File size: 9,306 Bytes
d2468c2
 
 
 
 
 
 
 
 
 
 
 
 
183355e
d2468c2
cd3a7b0
d2468c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e73817e
d2468c2
 
 
 
945a97b
d2468c2
 
 
 
 
 
 
 
 
 
 
 
0d409d1
 
 
 
d2468c2
 
 
 
5367a16
d2468c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945a97b
 
 
 
d2468c2
945a97b
 
 
 
 
 
 
 
d2468c2
 
 
 
 
 
 
 
 
 
f9d46da
 
d2468c2
 
 
f9d46da
d2468c2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import os
import re
import torch
from PIL import Image, ImageDraw
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from typing import List
import json
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader

class AITM_Dataset(Dataset):
    def __init__(self, json_path):
        #self.data = []
        with open(json_path, 'r') as f:
            self.data = json.load(f)

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        x = self.data[idx]
        img_path = x['image']
        task = x['conversations'][0]['value']
        return img_path, task
def draw_boxes_on_image(image: Image.Image, boxes: List[List[float]], save_path: str):
    """
    Draws red bounding boxes on the given image and saves it.

    Parameters:
    - image (PIL.Image.Image): The image on which to draw the bounding boxes.
    - boxes (List[List[float]]): A list of bounding boxes, each defined as [x_min, y_min, x_max, y_max].
      Coordinates are expected to be normalized (0 to 1).
    - save_path (str): The path to save the updated image.

    Description:
    Each box coordinate is a fraction of the image dimension. This function converts them to actual pixel
    coordinates and draws a red rectangle to mark the area. The annotated image is then saved to the specified path.
    """
    draw = ImageDraw.Draw(image)
    for box in boxes:
        x_min = int(box[0] * image.width)
        y_min = int(box[1] * image.height)
        x_max = int(box[2] * image.width)
        y_max = int(box[3] * image.height)
        draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
    image.save(save_path)


def main():
    """
    A continuous interactive demo using the CogAgent1.5 model with selectable format prompts.
    The output_image_path is interpreted as a directory. For each round of interaction,
    the annotated image will be saved in the directory with the filename:
    {original_image_name_without_extension}_{round_number}.png

    Example:
    python cli_demo.py --model_dir THUDM/cogagent-9b-20241220 --platform "Mac" --max_length 4096 --top_k 1 \
                     --output_image_path ./results --format_key status_action_op_sensitive
    """

    parser = argparse.ArgumentParser(
        description="Continuous interactive demo with CogAgent model and selectable format."
    )
    parser.add_argument(
        "--model_dir", required=True, help="Path or identifier of the model."
    )
    parser.add_argument(
        "--platform",
        default="Mac",
        help="Platform information string (e.g., 'Mac', 'WIN').",
    )
    parser.add_argument(
        "--max_length", type=int, default=4096, help="Maximum generation length."
    )
    parser.add_argument(
        "--top_k", type=int, default=1, help="Top-k sampling parameter."
    )
    parser.add_argument(
        "--output_image_path",
        default="results",
        help="Directory to save the annotated images.",
    )
    parser.add_argument(
        "--input_json",
        default="/Users/baixuehai/Downloads/2025_2/AITM_Test_General_BBox_v0.json",
        help="Directory to save the annotated images.",
    )
    parser.add_argument(
        "--output_json",
        default="/Users/baixuehai/Downloads/2025_2/AITM_Test_General_BBox_v0.json",
        help="Directory to save the annotated images.",
    )
    parser.add_argument(
        "--format_key",
        default="action_op_sensitive",
        help="Key to select the prompt format.",
    )
    args = parser.parse_args()

    # Dictionary mapping format keys to format strings
    format_dict = {
        "action_op_sensitive": "(Answer in Action-Operation-Sensitive format.)",
        "status_plan_action_op": "(Answer in Status-Plan-Action-Operation format.)",
        "status_action_op_sensitive": "(Answer in Status-Action-Operation-Sensitive format.)",
        "status_action_op": "(Answer in Status-Action-Operation format.)",
        "action_op": "(Answer in Action-Operation format.)",
    }

    # Ensure the provided format_key is valid
    if args.format_key not in format_dict:
        raise ValueError(
            f"Invalid format_key. Available keys are: {list(format_dict.keys())}"
        )

