoch": 1.4448669201520912,
1829
+ "grad_norm": 0.5512472367603704,
1830
+ "learning_rate": 2.169488414427969e-06,
1831
+ "loss": 0.5665,
1832
+ "mean_token_accuracy": 0.8411229193210602,
1833
+ "step": 1140
1834
+ },
1835
+ {
1836
+ "epoch": 1.4512040557667933,
1837
+ "grad_norm": 0.5122324337296091,
1838
+ "learning_rate": 2.1240687773560476e-06,
1839
+ "loss": 0.5754,
1840
+ "mean_token_accuracy": 0.838901475071907,
1841
+ "step": 1145
1842
+ },
1843
+ {
1844
+ "epoch": 1.4575411913814955,
1845
+ "grad_norm": 0.514428924855705,
1846
+ "learning_rate": 2.0790010547605743e-06,
1847
+ "loss": 0.5773,
1848
+ "mean_token_accuracy": 0.8385174334049225,
1849
+ "step": 1150
1850
+ },
1851
+ {
1852
+ "epoch": 1.4638783269961977,
1853
+ "grad_norm": 0.541489817693485,
1854
+ "learning_rate": 2.0342907613714837e-06,
1855
+ "loss": 0.5724,
1856
+ "mean_token_accuracy": 0.839878860116005,
1857
+ "step": 1155
1858
+ },
1859
+ {
1860
+ "epoch": 1.4702154626108999,
1861
+ "grad_norm": 0.5233399327286699,
1862
+ "learning_rate": 1.989943368181741e-06,
1863
+ "loss": 0.5683,
1864
+ "mean_token_accuracy": 0.8406485706567765,
1865
+ "step": 1160
1866
+ },
1867
+ {
1868
+ "epoch": 1.476552598225602,
1869
+ "grad_norm": 0.4977622157535387,
1870
+ "learning_rate": 1.945964301777883e-06,
1871
+ "loss": 0.5568,
1872
+ "mean_token_accuracy": 0.8429565221071244,
1873
+ "step": 1165
1874
+ },
1875
+ {
1876
+ "epoch": 1.4828897338403042,
1877
+ "grad_norm": 0.502171168050283,
1878
+ "learning_rate": 1.9023589436759954e-06,
1879
+ "loss": 0.555,
1880
+ "mean_token_accuracy": 0.8435925453901291,
1881
+ "step": 1170
1882
+ },
1883
+ {
1884
+ "epoch": 1.4892268694550064,
1885
+ "grad_norm": 0.5026240018805591,
1886
+ "learning_rate": 1.859132629663194e-06,
1887
+ "loss": 0.5609,
1888
+ "mean_token_accuracy": 0.8420811951160431,
1889
+ "step": 1175
1890
+ },
1891
+ {
1892
+ "epoch": 1.4955640050697085,
1893
+ "grad_norm": 0.5071369135189446,
1894
+ "learning_rate": 1.8162906491447136e-06,
1895
+ "loss": 0.5751,
1896
+ "mean_token_accuracy": 0.8397066414356231,
1897
+ "step": 1180
1898
+ },
1899
+ {
1900
+ "epoch": 1.5019011406844105,
1901
+ "grad_norm": 0.5012155091792143,
1902
+ "learning_rate": 1.7738382444966668e-06,
1903
+ "loss": 0.5714,
1904
+ "mean_token_accuracy": 0.839833353459835,
1905
+ "step": 1185
1906
+ },
1907
+ {
1908
+ "epoch": 1.508238276299113,
1909
+ "grad_norm": 0.4943163959620169,
1910
+ "learning_rate": 1.7317806104245599e-06,
1911
+ "loss": 0.5614,
1912
+ "mean_token_accuracy": 0.8422631338238716,
1913
+ "step": 1190
1914
+ },
1915
+ {
1916
+ "epoch": 1.5145754119138148,
1917
+ "grad_norm": 0.5168969148185261,
1918
+ "learning_rate": 1.6901228933276381e-06,
1919
+ "loss": 0.5734,
