Wendy
commited on
Upload 2 files
Browse files- .gitattributes +1 -0
- aitw_to_swift.ipynb +382 -0
- general_blip_train_llava_imgh_swift_multi_A100.json +3 -0
.gitattributes
CHANGED
@@ -41,3 +41,4 @@ general_blip_train_llava_70ORI_30COCO_swift.json filter=lfs diff=lfs merge=lfs -
|
|
41 |
general_blip_train_llava_70ORI_30COCO_swift_A100.json filter=lfs diff=lfs merge=lfs -text
|
42 |
general_blip_train_llava_coco_swift_A100.json filter=lfs diff=lfs merge=lfs -text
|
43 |
general_blip_train_llava_swift_A100.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
41 |
general_blip_train_llava_70ORI_30COCO_swift_A100.json filter=lfs diff=lfs merge=lfs -text
|
42 |
general_blip_train_llava_coco_swift_A100.json filter=lfs diff=lfs merge=lfs -text
|
43 |
general_blip_train_llava_swift_A100.json filter=lfs diff=lfs merge=lfs -text
|
44 |
+
general_blip_train_llava_imgh_swift_multi_A100.json filter=lfs diff=lfs merge=lfs -text
|
aitw_to_swift.ipynb
ADDED
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os \n",
|
10 |
+
"import json\n",
|
11 |
+
"\n",
|
12 |
+
"def read_json(file_path): \n",
|
13 |
+
" with open(file_path, 'r', encoding='utf-8') as file:\n",
|
14 |
+
" data = json.load(file)\n",
|
15 |
+
" return data\n",
|
16 |
+
"\n",
|
17 |
+
"def write_json(file_path, data):\n",
|
18 |
+
" with open(file_path, 'w', encoding='utf-8') as file:\n",
|
19 |
+
" json.dump(data, file, ensure_ascii=False, indent=4)"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"metadata": {},
|
25 |
+
"source": [
|
26 |
+
"#### 更换路径"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 5,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"# data = read_json('/code/Data/m4_instruct_annotations.json')\n",
|
36 |
+
"# data = read_json('/code/Data/general_blip_train_llava_imgh.json')\n",
|
37 |
+
"data = read_json('/code/Data/general_blip_train_llava_swift.json')\n",
|
38 |
+
"# data = read_json('/code/Data/general_blip_test_llava_swift.json')\n",
|
39 |
+
"\n",
|
40 |
+
"# data = read_json('/code/LLaVA/data/json/general_blip_train_llava.json')\n",
|
41 |
+
"# data = read_json('/code/LLaVA/data/json/all_blip_train_llava_coco.json')\n"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 4,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [
|
49 |
+
{
|
50 |
+
"name": "stdout",
|
51 |
+
"output_type": "stream",
|
52 |
+
"text": [
|
53 |
+
"{'conversations': [{'from': 'human',\n",
|
54 |
+
" 'value': '<image>\\n'\n",
|
55 |
+
" 'Previous Actions: Goal: Open a new Chrome '\n",
|
56 |
+
" 'private window'},\n",
|
57 |
+
" {'from': 'gpt',\n",
|
58 |
+
" 'value': 'Action Plan: '\n",
|
59 |
+
" '[DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,STATUS_TASK_COMPLETE]\\n'\n",
|
60 |
+
" '; Action Decision: \"action_type\": \"DUAL_POINT\", '\n",
|
61 |
+
" '\"touch_point\": \"[0.7761, 0.7089]\", \"lift_point\": '\n",
|
62 |
+
" '\"[0.7761, 0.7089]\", \"typed_text\": \"\"'}],\n",
|
63 |
+
" 'id': 'general_blip_0',\n",
|
64 |
+
" 'image': 'blip/general_texts_splits/10_1.png'}\n"
|
65 |
+
]
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"source": [
|
69 |
+
"import pprint\n",
|
70 |
+
"\n",
|
71 |
+
"pprint.pprint(data[0])"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": 6,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"name": "stdout",
