|
import os |
|
|
|
from tqdm.auto import tqdm |
|
|
|
from PIL import Image |
|
|
|
import torch as T |
|
import transformers, diffusers |
|
from mgie_llava import LlavaLlamaForCausalLM_ |
|
from llava.conversation import conv_templates |
|
from llava.model import * |
|
import json |
|
|
|
|
|
def read_json(file_path): |
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
data = json.load(file) |
|
return data |
|
|
|
def write_json(file_path, data): |
|
with open(file_path, 'w', encoding='utf-8') as file: |
|
json.dump(data, file, ensure_ascii=False, indent=4) |
|
|
|
def crop_resize(f, sz=512): |
|
w, h = f.size |
|
if w>h: |
|
p = (w-h)//2 |
|
f = f.crop([p, 0, p+h, h]) |
|
elif h>w: |
|
p = (h-w)//2 |
|
f = f.crop([0, p, w, p+w]) |
|
f = f.resize([sz, sz]) |
|
return f |
|
def remove_alter(s): |
|
if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip() |
|
if '</s>' in s: s = s[:s.index('</s>')].strip() |
|
if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')] |
|
if '[IMG0]' in s: s = s[:s.index('[IMG0]')] |
|
s = '.'.join([s.strip() for s in s.split('.')[:2]]) |
|
if s[-1]!='.': s += '.' |
|
return s.strip() |
|
|
|
|
|
DEFAULT_IMAGE_TOKEN = '<image>' |
|
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>' |
|
DEFAULT_IM_START_TOKEN = '<im_start>' |
|
DEFAULT_IM_END_TOKEN = '<im_end>' |
|
PATH_LLAVA = '/home/zbz5349/WorkSpace/aigeeks/ml-mgie/_ckpt/LLaVA-7B-v1' |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA) |
|
model = LlavaLlamaForCausalLM_.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda() |
|
image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16) |
|
|
|
tokenizer.padding_side = 'left' |
|
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
ckpt = T.load('./_ckpt/mgie_7b/mllm.pt', map_location='cpu') |
|
model.load_state_dict(ckpt, strict=False) |
|
|
|
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False) |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
|
|
vision_tower = model.get_model().vision_tower[0] |
|
vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda() |
|
model.get_model().vision_tower[0] = vision_tower |
|
vision_config = vision_tower.config |
|
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] |
|
vision_config.use_im_start_end = mm_use_im_start_end |
|
if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) |
|
image_token_len = (vision_config.image_size//vision_config.patch_size)**2 |
|
|
|
_ = model.eval() |
|
EMB = ckpt['emb'].cuda() |
|
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB) |
|
print('NULL:', NULL.shape) |
|
|
|
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16, safety_checker=None).to('cuda') |
|
pipe.set_progress_bar_config(disable=True) |
|
pipe.unet.load_state_dict(T.load('./_ckpt/mgie_7b/unet.pt', map_location='cpu')) |
|
|
|
|
|
SEED = 13331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_path = '/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/magicbrush_dataset/genp2_4_multi.json' |
|
save_image = '/home/zbz5349/WorkSpace/aigeeks/ml-mgie/all' |
|
os.makedirs(save_image,exist_ok=True) |
|
|
|
data = read_json(data_path) |
|
for i in tqdm(range(100)): |
|
img_path = data[i]["content"][0]["image"] |
|
g = img_path |
|
g = g.split('/') |
|
|
|
txt = data[i]["content"][1]["text"] |
|
save_img_path = f"{g[-1]}" |
|
|
|
img = Image.open(img_path) |
|
|
|
|
|
|
|
img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] |
|
txt = "what will this image be like if '%s'"%(txt) |
|
txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN |
|
conv = conv_templates['vicuna_v1'].copy() |
|
conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None) |
|
txt = conv.get_prompt() |
|
txt = tokenizer(txt) |
|
txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask']) |
|
|
|
with T.inference_mode(): |
|
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(), |
|
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3, |
|
return_dict_in_generate=True, output_hidden_states=True) |
|
out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0] |
|
|
|
p = min(out.index(32003)-1 if 32003 in out else len(hid)-9, len(hid)-9) |
|
hid = hid[p:p+8] |
|
|
|
out = remove_alter(tokenizer.decode(out)) |
|
emb = model.edit_head(hid.unsqueeze(dim=0), EMB) |
|
res = pipe(image=Image.open(img_path).convert('RGB'), prompt_embeds=emb, negative_prompt_embeds=NULL, generator=T.Generator(device='cuda').manual_seed(SEED)).images[0] |
|
save_img_path = os.path.join(save_image, save_img_path) |
|
res.save(save_img_path) |