1920
+ "mean_token_accuracy": 0.8398737594485283,
1921
+ "step": 1195
1922
+ },
1923
+ {
1924
+ "epoch": 1.5209125475285172,
1925
+ "grad_norm": 0.5085722470934201,
1926
+ "learning_rate": 1.6488701906691462e-06,
1927
+ "loss": 0.5743,
1928
+ "mean_token_accuracy": 0.8395018294453621,
1929
+ "step": 1200
1930
+ },
1931
+ {
1932
+ "epoch": 1.5272496831432192,
1933
+ "grad_norm": 0.5145560441594629,
1934
+ "learning_rate": 1.6080275503525754e-06,
1935
+ "loss": 0.5714,
1936
+ "mean_token_accuracy": 0.8400074362754821,
1937
+ "step": 1205
1938
+ },
1939
+ {
1940
+ "epoch": 1.5335868187579216,
1941
+ "grad_norm": 0.5142209477213089,
1942
+ "learning_rate": 1.5675999701039734e-06,
1943
+ "loss": 0.5731,
1944
+ "mean_token_accuracy": 0.8395378664135933,
1945
+ "step": 1210
1946
+ },
1947
+ {
1948
+ "epoch": 1.5399239543726235,
1949
+ "grad_norm": 0.4817695083655761,
1950
+ "learning_rate": 1.5275923968603967e-06,
1951
+ "loss": 0.5668,
1952
+ "mean_token_accuracy": 0.840859878063202,
1953
+ "step": 1215
1954
+ },
1955
+ {
1956
+ "epoch": 1.5462610899873257,
1957
+ "grad_norm": 0.4958218170076731,
1958
+ "learning_rate": 1.4880097261645765e-06,
1959
+ "loss": 0.575,
1960
+ "mean_token_accuracy": 0.8392793446779251,
1961
+ "step": 1220
1962
+ },
1963
+ {
1964
+ "epoch": 1.5525982256020279,
1965
+ "grad_norm": 0.5150469794513786,
1966
+ "learning_rate": 1.4488568015658738e-06,
1967
+ "loss": 0.5702,
1968
+ "mean_token_accuracy": 0.8403733685612679,
1969
+ "step": 1225
1970
+ },
1971
+ {
1972
+ "epoch": 1.55893536121673,
1973
+ "grad_norm": 0.5415616286404993,
1974
+ "learning_rate": 1.4101384140275947e-06,
1975
+ "loss": 0.5724,
1976
+ "mean_token_accuracy": 0.8399771124124527,
1977
+ "step": 1230
1978
+ },
1979
+ {
1980
+ "epoch": 1.5652724968314322,
1981
+ "grad_norm": 0.5125659970580118,
1982
+ "learning_rate": 1.3718593013407455e-06,
1983
+ "loss": 0.565,
1984
+ "mean_token_accuracy": 0.8413113921880722,
1985
+ "step": 1235
1986
+ },
1987
+ {
1988
+ "epoch": 1.5716096324461344,
1989
+ "grad_norm": 0.5172557001838594,
1990
+ "learning_rate": 1.3340241475442889e-06,
1991
+ "loss": 0.5666,
1992
+ "mean_token_accuracy": 0.8413270160555839,
1993
+ "step": 1240
1994
+ },
1995
+ {
1996
+ "epoch": 1.5779467680608366,
1997
+ "grad_norm": 0.5218390924731011,
1998
+ "learning_rate": 1.296637582351979e-06,
1999
+ "loss": 0.5811,
2000
+ "mean_token_accuracy": 0.8378918588161468,
2001
+ "step": 1245
2002
+ },
2003
+ {
2004
+ "epoch": 1.5842839036755385,
2005
+ "grad_norm": 0.49941956793616216,
2006
+ "learning_rate": 1.2597041805858469e-06,
2007
+ "loss": 0.5597,
2008
+ "mean_token_accuracy": 0.8421694174408912,
2009
+ "step": 1250
2010
+ },
2011
+ {
2012
+ "epoch": 1.590621039290241,
