Upload example_text_completion.py with huggingface_hub
Browse files- example_text_completion.py +99 -0
example_text_completion.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
3 |
+
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import fire
|
7 |
+
|
8 |
+
from llama import Llama
|
9 |
+
import json
|
10 |
+
|
11 |
+
def read_json(file_path):
|
12 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
13 |
+
data = json.load(file)
|
14 |
+
return data
|
15 |
+
|
16 |
+
def write_json(file_path, data):
|
17 |
+
with open(file_path, 'w', encoding='utf-8') as file:
|
18 |
+
json.dump(data, file, ensure_ascii=False, indent=4)
|
19 |
+
|
20 |
+
def main(
|
21 |
+
ckpt_dir: str,
|
22 |
+
tokenizer_path: str,
|
23 |
+
temperature: float = 0.6,
|
24 |
+
top_p: float = 0.9,
|
25 |
+
max_seq_len: int = 128,
|
26 |
+
max_gen_len: int = 64,
|
27 |
+
max_batch_size: int = 4,
|
28 |
+
json_path: str = None,
|
29 |
+
):
|
30 |
+
"""
|
31 |
+
Examples to run with the pre-trained models (no fine-tuning). Prompts are
|
32 |
+
usually in the form of an incomplete text prefix that the model can then try to complete.
|
33 |
+
|
34 |
+
The context window of llama3 models is 8192 tokens, so `max_seq_len` needs to be <= 8192.
|
35 |
+
`max_gen_len` is needed because pre-trained models usually do not stop completions naturally.
|
36 |
+
"""
|
37 |
+
generator = Llama.build(
|
38 |
+
ckpt_dir=ckpt_dir,
|
39 |
+
tokenizer_path=tokenizer_path,
|
40 |
+
max_seq_len=max_seq_len,
|
41 |
+
max_batch_size=max_batch_size,
|
42 |
+
)
|
43 |
+
with open(json_path) as f:
|
44 |
+
data = json.load(f)
|
45 |
+
|
46 |
+
ans = []
|
47 |
+
begin, end,batch_size = 0,len(data),max_batch_size
|
48 |
+
for batch_idx in tqdm(range(begin, end, max_batch_size)):
|
49 |
+
up = min(batch_idx + max_batch_size, end)
|
50 |
+
batch = data[batch_idx:up]
|
51 |
+
print(f"batch {batch_idx} to {up}")
|
52 |
+
|
53 |
+
text_batch = []
|
54 |
+
for idx,i in enumerate(batch):
|
55 |
+
text_batch.append(idx)
|
56 |
+
res = generator.text_completion(
|
57 |
+
text_batch,
|
58 |
+
max_gen_len=max_gen_len,
|
59 |
+
temperature=temperature,
|
60 |
+
top_p=top_p,
|
61 |
+
)
|
62 |
+
ans.append(res)
|
63 |
+
cnt = cnt + 1
|
64 |
+
if cnt % 10 == 0:
|
65 |
+
print(f"batch {cnt} done")
|
66 |
+
write_json(ans, "ans.json")
|
67 |
+
|
68 |
+
|
69 |
+
# prompts: List[str] = [
|
70 |
+
# # For these prompts, the expected answer is the natural continuation of the prompt
|
71 |
+
# "I believe the meaning of life is",
|
72 |
+
# "Simply put, the theory of relativity states that ",
|
73 |
+
# """A brief message congratulating the team on the launch:
|
74 |
+
|
75 |
+
# Hi everyone,
|
76 |
+
|
77 |
+
# I just """,
|
78 |
+
# # Few shot prompt (providing a few examples before asking model to complete more);
|
79 |
+
# """Translate English to French:
|
80 |
+
|
81 |
+
# sea otter => loutre de mer
|
82 |
+
# peppermint => menthe poivrée
|
83 |
+
# plush girafe => girafe peluche
|
84 |
+
# cheese =>""",
|
85 |
+
# ]
|
86 |
+
# results = generator.text_completion(
|
87 |
+
# prompts,
|
88 |
+
# max_gen_len=max_gen_len,
|
89 |
+
# temperature=temperature,
|
90 |
+
# top_p=top_p,
|
91 |
+
# )
|
92 |
+
# for prompt, result in zip(prompts, results):
|
93 |
+
# print(prompt)
|
94 |
+
# print(f"> {result['generation']}")
|
95 |
+
# print("\n==================================\n")
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
fire.Fire(main)
|