|
import argparse |
|
import torch |
|
|
|
from llmga.llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from llmga.llava.conversation import conv_templates, SeparatorStyle |
|
from llmga.llava.model.builder import load_pretrained_model |
|
from llmga.llava.utils import disable_torch_init |
|
from llmga.llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
|
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
import copy |
|
|
|
from llmga.diffusers.pipeline_semantic_stable_diffusion_img2img_solver_lpw_mask import SemanticStableDiffusionImg2ImgPipeline_DPMSolver |
|
from diffusers import StableDiffusionPipeline, AutoencoderKL |
|
from diffusers.schedulers import DDIMScheduler |
|
from llmga.diffusers.scheduling_dpmsolver_multistep_inject import DPMSolverMultistepSchedulerInject |
|
import random |
|
import cv2 |
|
import PIL |
|
from PIL import Image |
|
import os |
|
import numpy as np |
|
import json |
|
from tqdm import tqdm |
|
|
|
def read_json(file_path): |
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
data = json.load(file) |
|
return data |
|
|
|
def write_json(file_path, data): |
|
with open(file_path, 'w', encoding='utf-8') as file: |
|
json.dump(data, file, ensure_ascii=False, indent=4) |
|
|
|
def load_image(image_file): |
|
if image_file.startswith('http') or image_file.startswith('https'): |
|
response = requests.get(image_file) |
|
image = Image.open(BytesIO(response.content)).convert('RGB') |
|
else: |
|
image = Image.open(image_file).convert('RGB') |
|
return image |
|
|
|
def randomize_seed_fn(seed, is_random): |
|
if is_random: |
|
seed = random.randint(0, np.iinfo(np.int32).max) |
|
return seed |
|
|
|
def seed_everything(seed): |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
|
|
def crop_image(image): |
|
h, w, c = image.shape |
|
if h < w: |
|
offset = (w - h) // 2 |
|
image = image[:, offset:offset + h] |
|
elif w < h: |
|
offset = (h - w) // 2 |
|
image = image[offset:offset + w] |
|
image = np.array(Image.fromarray(image).resize((512, 512))) |
|
return image |
|
|
|
|
|
def main(args): |
|
|
|
disable_torch_init() |
|
|
|
model_name = get_model_name_from_path(args.model_path) |
|
|
|
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) |
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) |
|
pipe = SemanticStableDiffusionImg2ImgPipeline_DPMSolver.from_pretrained(args.sd_model_id,vae=vae,torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False).to("cuda") |
|
pipe.scheduler = DPMSolverMultistepSchedulerInject.from_pretrained(args.sd_model_id, subfolder="scheduler" |
|
, algorithm_type="sde-dpmsolver++", solver_order=2) |
|
|
|
def sample(zs, wts, mask_image, attention_store, text_cross_attention_maps, prompt_tar="", cfg_scale_tar=15, skip=36, eta=1): |
|
latents = wts[-1].expand(1, -1, -1, -1) |
|
img, attention_store, text_cross_attention_maps = pipe( |
|
prompt=prompt_tar, |
|
init_latents=latents, |
|
guidance_scale=cfg_scale_tar, |
|
mask_image=mask_image, |
|
attention_store = attention_store, text_cross_attention_maps=text_cross_attention_maps, |
|
zs=zs, |
|
) |
|
return img.images[0], attention_store, text_cross_attention_maps |
|
|
|
|
|
if 'llama-2' in model_name.lower(): |
|
conv_mode = "llava_llama_2" |
|
elif 'llama3' in model_name.lower(): |
|
conv_mode = "llama_3" |
|
elif "gemma" in model_name.lower(): |
|
conv_mode = "gemma" |
|
elif "qwen2" in model_name.lower(): |
|
conv_mode = "qwen_2" |
|
elif "phi-3" in model_name.lower(): |
|
conv_mode = "phi_3" |
|
elif "mistral" in model_name.lower(): |
|
conv_mode = "mistral_instruct" |
|
elif "v1.6-34b" in model_name.lower(): |
|
conv_mode = "chatml_direct" |
|
elif "v1" in model_name.lower(): |
|
conv_mode = "llava_v1" |
|
elif "mpt" in model_name.lower(): |
|
conv_mode = "mpt" |
|
else: |
|
conv_mode = "llava_v0" |
|
|
|
if args.conv_mode is not None and conv_mode != args.conv_mode: |
|
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) |
|
else: |
|
args.conv_mode = conv_mode |
|
|
|
|
|
|
|
image = load_image(args.image_file) |
|
|
|
image=np.array(image) |
|
image_np=crop_image(image) |
|
image=Image.fromarray(image_np) |
|
|
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda() |
|
image_size = image.size |
|
data_path = '/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/magicbrush_dataset/genp2_4_single.json' |
|
save_image = '/home/zbz5349/WorkSpace/aigeeks/LLMGA/single_result' |