2013
+ "grad_norm": 0.4810003693281146,
2014
+ "learning_rate": 1.2232284616163986e-06,
2015
+ "loss": 0.5646,
2016
+ "mean_token_accuracy": 0.8418364375829697,
2017
+ "step": 1255
2018
+ },
2019
+ {
2020
+ "epoch": 1.5969581749049429,
2021
+ "grad_norm": 0.49642278969512443,
2022
+ "learning_rate": 1.1872148888096024e-06,
2023
+ "loss": 0.5686,
2024
+ "mean_token_accuracy": 0.840269310772419,
2025
+ "step": 1260
2026
+ },
2027
+ {
2028
+ "epoch": 1.6032953105196452,
2029
+ "grad_norm": 0.5258808050772633,
2030
+ "learning_rate": 1.1516678689807249e-06,
2031
+ "loss": 0.5665,
2032
+ "mean_token_accuracy": 0.8409392833709717,
2033
+ "step": 1265
2034
+ },
2035
+ {
2036
+ "epoch": 1.6096324461343472,
2037
+ "grad_norm": 0.4807160453689938,
2038
+ "learning_rate": 1.1165917518550913e-06,
2039
+ "loss": 0.5671,
2040
+ "mean_token_accuracy": 0.8411058440804482,
2041
+ "step": 1270
2042
+ },
2043
+ {
2044
+ "epoch": 1.6159695817490496,
2045
+ "grad_norm": 0.48965855513910594,
2046
+ "learning_rate": 1.0819908295358284e-06,
2047
+ "loss": 0.5588,
2048
+ "mean_token_accuracy": 0.8429983571171761,
2049
+ "step": 1275
2050
+ },
2051
+ {
2052
+ "epoch": 1.6223067173637515,
2053
+ "grad_norm": 0.5202990154276527,
2054
+ "learning_rate": 1.0478693359786612e-06,
2055
+ "loss": 0.5716,
2056
+ "mean_token_accuracy": 0.8400727063417435,
2057
+ "step": 1280
2058
+ },
2059
+ {
2060
+ "epoch": 1.6286438529784537,
2061
+ "grad_norm": 0.5171890350253132,
2062
+ "learning_rate": 1.0142314464738195e-06,
2063
+ "loss": 0.5517,
2064
+ "mean_token_accuracy": 0.8443869799375534,
2065
+ "step": 1285
2066
+ },
2067
+ {
2068
+ "epoch": 1.6349809885931559,
2069
+ "grad_norm": 0.48132181865431867,
2070
+ "learning_rate": 9.810812771351335e-07,
2071
+ "loss": 0.5784,
2072
+ "mean_token_accuracy": 0.8387523666024208,
2073
+ "step": 1290
2074
+ },
2075
+ {
2076
+ "epoch": 1.641318124207858,
2077
+ "grad_norm": 0.48031587809861415,
2078
+ "learning_rate": 9.484228843963577e-07,
2079
+ "loss": 0.5609,
2080
+ "mean_token_accuracy": 0.8421882972121238,
2081
+ "step": 1295
2082
+ },
2083
+ {
2084
+ "epoch": 1.6476552598225602,
2085
+ "grad_norm": 0.48862410273482815,
2086
+ "learning_rate": 9.16260264514805e-07,
2087
+ "loss": 0.5739,
2088
+ "mean_token_accuracy": 0.8393760696053505,
2089
+ "step": 1300
2090
+ },
2091
+ {
2092
+ "epoch": 1.6539923954372624,
2093
+ "grad_norm": 0.4974345984726092,
2094
+ "learning_rate": 8.845973530823443e-07,
2095
+ "loss": 0.5623,
2096
+ "mean_token_accuracy": 0.842260554432869,
2097
+ "step": 1305
2098
+ },
2099
+ {
2100
+ "epoch": 1.6603295310519646,
2101
+ "grad_norm": 0.4969870292569671,
2102
+ "learning_rate": 8.534380245438212e-07,
2103
+ "loss": 0.5806,
2104
