Wendy
commited on
Upload cogagent_infer.py with huggingface_hub
Browse files- cogagent_infer.py +213 -0
cogagent_infer.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
7 |
+
from typing import List
|
8 |
+
import json
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
#class
|
12 |
+
def draw_boxes_on_image(image: Image.Image, boxes: List[List[float]], save_path: str):
|
13 |
+
"""
|
14 |
+
Draws red bounding boxes on the given image and saves it.
|
15 |
+
|
16 |
+
Parameters:
|
17 |
+
- image (PIL.Image.Image): The image on which to draw the bounding boxes.
|
18 |
+
- boxes (List[List[float]]): A list of bounding boxes, each defined as [x_min, y_min, x_max, y_max].
|
19 |
+
Coordinates are expected to be normalized (0 to 1).
|
20 |
+
- save_path (str): The path to save the updated image.
|
21 |
+
|
22 |
+
Description:
|
23 |
+
Each box coordinate is a fraction of the image dimension. This function converts them to actual pixel
|
24 |
+
coordinates and draws a red rectangle to mark the area. The annotated image is then saved to the specified path.
|
25 |
+
"""
|
26 |
+
draw = ImageDraw.Draw(image)
|
27 |
+
for box in boxes:
|
28 |
+
x_min = int(box[0] * image.width)
|
29 |
+
y_min = int(box[1] * image.height)
|
30 |
+
x_max = int(box[2] * image.width)
|
31 |
+
y_max = int(box[3] * image.height)
|
32 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
|
33 |
+
image.save(save_path)
|
34 |
+
|
35 |
+
|
36 |
+
def main():
|
37 |
+
"""
|
38 |
+
A continuous interactive demo using the CogAgent1.5 model with selectable format prompts.
|
39 |
+
The output_image_path is interpreted as a directory. For each round of interaction,
|
40 |
+
the annotated image will be saved in the directory with the filename:
|
41 |
+
{original_image_name_without_extension}_{round_number}.png
|
42 |
+
|
43 |
+
Example:
|
44 |
+
python cli_demo.py --model_dir THUDM/cogagent-9b-20241220 --platform "Mac" --max_length 4096 --top_k 1 \
|
45 |
+
--output_image_path ./results --format_key status_action_op_sensitive
|
46 |
+
"""
|
47 |
+
|
48 |
+
parser = argparse.ArgumentParser(
|
49 |
+
description="Continuous interactive demo with CogAgent model and selectable format."
|
50 |
+
)
|
51 |
+
parser.add_argument(
|
52 |
+
"--model_dir", required=True, help="Path or identifier of the model."
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--platform",
|
56 |
+
default="Mac",
|
57 |
+
help="Platform information string (e.g., 'Mac', 'WIN').",
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--max_length", type=int, default=4096, help="Maximum generation length."
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--top_k", type=int, default=1, help="Top-k sampling parameter."
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--output_image_path",
|
67 |
+
default="results",
|
68 |
+
help="Directory to save the annotated images.",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--input_json",
|
72 |
+
default="/Users/baixuehai/Downloads/2025_2/AITM_Test_General_BBox_v0.json",
|
73 |
+
help="Directory to save the annotated images.",
|
74 |
+
)
|
75 |
+
parser.add_argument(
|
76 |
+
"--output_json",
|
77 |
+
default="/Users/baixuehai/Downloads/2025_2/AITM_Test_General_BBox_v0.json",
|
78 |
+
help="Directory to save the annotated images.",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"--format_key",
|
82 |
+
default="action_op_sensitive",
|
83 |
+
help="Key to select the prompt format.",
|
84 |
+
)
|
85 |
+
args = parser.parse_args()
|
86 |
+
|
87 |
+
# Dictionary mapping format keys to format strings
|
88 |
+
format_dict = {
|
89 |
+
"action_op_sensitive": "(Answer in Action-Operation-Sensitive format.)",
|
90 |
+
"status_plan_action_op": "(Answer in Status-Plan-Action-Operation format.)",
|
91 |
+
"status_action_op_sensitive": "(Answer in Status-Action-Operation-Sensitive format.)",
|
92 |
+
"status_action_op": "(Answer in Status-Action-Operation format.)",
|
93 |
+
"action_op": "(Answer in Action-Operation format.)",
|
94 |
+
}
|
95 |
+
|
96 |
+
# Ensure the provided format_key is valid
|
97 |
+
if args.format_key not in format_dict:
|
98 |
+
raise ValueError(
|
99 |
+
f"Invalid format_key. Available keys are: {list(format_dict.keys())}"
|
100 |
+
)
|
101 |
+
|
102 |
+
# Ensure the output directory exists
|
103 |
+
os.makedirs(args.output_image_path, exist_ok=True)
|
104 |
+
|
105 |
+
# Load the tokenizer and model
|
106 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_dir, trust_remote_code=True)
|
107 |
+
model = AutoModelForCausalLM.from_pretrained(
|
108 |
+
args.model_dir,
|
109 |
+
torch_dtype=torch.bfloat16,
|
110 |
+
trust_remote_code=True,
|
111 |
+
device_map="auto",
|
112 |
+
# quantization_config=BitsAndBytesConfig(load_in_8bit=True), # For INT8 quantization
|
113 |
+
# quantization_config=BitsAndBytesConfig(load_in_4bit=True), # For INT4 quantization
|
114 |
+
).eval()
|
115 |
+
# Initialize platform and selected format strings
|
116 |
+
platform_str = f"(Platform: {args.platform})\n"
|
117 |
+
format_str = format_dict[args.format_key]
|
118 |
+
|
119 |
+
# Initialize history lists
|
120 |
+
history_step = []
|
121 |
+
history_action = []
|
122 |
+
|
123 |
+
round_num = 1
|
124 |
+
with open(args.input_json, "r") as f:
|
125 |
+
data = json.load(f)
|
126 |
+
res = []
|
127 |
+
for i in tqdm(range(len(data))):
|
128 |
+
x = data[i]
|
129 |
+
img_path = x['image']
|
130 |
+
image = Image.open(img_path).convert("RGB")
|
131 |
+
task = x['conversations'][0]['value']
|
132 |
+
# Verify history lengths match
|
133 |
+
try:
|
134 |
+
if len(history_step) != len(history_action):
|
135 |
+
raise ValueError("Mismatch in lengths of history_step and history_action.")