|
81 |
+
"output_type": "stream",
|
82 |
+
"text": [
|
83 |
+
"{'images': ['/code/Auto-GUI/dataset/blip/general_texts_splits/10_1.png'],\n",
|
84 |
+
" 'query': '<<image>\\n'\n",
|
85 |
+
" 'Previous Actions: Goal: Open a new Chrome private window>55555',\n",
|
86 |
+
" 'response': 'Action Plan: '\n",
|
87 |
+
" '[DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,DUAL_POINT,STATUS_TASK_COMPLETE]\\n'\n",
|
88 |
+
" '; Action Decision: \"action_type\": \"DUAL_POINT\", \"touch_point\": '\n",
|
89 |
+
" '\"[0.7761, 0.7089]\", \"lift_point\": \"[0.7761, 0.7089]\", '\n",
|
90 |
+
" '\"typed_text\": \"\"'}\n"
|
91 |
+
]
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"source": [
|
95 |
+
"import pprint\n",
|
96 |
+
"\n",
|
97 |
+
"pprint.pprint(data[0])"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 11,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [
|
105 |
+
{
|
106 |
+
"data": {
|
107 |
+
"text/plain": [
|
108 |
+
"8831"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
"execution_count": 11,
|
112 |
+
"metadata": {},
|
113 |
+
"output_type": "execute_result"
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"source": [
|
117 |
+
"len(data)"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 12,
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"for index, i in enumerate(data):\n",
|
127 |
+
"\n",
|
128 |
+
" # ################## A6000 ##################\n",
|
129 |
+
" # data[index]['images'][0] = '/data/home/zbz5349/WorkSpace/LLaVA/data/blip' + data[index]['images'][0][27:]\n",
|
130 |
+
"\n",
|
131 |
+
" ################## H100 ##################\n",
|
132 |
+
" data[index]['images'][0] = '/gpu02home/zbz5349/ICLR_2024/LLaVA_Mobile_V1/data/blip' + data[index]['images'][0][27:]\n",
|
133 |
+
"\n"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 13,
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"# write_json('/code/Data/general_blip_train_llava_swift_a6000.json', data)\n",
|
143 |
+
"# write_json('/code/Data/general_blip_train_llava_swift_H100.json', data)\n",
|
144 |
+
"write_json('/code/Data/general_blip_test_llava_swift_H100.json', data)\n",
|
145 |
+
"\n"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"metadata": {},
|
151 |
+
"source": [
|
152 |
+
"-----"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "markdown",
|
157 |
+
"metadata": {},
|
158 |
+
"source": [
|
159 |
+
"### 重构格式 / Single Image"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 41,
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"path = '/code/LLaVA/data/json/general_blip_train_llava.json'\n",
|
169 |
+
"# path = '/code/LLaVA/data/json/general_blip_train_llava_coco.json'\n",
|
170 |
+
"# path = '/code/LLaVA/data/json/general_blip_train_llava_70ORI_30COCO.json'\n",
|
171 |
+
"\n",
|
172 |
+
"# path = '/code/LLaVA/data/json/all_blip_train_llava.json'\n",
|
173 |
+
"# path = '/code/LLaVA/data/json/all_blip_train_llava_coco.json'\n",
|
174 |
+
"\n",
|
175 |
+
"data = read_json(path)"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 42,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"\n",
|
185 |
+
"new_data = []\n",
|
186 |
+
"for index, i in enumerate(data):\n",
|
187 |
+
"\n",
|