+ "mean_token_accuracy": 0.8379565149545669,
2105
+ "step": 1310
2106
+ },
2107
+ {
2108
+ "epoch": 1.6666666666666665,
2109
+ "grad_norm": 0.51170305488906,
2110
+ "learning_rate": 8.22786091722958e-07,
2111
+ "loss": 0.5744,
2112
+ "mean_token_accuracy": 0.8394851118326188,
2113
+ "step": 1315
2114
+ },
2115
+ {
2116
+ "epoch": 1.673003802281369,
2117
+ "grad_norm": 0.4882536601279716,
2118
+ "learning_rate": 7.926453053557948e-07,
2119
+ "loss": 0.5694,
2120
+ "mean_token_accuracy": 0.8412208631634712,
2121
+ "step": 1320
2122
+ },
2123
+ {
2124
+ "epoch": 1.6793409378960709,
2125
+ "grad_norm": 0.5201633381345815,
2126
+ "learning_rate": 7.630193536317354e-07,
2127
+ "loss": 0.5779,
2128
+ "mean_token_accuracy": 0.8387572214007377,
2129
+ "step": 1325
2130
+ },
2131
+ {
2132
+ "epoch": 1.6856780735107733,
2133
+ "grad_norm": 0.4872309884092355,
2134
+ "learning_rate": 7.339118617422325e-07,
2135
+ "loss": 0.5721,
2136
+ "mean_token_accuracy": 0.840134784579277,
2137
+ "step": 1330
2138
+ },
2139
+ {
2140
+ "epoch": 1.6920152091254752,
2141
+ "grad_norm": 0.4742262519043048,
2142
+ "learning_rate": 7.05326391437195e-07,
2143
+ "loss": 0.567,
2144
+ "mean_token_accuracy": 0.8408115699887275,
2145
+ "step": 1335
2146
+ },
2147
+ {
2148
+ "epoch": 1.6983523447401776,
2149
+ "grad_norm": 0.48084605496078786,
2150
+ "learning_rate": 6.772664405891505e-07,
2151
+ "loss": 0.5739,
2152
+ "mean_token_accuracy": 0.8401078969240189,
2153
+ "step": 1340
2154
+ },
2155
+ {
2156
+ "epoch": 1.7046894803548795,
2157
+ "grad_norm": 0.4836055364313366,
2158
+ "learning_rate": 6.49735442765228e-07,
2159
+ "loss": 0.5771,
2160
+ "mean_token_accuracy": 0.8388657510280609,
2161
+ "step": 1345
2162
+ },
2163
+ {
2164
+ "epoch": 1.7110266159695817,
2165
+ "grad_norm": 0.4955193703741457,
2166
+ "learning_rate": 6.227367668070084e-07,
2167
+ "loss": 0.5641,
2168
+ "mean_token_accuracy": 0.8420116931200028,
2169
+ "step": 1350
2170
+ },
2171
+ {
2172
+ "epoch": 1.717363751584284,
2173
+ "grad_norm": 0.47888043666477453,
2174
+ "learning_rate": 5.962737164182942e-07,
2175
+ "loss": 0.5695,
2176
+ "mean_token_accuracy": 0.8411467924714089,
2177
+ "step": 1355
2178
+ },
2179
+ {
2180
+ "epoch": 1.723700887198986,
2181
+ "grad_norm": 0.48358100558875267,
2182
+ "learning_rate": 5.703495297608486e-07,
2183
+ "loss": 0.5672,
2184
+ "mean_token_accuracy": 0.8408854246139527,
2185
+ "step": 1360
2186
+ },
2187
+ {
2188
+ "epoch": 1.7300380228136882,
2189
+ "grad_norm": 0.48450381732440073,
2190
+ "learning_rate": 5.449673790581611e-07,
2191
+ "loss": 0.5756,
2192
+ "mean_token_accuracy": 0.8394671693444252,
2193
+ "step": 1365
2194
+ },
2195
+ {
2196
+ "epoch": 1.7363751584283904,
2197
+ "grad_norm": 0.524224789009983,
