import os from tqdm.auto import tqdm from PIL import Image import torch as T import transformers, diffusers from mgie_llava import LlavaLlamaForCausalLM_ from llava.conversation import conv_templates from llava.model import * import json def read_json(file_path): with open(file_path, 'r', encoding='utf-8') as file: data = json.load(file) return data def write_json(file_path, data): with open(file_path, 'w', encoding='utf-8') as file: json.dump(data, file, ensure_ascii=False, indent=4) def crop_resize(f, sz=512): w, h = f.size if w>h: p = (w-h)//2 f = f.crop([p, 0, p+h, h]) elif h>w: p = (h-w)//2 f = f.crop([0, p, w, p+w]) f = f.resize([sz, sz]) return f def remove_alter(s): # hack expressive instruction if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip() if '' in s: s = s[:s.index('')].strip() if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')] if '[IMG0]' in s: s = s[:s.index('[IMG0]')] s = '.'.join([s.strip() for s in s.split('.')[:2]]) if s[-1]!='.': s += '.' return s.strip() DEFAULT_IMAGE_TOKEN = '' DEFAULT_IMAGE_PATCH_TOKEN = '' DEFAULT_IM_START_TOKEN = '' DEFAULT_IM_END_TOKEN = '' PATH_LLAVA = '/home/zbz5349/WorkSpace/aigeeks/ml-mgie/_ckpt/LLaVA-7B-v1' tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA) model = LlavaLlamaForCausalLM_.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda() image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16) tokenizer.padding_side = 'left' tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) ckpt = T.load('./_ckpt/mgie_7b/mllm.pt', map_location='cpu') model.load_state_dict(ckpt, strict=False) mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False) tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) vision_tower = model.get_model().vision_tower[0] vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda() model.get_model().vision_tower[0] = vision_tower vision_config = vision_tower.config vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] vision_config.use_im_start_end = mm_use_im_start_end if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) image_token_len = (vision_config.image_size//vision_config.patch_size)**2 _ = model.eval() EMB = ckpt['emb'].cuda() with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB) print('NULL:', NULL.shape) pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16, safety_checker=None).to('cuda') pipe.set_progress_bar_config(disable=True) pipe.unet.load_state_dict(T.load('./_ckpt/mgie_7b/unet.pt', map_location='cpu')) SEED = 13331 # ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion', # 'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast', # 'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out', # 'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb', # 'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood'] data_path = '/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/magicbrush_dataset/genp2_4_multi.json' save_image = '/home/zbz5349/WorkSpace/aigeeks/ml-mgie/all' os.makedirs(save_image,exist_ok=True) # 若有x个指令那么生成x(single) + x(mix) + 1(all)张图片 data = read_json(data_path) for i in tqdm(range(100)): img_path = data[i]["content"][0]["image"] g = img_path g = g.split('/') txt = data[i]["content"][1]["text"] save_img_path = f"{g[-1]}" img = Image.open(img_path) #img.save(os.path.join(save_image,f"ori_{i}{i}.png")) #img, txt = Image.open('_input/%d.jpg'%(i)).convert('RGB'), ins[i] img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] txt = "what will this image be like if '%s'"%(txt) txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN conv = conv_templates['vicuna_v1'].copy() conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None) txt = conv.get_prompt() txt = tokenizer(txt) txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask']) with T.inference_mode(): out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(), do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3, return_dict_in_generate=True, output_hidden_states=True) out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0] p = min(out.index(32003)-1 if 32003 in out else len(hid)-9, len(hid)-9) hid = hid[p:p+8] out = remove_alter(tokenizer.decode(out)) emb = model.edit_head(hid.unsqueeze(dim=0), EMB) res = pipe(image=Image.open(img_path).convert('RGB'), prompt_embeds=emb, negative_prompt_embeds=NULL, generator=T.Generator(device='cuda').manual_seed(SEED)).images[0] save_img_path = os.path.join(save_image, save_img_path) res.save(save_img_path)