Wendy-Fly commited on
Commit
eb74c58
·
verified ·
1 Parent(s): bd06209

Upload infer_3.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. infer_3.py +12 -12
infer_3.py CHANGED
@@ -19,11 +19,7 @@ def write_json(file_path, data):
19
  # default: Load the model on the available device(s)
20
  print(torch.cuda.device_count())
21
  model_path = "/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/LLaMA-Factory/output/Qwen2.5-VL-3B_all"
22
- # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
23
- # model_path, torch_dtype="auto", device_map="auto"
24
- # )
25
 
26
- # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
27
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
28
  model_path,
29
  torch_dtype=torch.bfloat16,
@@ -50,8 +46,8 @@ for batch_idx in tqdm(range(begin, end, batch_size)):
50
  image_list = []
51
  input_text_list = []
52
  data_list = []
53
- save_data = []
54
-
55
  # while True:
56
  for idx, i in enumerate(batch):
57
  save_ = {
@@ -66,7 +62,8 @@ for batch_idx in tqdm(range(begin, end, batch_size)):
66
  {"type": "image", "image": "file:///path/to/image2.jpg"},
67
  {"type": "text", "text": "Describe this video."},
68
  ],
69
- "answer":""
 
70
  }
71
  messages = {
72
  "role": "user",
@@ -95,8 +92,9 @@ for batch_idx in tqdm(range(begin, end, batch_size)):
95
  save_['content'][1]['image'] = image_path
96
  save_['content'][2]['text'] = question
97
  save_['answer'] = answer
 
98
  data_list.append(messages)
99
- save_data.append(save_)
100
 
101
  text = processor.apply_chat_template(data_list, tokenize=False, add_generation_prompt=True)
102
  image_inputs, video_inputs, video_kwargs = process_vision_info(data_list, return_video_kwargs=True)
@@ -119,11 +117,13 @@ for batch_idx in tqdm(range(begin, end, batch_size)):
119
  output_text = processor.batch_decode(
120
  generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
121
  )
122
- save_["answer"] = output_text
123
- if output_text == answer:
124
- correct_num = correct_num + 1
125
- save_data.append(save_)
126
  print("correct_num", correct_num)
127
  write_json("infer_answer_finetune.json",save_data)
128
 
 
 
129
 
 
19
  # default: Load the model on the available device(s)
20
  print(torch.cuda.device_count())
21
  model_path = "/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/LLaMA-Factory/output/Qwen2.5-VL-3B_all"
 
 
 
22
 
 
23
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
24
  model_path,
25
  torch_dtype=torch.bfloat16,
 
46
  image_list = []
47
  input_text_list = []
48
  data_list = []
49
+ save_list = []
50
+ sd_ans = []
51
  # while True:
52
  for idx, i in enumerate(batch):
53
  save_ = {
 
62
  {"type": "image", "image": "file:///path/to/image2.jpg"},
63
  {"type": "text", "text": "Describe this video."},
64
  ],
65
+ "answer":"None",
66
+ "result":"None",
67
  }
68
  messages = {
69
  "role": "user",
 
92
  save_['content'][1]['image'] = image_path
93
  save_['content'][2]['text'] = question
94
  save_['answer'] = answer
95
+ sd_ans.append(answer)
96
  data_list.append(messages)
97
+ save_list.append(save_)
98
 
99
  text = processor.apply_chat_template(data_list, tokenize=False, add_generation_prompt=True)
100
  image_inputs, video_inputs, video_kwargs = process_vision_info(data_list, return_video_kwargs=True)
 
117
  output_text = processor.batch_decode(
118
  generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
119
  )
120
+ for idx,x in enumerate(output_text):
121
+ save_list[idx]['result'] = x
122
+ save_data.append(save_list[idx])
123
+
124
  print("correct_num", correct_num)
125
  write_json("infer_answer_finetune.json",save_data)
126
 
127
+
128
+
129