2198
+ "learning_rate": 5.201303702072724e-07,
2199
+ "loss": 0.564,
2200
+ "mean_token_accuracy": 0.8414558693766594,
2201
+ "step": 1370
2202
+ },
2203
+ {
2204
+ "epoch": 1.7427122940430926,
2205
+ "grad_norm": 0.47448699280100953,
2206
+ "learning_rate": 4.958415423987229e-07,
2207
+ "loss": 0.5576,
2208
+ "mean_token_accuracy": 0.8432327851653099,
2209
+ "step": 1375
2210
+ },
2211
+ {
2212
+ "epoch": 1.7490494296577945,
2213
+ "grad_norm": 0.4999589058798834,
2214
+ "learning_rate": 4.721038677446599e-07,
2215
+ "loss": 0.5543,
2216
+ "mean_token_accuracy": 0.8434969082474708,
2217
+ "step": 1380
2218
+ },
2219
+ {
2220
+ "epoch": 1.755386565272497,
2221
+ "grad_norm": 0.49519130319734356,
2222
+ "learning_rate": 4.4892025091515465e-07,
2223
+ "loss": 0.5744,
2224
+ "mean_token_accuracy": 0.8392727747559547,
2225
+ "step": 1385
2226
+ },
2227
+ {
2228
+ "epoch": 1.7617237008871989,
2229
+ "grad_norm": 0.47996153862103574,
2230
+ "learning_rate": 4.2629352878276964e-07,
2231
+ "loss": 0.5757,
2232
+ "mean_token_accuracy": 0.8395681723952293,
2233
+ "step": 1390
2234
+ },
2235
+ {
2236
+ "epoch": 1.7680608365019013,
2237
+ "grad_norm": 0.4743677174789034,
2238
+ "learning_rate": 4.04226470075425e-07,
2239
+ "loss": 0.5793,
2240
+ "mean_token_accuracy": 0.8383775666356087,
2241
+ "step": 1395
2242
+ },
2243
+ {
2244
+ "epoch": 1.7743979721166032,
2245
+ "grad_norm": 0.47358657093352546,
2246
+ "learning_rate": 3.8272177503760277e-07,
2247
+ "loss": 0.5666,
2248
+ "mean_token_accuracy": 0.8409555062651635,
2249
+ "step": 1400
2250
+ },
2251
+ {
2252
+ "epoch": 1.7807351077313056,
2253
+ "grad_norm": 0.47898043422535136,
2254
+ "learning_rate": 3.6178207509992623e-07,
2255
+ "loss": 0.5588,
2256
+ "mean_token_accuracy": 0.8429359510540962,
2257
+ "step": 1405
2258
+ },
2259
+ {
2260
+ "epoch": 1.7870722433460076,
2261
+ "grad_norm": 0.48612638069980213,
2262
+ "learning_rate": 3.4140993255717123e-07,
2263
+ "loss": 0.5687,
2264
+ "mean_token_accuracy": 0.840995529294014,
2265
+ "step": 1410
2266
+ },
2267
+ {
2268
+ "epoch": 1.7934093789607097,
2269
+ "grad_norm": 0.47802067614271637,
2270
+ "learning_rate": 3.216078402547218e-07,
2271
+ "loss": 0.5651,
2272
+ "mean_token_accuracy": 0.8413813829421997,
2273
+ "step": 1415
2274
+ },
2275
+ {
2276
+ "epoch": 1.799746514575412,
2277
+ "grad_norm": 0.45575767680162316,
2278
+ "learning_rate": 3.0237822128353744e-07,
2279
+ "loss": 0.5551,
2280
+ "mean_token_accuracy": 0.8439073666930199,
2281
+ "step": 1420
2282
+ },
2283
+ {
2284
+ "epoch": 1.806083650190114,
2285
+ "grad_norm": 0.5008888425261698,
2286
+ "learning_rate": 2.8372342868364934e-07,
2287
+ "loss": 0.5763,
2288
+ "mean_token_accuracy": 0.8394736155867577,