|
os.makedirs(save_image,exist_ok=True) |
|
|
|
data = read_json(data_path) |
|
for id in tqdm(range(2000)): |
|
conv = conv_templates[args.conv_mode].copy() |
|
if "mpt" in model_name.lower(): |
|
roles = ('user', 'assistant') |
|
else: |
|
roles = conv.roles |
|
img_path = data[id]["content"][0]["image"] |
|
image = load_image(img_path) |
|
image=np.array(image) |
|
image_np=crop_image(image) |
|
image=Image.fromarray(image_np) |
|
|
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda() |
|
image_size = image.size |
|
p = data[id]["content"][1]["text"] |
|
g = img_path |
|
g = g.split('/') |
|
s_img = f"{p[0]}_{g[-1]}" |
|
|
|
for i in range(2): |
|
if i==0: |
|
inp="Generate a similar image" |
|
else: |
|
inp = p[2:] |
|
|
|
|
|
|
|
if image is not None: |
|
|
|
if model.config.mm_use_im_start_end: |
|
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp |
|
else: |
|
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp |
|
conv.append_message(conv.roles[0], inp) |
|
image = None |
|
else: |
|
|
|
conv.append_message(conv.roles[0], inp) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
if conv_mode == "gemma": |
|
stop_str = conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
print(image_tensor.shape) |
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor, |
|
image_sizes=[image_size], |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
max_new_tokens=args.max_new_tokens, |
|
pad_token_id=tokenizer.eos_token_id, |
|
use_cache=True) |
|
|
|
outputs = tokenizer.decode(output_ids[0]).strip() |
|
conv.messages[-1][-1] = outputs |
|
|
|
if conv_mode == "gemma": |
|
outputs=copy.deepcopy(outputs)[:-19] |
|
elif conv_mode == "llama_3": |
|
outputs=copy.deepcopy(outputs)[:-10] |
|
elif conv_mode == "llava_v1": |
|
outputs=copy.deepcopy(outputs)[:-4] |
|
elif conv_mode == "phi_3": |
|
outputs=copy.deepcopy(outputs)[:-7] |
|
elif conv_mode == "qwen_2": |
|
outputs=copy.deepcopy(outputs)[:-10] |
|
elif conv_mode == "mistral_instruct": |
|
outputs=copy.deepcopy(outputs)[:-5] |
|
else: |
|
outputs=copy.deepcopy(outputs) |
|
|
|
caption=copy.deepcopy(outputs) |
|
|
|
id1=caption.find("<gen_image>") |
|
num_space=12 |
|
id2=caption.find("</gen_image>") |
|
if id1==-1 and id2==-1: |
|
caption = caption |
|
elif id1==-1 and id2!=-1: |
|
caption = caption[:id2] |
|
elif id1!=-1 and id2==-1: |
|
caption = caption[id1+num_space:] |
|
else: |
|
caption = caption[id1+num_space:id2] |
|
|
|
if id1==-1: |
|
outputs=caption |
|
|
|
|
|
|
|
|
|
if i==0: |
|
src_prompt = caption |
|
else: |
|
tar_prompt = caption |
|
|
|
init_image = Image.fromarray(image_np) |
|
mask_image = pipe.generate_mask(image=init_image, source_prompt=src_prompt, target_prompt=tar_prompt,mask_thresholding_ratio=3.0) |
|
|
|
cv2.imwrite(os.path.join(args.save_path,"mask.png"),mask_image[0]*255) |
|
zs_tensor, wts_tensor = pipe.invert( |
|
image_path = image_np, |
|
source_prompt =src_prompt, |
|
source_guidance_scale= args.src_cfg_scale, |
|
num_inversion_steps = args.steps, |
|
skip = args.skip, |
|
eta = 1.0, |
|
) |
|
wts = wts_tensor |
|
zs = zs_tensor |
|
pure_ddpm_img, attention_store, text_cross_attention_maps = sample(zs, wts, mask_image, attention_store=None, text_cross_attention_maps=None, prompt_tar=tar_prompt, skip=args.skip, cfg_scale_tar=args.tar_cfg_scale) |
|
|
|
pure_ddpm_img.save(os.path.join(save_image,s_img)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-file", type=str, required=True) |
|
parser.add_argument("--save_path", type=str, required=True) |
|
parser.add_argument("--num-gpus", type=int, default=1) |
|
parser.add_argument("--conv-mode", type=str, default=None) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--max-new-tokens", type=int, default=512) |
|
parser.add_argument("--load-8bit", action="store_true") |
|
parser.add_argument("--load-4bit", action="store_true") |
|
parser.add_argument("--debug", action="store_true") |
|
parser.add_argument("--device", type=str, default="cuda") |
|
|
|
parser.add_argument("--sd_model_id", type=str, required=True) |
|
parser.add_argument("--src_cfg_scale", type=float, default=3.5) |
|
parser.add_argument("--steps", type=int, default=50) |
|
parser.add_argument("--skip", type=int, default=25) |
|
parser.add_argument("--tar_cfg_scale", type=float, default=7.5) |
|
args = parser.parse_args() |
|
main(args) |
|
|