188 |
+
" temp = {}\n",
|
189 |
+
" temp['query'] = i['conversations'][0]['value']\n",
|
190 |
+
" temp['response'] = i['conversations'][1]['value']\n",
|
191 |
+
" temp['images'] = []\n",
|
192 |
+
"\n",
|
193 |
+
" ############## H100\n",
|
194 |
+
" # temp_image_path = '/gpu02home/zbz5349/ICLR_2024/LLaVA_Mobile_V1/data/' + i['image'] \n",
|
195 |
+
"\n",
|
196 |
+
" ############## A100\n",
|
197 |
+
" temp_image_path = '/data/zbz5349/ICLR_2024/data/' + i['image']\n",
|
198 |
+
" \n",
|
199 |
+
" temp['images'].append(temp_image_path)\n",
|
200 |
+
"\n",
|
201 |
+
" new_data.append(temp)\n",
|
202 |
+
" # pprint.pprint(temp)\n",
|
203 |
+
" # break"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "code",
|
208 |
+
"execution_count": 43,
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [],
|
211 |
+
"source": [
|
212 |
+
"new_path = path.split('.')[0] + '_swift_A100.json'\n",
|
213 |
+
"write_json(new_path, new_data)"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": 40,
|
219 |
+
"metadata": {},
|
220 |
+
"outputs": [
|
221 |
+
{
|
222 |
+
"data": {
|
223 |
+
"text/plain": [
|
224 |
+
"'/code/LLaVA/data/json/all_blip_train_llava_swift.json'"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
"execution_count": 40,
|
228 |
+
"metadata": {},
|
229 |
+
"output_type": "execute_result"
|
230 |
+
}
|
231 |
+
],
|
232 |
+
"source": [
|
233 |
+
"new_path"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "markdown",
|
238 |
+
"metadata": {},
|
239 |
+
"source": [
|
240 |
+
"### 重构格式 / Multi Image"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": 2,
|
246 |
+
"metadata": {},
|
247 |
+
"outputs": [],
|
248 |
+
"source": [
|
249 |
+
"path = '/code/Data/general_blip_train_llava_imgh.json'\n",
|
250 |
+
" \n",
|
251 |
+
"data = read_json(path)"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "code",
|
256 |
+
"execution_count": 36,
|
257 |
+
"metadata": {},
|
258 |
+
"outputs": [],
|
259 |
+
"source": [
|
260 |
+
"import pprint\n",
|
261 |
+
"\n",
|
262 |
+
"\n",
|
263 |
+
"def replace_hashes(text):\n",
|
264 |
+
" # 使用 rsplit 分割并替换最后五个 ### 为 xxx\n",
|
265 |
+
" parts = text.rsplit('###', 4)\n",
|
266 |
+
" # 将替换后的文本重新拼接\n",
|
267 |
+
" return '<image>'.join(parts)\n",
|
268 |
+
"\n",
|
269 |
+
"def ensure_five_xxx(text):\n",
|
270 |
+
" # 统计文本中 'xxx' 的出现次数\n",
|
271 |
+
" count = text.count('<image>')\n",
|
272 |
+
" if count < 5:\n",
|
273 |
+
" # 计算还需要补充多少个 'xxx'\n",
|
274 |
+
" missing_xxx = 5 - count\n",
|
275 |
+
" # 在文本末尾添加足够的 'xxx'\n",
|
276 |
+
" text += ' <image>' * missing_xxx\n",
|
277 |
+
" \n",
|
278 |
+
" return text\n",
|
279 |
+
"\n",
|
280 |
+
"\n",
|
281 |
+
"new_data = []\n",
|
282 |
+
"for index, i in enumerate(data):\n",
|
283 |
+
"\n",
|
284 |
+
" temp = {}\n",
|
285 |
+
" temp['query'] = i['conversations'][0]['value']\n",
|
286 |
+
" temp['response'] = i['conversations'][1]['value']\n",
|
287 |
+
" \n",
|
288 |
+
" ############## A100 ##############\n",
|
289 |
+
" temp_image_path_list = []\n",
|
290 |
+
" for w in i['image_history']:\n",
|
291 |
+
" temp_image_path = '/data/zbz5349/ICLR_2024/data/' + w\n",
|
292 |
+
" temp_image_path_list.append(temp_image_path)\n",
|
293 |
+
"\n",
|
294 |
+
" temp['images'] = temp_image_path_list \n",