2289
+ "step": 1425
2290
+ },
2291
+ {
2292
+ "epoch": 1.8124207858048162,
2293
+ "grad_norm": 0.47883052147679717,
2294
+ "learning_rate": 2.656457451562283e-07,
2295
+ "loss": 0.5847,
2296
+ "mean_token_accuracy": 0.8371838569641114,
2297
+ "step": 1430
2298
+ },
2299
+ {
2300
+ "epoch": 1.8187579214195184,
2301
+ "grad_norm": 0.48136837053701437,
2302
+ "learning_rate": 2.4814738278426287e-07,
2303
+ "loss": 0.5713,
2304
+ "mean_token_accuracy": 0.8400285989046097,
2305
+ "step": 1435
2306
+ },
2307
+ {
2308
+ "epoch": 1.8250950570342206,
2309
+ "grad_norm": 0.47630227923243995,
2310
+ "learning_rate": 2.3123048276187722e-07,
2311
+ "loss": 0.5663,
2312
+ "mean_token_accuracy": 0.8415055811405182,
2313
+ "step": 1440
2314
+ },
2315
+ {
2316
+ "epoch": 1.8314321926489225,
2317
+ "grad_norm": 0.48067639897927306,
2318
+ "learning_rate": 2.1489711513232038e-07,
2319
+ "loss": 0.5702,
2320
+ "mean_token_accuracy": 0.8404717803001404,
2321
+ "step": 1445
2322
+ },
2323
+ {
2324
+ "epoch": 1.837769328263625,
2325
+ "grad_norm": 0.48817733468841595,
2326
+ "learning_rate": 1.991492785346677e-07,
2327
+ "loss": 0.5659,
2328
+ "mean_token_accuracy": 0.8410487651824952,
2329
+ "step": 1450
2330
+ },
2331
+ {
2332
+ "epoch": 1.8441064638783269,
2333
+ "grad_norm": 0.4753854139627654,
2334
+ "learning_rate": 1.8398889995925428e-07,
2335
+ "loss": 0.5612,
2336
+ "mean_token_accuracy": 0.842425537109375,
2337
+ "step": 1455
2338
+ },
2339
+ {
2340
+ "epoch": 1.8504435994930293,
2341
+ "grad_norm": 0.4979097318389579,
2342
+ "learning_rate": 1.694178345118791e-07,
2343
+ "loss": 0.5554,
2344
+ "mean_token_accuracy": 0.843775661289692,
2345
+ "step": 1460
2346
+ },
2347
+ {
2348
+ "epoch": 1.8567807351077312,
2349
+ "grad_norm": 0.4829356927499738,
2350
+ "learning_rate": 1.5543786518680436e-07,
2351
+ "loss": 0.556,
2352
+ "mean_token_accuracy": 0.8434767201542854,
2353
+ "step": 1465
2354
+ },
2355
+ {
2356
+ "epoch": 1.8631178707224336,
2357
+ "grad_norm": 0.4651233227253299,
2358
+ "learning_rate": 1.4205070264857901e-07,
2359
+ "loss": 0.5704,
2360
+ "mean_token_accuracy": 0.8402711316943169,
2361
+ "step": 1470
2362
+ },
2363
+ {
2364
+ "epoch": 1.8694550063371356,
2365
+ "grad_norm": 0.47253676852018517,
2366
+ "learning_rate": 1.292579850227099e-07,
2367
+ "loss": 0.5777,
2368
+ "mean_token_accuracy": 0.8392020970582962,
2369
+ "step": 1475
2370
+ },
2371
+ {
2372
+ "epoch": 1.8757921419518377,
2373
+ "grad_norm": 0.4800740772721781,
2374
+ "learning_rate": 1.170612776952168e-07,
2375
+ "loss": 0.566,
2376
+ "mean_token_accuracy": 0.8414452761411667,
2377
+ "step": 1480
2378
+ },
2379
+ {
2380
+ "epoch": 1.88212927756654,
2381
+ "grad_norm": 0.46528025174750537,
