File size: 6,184 Bytes
524b7e1
 
 
 
3f48fe9
524b7e1
 
a1a7b41
524b7e1
 
 
 
 
 
 
a1a7b41
524b7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440da7b
524b7e1
 
a1a7b41
524b7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440da7b
524b7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b6cc1
524b7e1
 
34b6cc1
524b7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800efd9
524b7e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from tqdm import tqdm
#from einops import rearrange
from PIL import Image
from copy import deepcopy

from typing import List, Optional, Union
from torch import autocast
#from torchvision import utils as vutils
from utils.util import EditingJsonDataset, EditingSingleImageDataset, plot_images
from lr_schedule import WarmupLinearLRSchedule
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.tensorboard import SummaryWriter
from models.model import RGN
from models.utils import visualize_images, read_image_from_url, draw_image_with_bbox_new, Bbox
from utils.util2 import compose_text_with_templates, get_augmentations_template
#from torchvision.utils import draw_bounding_boxes
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision import datasets, transforms
from engine import *
from vis import *
import os, jax, cv2, pdb
import numpy as np
import argparse, torch, inspect
import PIL, time, json, datetime
import random
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import utils.misc as misc
import torchvision.transforms as T
import torch.distributed as dist

from tqdm import tqdm
from einops import rearrange
from PIL import Image
from copy import deepcopy

from typing import List, Optional, Union
from torch import autocast
#from torchvision import utils as vutils
from utils.util import build_dataset, plot_images
from lr_schedule import WarmupLinearLRSchedule
from torch.utils.tensorboard import SummaryWriter
from models.model import RGN
from models.utils import visualize_images, read_image_from_url, draw_image_with_bbox_new, Bbox
from utils.util2 import compose_text_with_templates, get_augmentations_template
from torchvision.utils import draw_bounding_boxes
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision import datasets, transforms
from engine import *
from utils.post_process import get_final_img
import random
import os, jax, cv2, pdb
import numpy as np
import argparse, torch, inspect
import PIL, time, json, datetime
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import utils.misc as misc
import torchvision.transforms as T
import torch.distributed as dist
from tqdm import tqdm
#from einops import rearrange
from PIL import Image
from copy import deepcopy

from typing import List, Optional, Union
from torch import autocast
from torchvision import utils as vutils
from utils.util import EditingJsonDataset, EditingSingleImageDataset, plot_images
from lr_schedule import WarmupLinearLRSchedule
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.tensorboard import SummaryWriter
from models.model import RGN
from models.utils import visualize_images, read_image_from_url, draw_image_with_bbox_new, Bbox
from utils.util2 import compose_text_with_templates, get_augmentations_template
from torchvision.utils import draw_bounding_boxes
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision import datasets, transforms
from engine import *
from vis import *
import os, jax, cv2, pdb
import numpy as np
import argparse, torch, inspect
import PIL, time, json, datetime
import random
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import utils.misc as misc
import torchvision.transforms as T
import torch.distributed as dist


def map_cooridates(bbox, min_num=0, max_num=255):
    # input feat size: 32 x 32
    min_num2, max_num2 = 0, 31
    return (max_num-min_num)/(max_num2-min_num2) * \
            (bbox-min_num2) + min_num

def get_mask_imgs(imgs, bboxs):
    imgs = imgs.repeat_interleave(bboxs.shape[0]//imgs.shape[0], 0)
    mask_imgs = torch.zeros(imgs.shape, dtype=torch.uint8)
    for i in range(imgs.shape[0]):
        mask_imgs[i][:, bboxs[i][1].int().item():bboxs[i][3].int().item(), \
                bboxs[i][0].int().item():bboxs[i][2].int().item()] = 1
    return imgs, mask_imgs.float()

def save_img(args, batch, results, bboxs, imgs, mask_imgs, editing_rompt):
        
    transform = T.Resize(512)
    for i in range(results.shape[0]):
        img = (imgs[i]*255.0).to(dtype=torch.uint8)
        bbox = bboxs[i].to(dtype=torch.uint8).unsqueeze(0)
        draw_img = draw_bounding_boxes(img, bbox, width=3, colors=(255,255,0))
        
        img_name = '-'.join(str(editing_rompt).split(' '))
        ori_img_path = os.path.join(new_path, 'input_image.png')
        if i == 0:
            save_image(transform(imgs[i]), ori_img_path)
        save_image(res[i], os.path.join(new_path2, str(batch) + '_' +str(img_name) + 'anchor'+ str(i)+'.png'))
        if args.draw_box:
            bbox = bboxs[i].to(dtype=torch.uint8).unsqueeze(0)
            draw_img = draw_bounding_boxes(img, bbox, width=3, colors=(255,255,0))
            draw_img_path = os.path.join(new_path3, str(batch) + '_' + str(img_name) + 'anchor' + str(i)+'_ori_draw.png')
            save_image(transform((draw_img/255.0).float()), draw_img_path)
            
    get_final_img(args, editing_rompt, ori_img_path, new_path2)


template = get_augmentations_template()
device_id = 'cuda:1'
model = RGN(image_size=args.image_size, device=device_id, args=args).to(device_id)


# 使用 OpenCV 读取图像 (BGR 格式)
image_cv = cv2.imread("images/1.png")
image_cv = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)  # 转换为 RGB

transform = transforms.Compose([
    transforms.Resize((224, 224)),   # 调整大小
    transforms.ToTensor(),           # 转换为 PyTorch 张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 归一化
])
imgs = transform(image_pil)
imgs = imgs.to(device=device_id, non_blocking=True)[0].unsqueeze(0)
e_prompt = "Put some birds in the sky and some flowers around the trees"
e_prompt = compose_text_with_templates(e_prompt, template)
bboxs = torch.ceil(map_cooridates(model.module.get_anchor_box(imgs)))
imgs = imgs.repeat_interleave(bboxs.shape[0]//imgs.shape[0], 0)
_, mask_imgs = get_mask_imgs(imgs, bboxs)
results = model.module.generate_result(imgs, mask_imgs.to(device_id), e_prompt)
results.save('ans.png')