|
295 |
+
" \n",
|
296 |
+
" new_temp = temp['query'].split('\"action_type\"')\n",
|
297 |
+
" new_temp = ' ###\\n \"action_type\"'.join(new_temp)\n",
|
298 |
+
" # pprint.pprint(new_temp) \n",
|
299 |
+
" new_temp = replace_hashes(new_temp)\n",
|
300 |
+
" new_temp = ensure_five_xxx(new_temp)\n",
|
301 |
+
" # pprint.pprint(new_temp) \n",
|
302 |
+
" # break\n",
|
303 |
+
"\n",
|
304 |
+
" temp['query'] = new_temp\n",
|
305 |
+
" new_data.append(temp)"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "code",
|
310 |
+
"execution_count": 40,
|
311 |
+
"metadata": {},
|
312 |
+
"outputs": [
|
313 |
+
{
|
314 |
+
"name": "stdout",
|
315 |
+
"output_type": "stream",
|
316 |
+
"text": [
|
317 |
+
"{'images': ['/data/zbz5349/ICLR_2024/data/blip/general_texts_splits/13_3.png',\n",
|
318 |
+
" '/data/zbz5349/ICLR_2024/data/blip/general_texts_splits/13_2.png',\n",
|
319 |
+
" '/data/zbz5349/ICLR_2024/data/blip/general_texts_splits/13_1.png',\n",
|
320 |
+
" '/data/zbz5349/ICLR_2024/data/blip/general_texts_splits/13_1.png',\n",
|
321 |
+
" '/data/zbz5349/ICLR_2024/data/blip/general_texts_splits/13_1.png'],\n",
|
322 |
+
" 'query': '<image>\\n'\n",
|
323 |
+
" 'Previous Actions: <image>\\n'\n",
|
324 |
+
" ' \"action_type\": \"PRESS_HOME\", \"touch_point\": \"[-1.0, -1.0]\", '\n",
|
325 |
+
" '\"lift_point\": \"[-1.0, -1.0]\", \"typed_text\": \"\" <image>\\n'\n",
|
326 |
+
" ' \"action_type\": \"DUAL_POINT\", \"touch_point\": \"[0.7649, 0.6773]\", '\n",
|
327 |
+
" '\"lift_point\": \"[0.7649, 0.6773]\", \"typed_text\": \"\" Goal: Open a new '\n",
|
328 |
+
" 'Chrome window <image> <image>',\n",
|
329 |
+
" 'response': 'Action Plan: [STATUS_TASK_COMPLETE]\\n'\n",
|
330 |
+
" '; Action Decision: \"action_type\": \"STATUS_TASK_COMPLETE\", '\n",
|
331 |
+
" '\"touch_point\": \"[-1.0, -1.0]\", \"lift_point\": \"[-1.0, -1.0]\", '\n",
|
332 |
+
" '\"typed_text\": \"\"'}\n"
|
333 |
+
]
|
334 |
+
}
|
335 |
+
],
|
336 |
+
"source": [
|
337 |
+
"\n",
|
338 |
+
"# data[0]\n",
|
339 |
+
"\n",
|
340 |
+
"pprint.pprint(new_data[11]) "
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 41,
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [],
|
348 |
+
"source": [
|
349 |
+
"new_path = path.split('.')[0] + '_swift_multi_A100.json'\n",
|
350 |
+
"write_json(new_path, new_data)"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": null,
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": []
|
359 |
+
}
|
360 |
+
],
|
361 |
+
"metadata": {
|
362 |
+
"kernelspec": {
|
363 |
+
"display_name": "llava",
|
364 |
+
"language": "python",
|
365 |
+
"name": "python3"
|
366 |
+
},
|
367 |
+
"language_info": {
|
368 |
+
"codemirror_mode": {
|
369 |
+
"name": "ipython",
|
370 |
+
"version": 3
|
371 |
+
},
|
372 |
+
"file_extension": ".py",
|
373 |
+
"mimetype": "text/x-python",
|
374 |
+
"name": "python",
|
375 |
+
"nbconvert_exporter": "python",
|
376 |
+
"pygments_lexer": "ipython3",
|
377 |
+
"version": "3.10.13"
|
378 |
+
}
|
379 |
+
},
|
380 |
+
"nbformat": 4,
|
381 |
+
"nbformat_minor": 2
|
382 |
+
}
|
general_blip_train_llava_imgh_swift_multi_A100.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbe3be1b9f4b1e9c2774835fab06ea53f16b1e90415d3c0ca019260646e89ffd
|
3 |
+
size 95345344
|