    # Ensure the output directory exists
    os.makedirs(args.output_image_path, exist_ok=True)

    # Load the tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(args.model_dir, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        args.model_dir,
        torch_dtype=torch.bfloat16,
        trust_remote_code=True,
        device_map="auto",
        # quantization_config=BitsAndBytesConfig(load_in_8bit=True), # For INT8 quantization
        # quantization_config=BitsAndBytesConfig(load_in_4bit=True), # For INT4 quantization
    ).eval()
    # Initialize platform and selected format strings
    platform_str = f"(Platform: {args.platform})\n"
    format_str = format_dict[args.format_key]

    # Initialize history lists
    history_step = []
    history_action = []

    round_num = 1
    # with open(args.input_json, "r") as f:
    #     data = json.load(f)
    dataset = AITM_Dataset(args.input_json)
    data_loader = DataLoader(dataset, batch_size=16, shuffle=False)

    res = []
    for x in tqdm(data_loader,desc="Processing items"):
        #x = data[i]
        img_path,task = x
        image = []
        for path in img_path:
            image.append(Image.open(path).convert("RGB"))
        #image = Image.open(img_path).convert("RGB")
        #task = x['conversations'][0]['value']
        # Verify history lengths match
        if len(history_step) != len(history_action):
            raise ValueError("Mismatch in lengths of history_step and history_action.")

        # Format history steps for output
        history_str = "\nHistory steps: "
        for index, (step, action) in enumerate(zip(history_step, history_action)):
            history_str += f"\n{index}. {step}\t{action}"

        # Compose the query with task, platform, and selected format instructions
        query = []
        for x in task:
            query.append(f"Task: {x}{history_str}\n{platform_str}{format_str}")
        #query = f"Task: {task}{history_str}\n{platform_str}{format_str}"

        #print(f"Round {round_num} query:\n{query}")

        inputs = tokenizer.apply_chat_template(
            [{"role": "user", "image": **image, "content": **query}],
            add_generation_prompt=True,
            tokenize=True,
            return_tensors="pt",
            return_dict=True,
        ).to(model.device)
        # Generation parameters
        gen_kwargs = {
            "max_length": args.max_length,
            "do_sample": True,
            "top_k": args.top_k,
        }

        # Generate response
        with torch.no_grad():
            outputs = model.generate(**inputs, **gen_kwargs)
            outputs = outputs[:, inputs["input_ids"].shape[1]:]
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            #print(f"Model response:\n{response}")

        # Extract grounded operation and action
        grounded_pattern = r"Grounded Operation:\s*(.*)"
        action_pattern = r"Action:\s*(.*)"
        matches_history = re.search(grounded_pattern, response)
        matches_actions = re.search(action_pattern, response)

        if matches_history:
            grounded_operation = matches_history.group(1)
            history_step.append(grounded_operation)
        if matches_actions:
            action_operation = matches_actions.group(1)
            history_action.append(action_operation)

        # Extract bounding boxes from the response
        box_pattern = r"box=\[\[?(\d+),(\d+),(\d+),(\d+)\]?\]"
        matches = re.findall(box_pattern, response)
        if matches:
            boxes = [[int(x) / 1000 for x in match] for match in matches]

            # Extract base name of the user's input image (without extension)
            base_name = []
            for path in args.img_path:
                base_name.append(os.path.splitext(os.path.basename(path))[0])
            #base_name = os.path.splitext(os.path.basename(img_path))[0]
            # Construct the output file name with round number
            output_file_name = []
            for i in range(len(base_name)):
                output_file_name.append(f"{base_name[i]}_{round_num}_{i}.png")
            #output_file_name = f"{base_name}_{round_num}.png"
            output_path = []
            for x in output_file_name:
                output_path.append(os.path.join(args.output_image_path, x))
            #output_path = os.path.join(args.output_image_path, output_file_name)

            draw_boxes_on_image(image, boxes, output_path)
            #print(f"Annotated image saved at: {output_path}")
        ans = {
            'query': f"Round {round_num} query:\n{query}",
            'response': response,
            'output_path': output_path
        }
        res.append(ans)
        round_num += 1
    #print(res)
    print("Writing to json file")
    with open(args.output_json, "w") as file:
        print("Writing to json file")
        json.dump(res, file, indent=4)
    print("Done")
        


if __name__ == "__main__":
    main()