import os import torch from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import json from tqdm import tqdm import os def read_json(file_path): with open(file_path, 'r', encoding='utf-8') as file: data = json.load(file) return data def write_json(file_path, data): with open(file_path, 'w', encoding='utf-8') as file: json.dump(data, file, ensure_ascii=False, indent=4) # default: Load the model on the available device(s) print(torch.cuda.device_count()) model_path = "/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/ckpt" # model = Qwen2_5_VLForConditionalGeneration.from_pretrained( # model_path, torch_dtype="auto", device_map="auto" # ) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto", ) # default processor processor = AutoProcessor.from_pretrained(model_path) print(model.device) data = read_json('/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/LLaMA-Factory/data/Percption.json') save_data = [] correct_num = 0 begin = 0 end = 1 batch_size = 1 for batch_idx in tqdm(range(begin, end, batch_size)): batch = data[batch_idx:batch_idx + batch_size] image_list = [] input_text_list = [] data_list = [] save_list = [] sd_ans = [] # while True: for idx, i in enumerate(batch): save_ = { "role": "user", "content": [ { "type": "video", "video": "file:///path/to/video1.mp4", "max_pixels": 360 * 420, "fps": 1.0, }, {"type": "image", "image": "file:///path/to/image2.jpg"}, {"type": "text", "text": "Describe this video."}, ], "answer":"None", "result":"None", } messages = { "role": "user", "content": [ { "type": "video", "video": "file:///path/to/video1.mp4", "max_pixels": 360 * 420, "fps": 1.0, }, {"type": "image", "image": "file:///path/to/image2.jpg"}, {"type": "text", "text": "Describe this video."}, ], } video_path = i['videos'] image_path = i['images'] question = i['messages'][0]['content'] answer = i['messages'][1]['content'] messages['content'][0]['video'] = video_path messages['content'][1]['image'] = image_path messages['content'][2]['text'] = question save_['content'][0]['video'] = video_path save_['content'][1]['image'] = image_path save_['content'][2]['text'] = question save_['answer'] = answer sd_ans.append(answer) data_list.append(messages) save_list.append(save_) text = processor.apply_chat_template(data_list, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs, video_kwargs = process_vision_info(data_list, return_video_kwargs=True) fps = 1 inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", **video_kwargs, ) inputs = inputs.to(model.device) # Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) for idx,x in enumerate(output_text): save_list[idx]['result'] = x save_data.append(save_list[idx]) print("correct_num", correct_num) write_json("infer_answer_.json",save_data)