|
136 |
+
except ValueError as e:
|
137 |
+
print(f"警告: {e} - 跳过当前案例")
|
138 |
+
|
139 |
+
# Format history steps for output
|
140 |
+
history_str = "\nHistory steps: "
|
141 |
+
for index, (step, action) in enumerate(zip(history_step, history_action)):
|
142 |
+
history_str += f"\n{index}. {step}\t{action}"
|
143 |
+
|
144 |
+
# Compose the query with task, platform, and selected format instructions
|
145 |
+
query = f"Task: {task}{history_str}\n{platform_str}{format_str}"
|
146 |
+
|
147 |
+
#print(f"Round {round_num} query:\n{query}")
|
148 |
+
|
149 |
+
inputs = tokenizer.apply_chat_template(
|
150 |
+
[{"role": "user", "image": image, "content": query}],
|
151 |
+
add_generation_prompt=True,
|
152 |
+
tokenize=True,
|
153 |
+
return_tensors="pt",
|
154 |
+
return_dict=True,
|
155 |
+
).to(model.device)
|
156 |
+
# Generation parameters
|
157 |
+
gen_kwargs = {
|
158 |
+
"max_length": args.max_length,
|
159 |
+
"do_sample": True,
|
160 |
+
"top_k": args.top_k,
|
161 |
+
}
|
162 |
+
|
163 |
+
# Generate response
|
164 |
+
with torch.no_grad():
|
165 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
166 |
+
outputs = outputs[:, inputs["input_ids"].shape[1]:]
|
167 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
168 |
+
#print(f"Model response:\n{response}")
|
169 |
+
|
170 |
+
# Extract grounded operation and action
|
171 |
+
grounded_pattern = r"Grounded Operation:\s*(.*)"
|
172 |
+
action_pattern = r"Action:\s*(.*)"
|
173 |
+
matches_history = re.search(grounded_pattern, response)
|
174 |
+
matches_actions = re.search(action_pattern, response)
|
175 |
+
|
176 |
+
if matches_history:
|
177 |
+
grounded_operation = matches_history.group(1)
|
178 |
+
history_step.append(grounded_operation)
|
179 |
+
if matches_actions:
|
180 |
+
action_operation = matches_actions.group(1)
|
181 |
+
history_action.append(action_operation)
|
182 |
+
|
183 |
+
# Extract bounding boxes from the response
|
184 |
+
box_pattern = r"box=\[\[?(\d+),(\d+),(\d+),(\d+)\]?\]"
|
185 |
+
matches = re.findall(box_pattern, response)
|
186 |
+
if matches:
|
187 |
+
boxes = [[int(x) / 1000 for x in match] for match in matches]
|
188 |
+
|
189 |
+
# Extract base name of the user's input image (without extension)
|
190 |
+
base_name = os.path.splitext(os.path.basename(img_path))[0]
|
191 |
+
# Construct the output file name with round number
|
192 |
+
output_file_name = f"{base_name}_{round_num}.png"
|
193 |
+
output_path = os.path.join(args.output_image_path, output_file_name)
|
194 |
+
|
195 |
+
draw_boxes_on_image(image, boxes, output_path)
|
196 |
+
#print(f"Annotated image saved at: {output_path}")
|
197 |
+
ans = {
|
198 |
+
'query': f"Round {round_num} query:\n{query}",
|
199 |
+
'response': response,
|
200 |
+
'output_path': output_path
|
201 |
+
}
|
202 |
+
res.append(ans)
|
203 |
+
round_num += 1
|
204 |
+
#print(res)
|
205 |
+
with open(args.output_json, "w", encoding="utf-8") as file:
|
206 |
+
json.dump(res, file, ensure_ascii=False, indent=4)
|
207 |
+
# with open(args.output_json,"w", encoding="utf-8")as f:
|
208 |
+
# json.dump(res,f,ensure_ascii=False, indent=4)
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
main()
|