File size: 2,636 Bytes
874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f fa4c5bd 874e30f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
library_name: transformers
datasets:
- mteb/tweet_sentiment_extraction
base_model:
- openai-community/gpt2
---
# Model Card for Model ID
This model fine-tunes GPT-2 on the "Tweet Sentiment Extraction" dataset for sentiment analysis tasks.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model fine-tunes GPT-2 using the "Tweet Sentiment Extraction" dataset to extract sentiment-relevant portions of text.
It demonstrates preprocessing, tokenization, and fine-tuning with Hugging Face libraries.
## Uses
### Direct Use
This model can be used to analyze text for sentiment-relevant extractions directly after fine-tuning.
It works as a baseline model for learning sentiment-specific features.
### Downstream Use [optional]
Fine-tuned for tasks that involve sentiment analysis, such as social media monitoring or customer feedback analysis.
### Out-of-Scope Use
Avoid using the model for real-time sentiment prediction or deployment without additional training/testing for specific use cases.
## Bias, Risks, and Limitations
The dataset used may not fully represent the diversity of text, leading to biases in the output. There is a risk of overfitting to the specific dataset.
### Recommendations
Carefully evaluate the model for biases and limitations before deploying in production environments. Consider retraining on a more diverse dataset if required.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("https://huggingface.co/Wexnflex/Tweet_Sentiment")
tokenizer = AutoTokenizer.from_pretrained("https://huggingface.co/Wexnflex/Tweet_Sentiment")
text = "Input your text here."
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
#### Training Hyperparameters
Training Hyperparameters
Batch size: 16
Learning rate: 2e-5
Epochs: 3
Optimizer: AdamW
#### Testing Data, Factors & Metrics
#### Testing Data
The evaluation was performed on the test split of the "Tweet Sentiment Extraction" dataset.
#### Factors
Evaluation is segmented by sentiment labels (e.g., positive, negative, neutral).
#### Metrics
Accuracy
### Results
70% Accuracy
#### Summary
The fine-tuned model performs well for extracting sentiment-relevant text, with room for improvement in handling ambiguous cases.
## Technical Specifications [optional]
#### Hardware
T4 GPU (Google Colab)
#### Software
Hugging Face Transformers Library
|