2382
+ "learning_rate": 1.0546207312107814e-07,
2383
+ "loss": 0.5636,
2384
+ "mean_token_accuracy": 0.8416185140609741,
2385
+ "step": 1485
2386
+ },
2387
+ {
2388
+ "epoch": 1.888466413181242,
2389
+ "grad_norm": 0.47693097112640276,
2390
+ "learning_rate": 9.44617906416101e-08,
2391
+ "loss": 0.5727,
2392
+ "mean_token_accuracy": 0.8405211389064788,
2393
+ "step": 1490
2394
+ },
2395
+ {
2396
+ "epoch": 1.8948035487959443,
2397
+ "grad_norm": 0.4787485103517413,
2398
+ "learning_rate": 8.406177631078594e-08,
2399
+ "loss": 0.5708,
2400
+ "mean_token_accuracy": 0.8403903424739838,
2401
+ "step": 1495
2402
+ },
2403
+ {
2404
+ "epoch": 1.9011406844106464,
2405
+ "grad_norm": 0.45967120152380847,
2406
+ "learning_rate": 7.426330273052618e-08,
2407
+ "loss": 0.5496,
2408
+ "mean_token_accuracy": 0.8449963420629502,
2409
+ "step": 1500
2410
+ },
2411
+ {
2412
+ "epoch": 1.9074778200253486,
2413
+ "grad_norm": 0.46451147059266606,
2414
+ "learning_rate": 6.506756889497756e-08,
2415
+ "loss": 0.5608,
2416
+ "mean_token_accuracy": 0.8425014033913613,
2417
+ "step": 1505
2418
+ },
2419
+ {
2420
+ "epoch": 1.9138149556400506,
2421
+ "grad_norm": 0.5057760468937542,
2422
+ "learning_rate": 5.647570004379432e-08,
2423
+ "loss": 0.5602,
2424
+ "mean_token_accuracy": 0.8427406966686248,
2425
+ "step": 1510
2426
+ },
2427
+ {
2428
+ "epoch": 1.920152091254753,
2429
+ "grad_norm": 0.48061481353459495,
2430
+ "learning_rate": 4.848874752445221e-08,
2431
+ "loss": 0.5675,
2432
+ "mean_token_accuracy": 0.8411912024021149,
2433
+ "step": 1515
2434
+ },
2435
+ {
2436
+ "epoch": 1.926489226869455,
2437
+ "grad_norm": 0.4689935228428535,
2438
+ "learning_rate": 4.110768866359638e-08,
2439
+ "loss": 0.5631,
2440
+ "mean_token_accuracy": 0.8418816044926644,
2441
+ "step": 1520
2442
+ },
2443
+ {
2444
+ "epoch": 1.9328263624841573,
2445
+ "grad_norm": 0.4698265767310371,
2446
+ "learning_rate": 3.43334266474521e-08,
2447
+ "loss": 0.5635,
2448
+ "mean_token_accuracy": 0.8423062637448311,
2449
+ "step": 1525
2450
+ },
2451
+ {
2452
+ "epoch": 1.9391634980988592,
2453
+ "grad_norm": 0.49190745957035076,
2454
+ "learning_rate": 2.8166790411304766e-08,
2455
+ "loss": 0.5644,
2456
+ "mean_token_accuracy": 0.8418506249785424,
2457
+ "step": 1530
2458
+ },
2459
+ {
2460
+ "epoch": 1.9455006337135616,
2461
+ "grad_norm": 0.4676519055114557,
2462
+ "learning_rate": 2.260853453806944e-08,
2463
+ "loss": 0.5691,
2464
+ "mean_token_accuracy": 0.8408907786011696,
2465
+ "step": 1535
2466
+ },
2467
+ {
2468
+ "epoch": 1.9518377693282636,
2469
+ "grad_norm": 0.4857147511585138,
2470
+ "learning_rate": 1.7659339165952417e-08,
2471
+ "loss": 0.5699,
2472
+ "mean_token_accuracy": 0.8406305849552155,
2473
