from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info model_path = "/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/ckpt" # default: Load the model on the available device(s) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_path, torch_dtype="auto", device_map="auto" ) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. # model = Qwen2_5_VLForConditionalGeneration.from_pretrained( # "Qwen/Qwen2.5-VL-7B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # default processor processor = AutoProcessor.from_pretrained(model_path) # The default range for the number of visual tokens per image in the model is 4-16384. # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ {'role': 'user', 'content': [{'type': 'video', 'video': '/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/dataset/data/new_Psychology_5.mp4', 'max_pixels': 151200, 'fps': 1.0}, {'type': 'image', 'image': '/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/dataset/images/new_Psychology_5.png', 'text': '