+ "step": 1540
2474
+ },
2475
+ {
2476
+ "epoch": 1.9581749049429658,
2477
+ "grad_norm": 0.48303973039403075,
2478
+ "learning_rate": 1.3319809905228409e-08,
2479
+ "loss": 0.5765,
2480
+ "mean_token_accuracy": 0.8395203098654747,
2481
+ "step": 1545
2482
+ },
2483
+ {
2484
+ "epoch": 1.964512040557668,
2485
+ "grad_norm": 0.47745966065458134,
2486
+ "learning_rate": 9.590477764135353e-09,
2487
+ "loss": 0.5641,
2488
+ "mean_token_accuracy": 0.8417988792061806,
2489
+ "step": 1550
2490
+ },
2491
+ {
2492
+ "epoch": 1.97084917617237,
2493
+ "grad_norm": 0.4675012014451023,
2494
+ "learning_rate": 6.47179908389417e-09,
2495
+ "loss": 0.5699,
2496
+ "mean_token_accuracy": 0.8404615536332131,
2497
+ "step": 1555
2498
+ },
2499
+ {
2500
+ "epoch": 1.9771863117870723,
2501
+ "grad_norm": 0.4956658011789385,
2502
+ "learning_rate": 3.964155482871213e-09,
2503
+ "loss": 0.5592,
2504
+ "mean_token_accuracy": 0.842540180683136,
2505
+ "step": 1560
2506
+ },
2507
+ {
2508
+ "epoch": 1.9835234474017744,
2509
+ "grad_norm": 0.4689038627708401,
2510
+ "learning_rate": 2.0678538098806158e-09,
2511
+ "loss": 0.5745,
2512
+ "mean_token_accuracy": 0.8394525855779648,
2513
+ "step": 1565
2514
+ },
2515
+ {
2516
+ "epoch": 1.9898605830164766,
2517
+ "grad_norm": 0.4660374899806601,
2518
+ "learning_rate": 7.83126106637111e-10,
2519
+ "loss": 0.5643,
2520
+ "mean_token_accuracy": 0.8416339352726936,
2521
+ "step": 1570
2522
+ },
2523
+ {
2524
+ "epoch": 1.9961977186311786,
2525
+ "grad_norm": 0.4729664926744204,
2526
+ "learning_rate": 1.1012957935985224e-10,
2527
+ "loss": 0.5636,
2528
+ "mean_token_accuracy": 0.8414568796753883,
2529
+ "step": 1575
2530
+ },
2531
+ {
2532
+ "epoch": 2.0,
2533
+ "mean_token_accuracy": 0.8406301041444143,
2534
+ "step": 1578,
2535
+ "total_flos": 827207983300608.0,
2536
+ "train_loss": 0.6521280055868006,
2537
+ "train_runtime": 235151.6683,
2538
+ "train_samples_per_second": 1.718,
2539
+ "train_steps_per_second": 0.007
2540
+ }
2541
+ ],
2542
+ "logging_steps": 5,
2543
+ "max_steps": 1578,
2544
+ "num_input_tokens_seen": 0,
2545
+ "num_train_epochs": 2,
2546
+ "save_steps": 50,
2547
+ "stateful_callbacks": {
2548
+ "TrainerControl": {
2549
+ "args": {
2550
+ "should_epoch_stop": false,
2551
+ "should_evaluate": false,
2552
+ "should_log": false,
2553
+ "should_save": false,
2554
+ "should_training_stop": false
2555
+ },
2556
+ "attributes": {}
2557
+ }
2558
+ },
2559
+ "total_flos": 827207983300608.0,
2560
+ "train_batch_size": 4,
2561
+ "trial_name": null,
2562
+ "trial_params": null
2563
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d431cc457b16c5ce24099cbd6522bff4ccf6c2ff1f3967a214c7990c342e6e2e
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff