|
import os |
|
import numpy as np |
|
import torch |
|
import os |
|
import re |
|
import json |
|
import argparse |
|
import random |
|
from transformers import AutoTokenizer, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer |
|
from model import T5ForMultimodalGeneration |
|
from utils_data_ import AITWDatasetImg, load_data |
|
from rich.table import Column, Table |
|
from rich import box |
|
from rich.console import Console |
|
console = Console(record=True) |
|
import action_matching, action_type |
|
import evaluate |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--data_root', type=str, default='dataset/blip/general_blip') |
|
parser.add_argument('--output_dir', type=str, default='experiments') |
|
parser.add_argument('--model', type=str, default='declare-lab/flan-alpaca-base') |
|
parser.add_argument('--data_ratio', type=float, default=None) |
|
parser.add_argument('--eval_name', type=str, default=None, help='the saved subset name used for evaluation') |
|
parser.add_argument('--local_rank', type=int, default=-1) |
|
parser.add_argument('--epoch', type=int, default=2) |
|
parser.add_argument('--lr', type=float, default=5e-5) |
|
parser.add_argument('--warmup_ratio', type=float, default=0.1) |
|
parser.add_argument('--bs', type=int, default=1) |
|
parser.add_argument('--debug_num', type=int, default=None) |
|
parser.add_argument('--input_len', type=int, default=512) |
|
parser.add_argument('--output_len', type=int, default=256) |
|
parser.add_argument('--img_dim', type=int, default=1408) |
|
parser.add_argument('--eval_bs', type=int, default=16) |
|
parser.add_argument('--eval_acc', type=int, default=None, help='evaluate accumulation step') |
|
parser.add_argument('--all_data', type=float, default=None, help='whether using all the data for training. Set the ratio for google apps to save computation') |
|
parser.add_argument('--eval_subset', type=str, default=None, help='use which subset for evaluation/test when training with all data') |
|
parser.add_argument('--use_history', type=int, default=8, help='use textual action history') |
|
parser.add_argument('--use_img_history', action='store_true', help='use screen history') |
|
parser.add_argument('--use_future', type=int, default=16, help='planning the future actions before giving the current action') |
|
parser.add_argument('--use_layout', action='store_true', help='use annotated layout information') |
|
parser.add_argument('--transform_axis', default=True, action='store_true', help='use coordinate normalization') |
|
parser.add_argument('--use_generate', default=True, action='store_true', help='only for baseline to improve inference speed') |
|
parser.add_argument('--final_eval', action='store_true', help='only evaluate the model at the final epoch') |
|
parser.add_argument('--user_msg', type=str, default="debug", help='experiment type in the save_dir') |
|
parser.add_argument('--img_type', type=str, default="blip", help='type of image features') |
|
parser.add_argument('--evaluate_dir', type=str, default=None, help='the directory of model for evaluation') |
|
parser.add_argument('--seed', type=int, default=42, help='random seed') |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
training_logger = Table( |
|
Column("Epoch", justify="center"), |
|
Column("Steps", justify="center"), |
|
Column("Loss", justify="center"), |
|
title="Training Status", |
|
pad_edge=False, |
|
box=box.ASCII, |
|
) |
|
|
|
args = parse_args() |
|
print("args",args) |
|
print('====Input Arguments====') |
|
print(json.dumps(vars(args), indent=2, sort_keys=False)) |
|
|
|
random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.backends.cudnn.deterministic = True |
|
|
|
if not os.path.exists(args.output_dir): |
|
os.mkdir(args.output_dir) |
|
if args.evaluate_dir is not None: |
|
args.model = args.evaluate_dir |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model) |
|
|
|
console.log(f"""[Model]: Loading {args.model}...\n""") |
|
console.log(f"[Data]: Reading data...\n") |
|
|
|
if args.evaluate_dir is not None: |
|
save_dir = args.evaluate_dir |
|
else: |
|
model_name = args.model.replace("/","-") |
|
gpu_count = torch.cuda.device_count() |
|
save_dir = f"{args.output_dir}/{args.user_msg}_{model_name}_{args.img_type}_lr{args.lr}_bs{args.bs * gpu_count}_ip{args.input_len}_op{args.output_len}_ep{args.epoch}" |
|
if not os.path.exists(save_dir): |
|
os.mkdir(save_dir) |
|
print(save_dir) |
|
|
|
model = T5ForMultimodalGeneration.from_pretrained(args.model, args.img_dim) |
|
|
|
|
|
if args.evaluate_dir is not None: |
|
train_set = None |
|
else: |
|
training_data = load_data(args, "train") |
|
train_set = AITWDatasetImg( |
|
training_data, |
|
tokenizer, |
|
args.input_len, |
|
args.output_len |
|
) |
|
eval_data = load_data(args, "val") |
|
print('------------------------------------') |
|
print(type(eval_data)) |
|
print(type(eval_data[0])) |
|
print(len(eval_data[0])) |
|
print(len(eval_data)) |
|
block = 2000 |
|
|
|
|
|
eval_set = AITWDatasetImg( |
|
eval_data, |
|
tokenizer, |
|
args.input_len, |
|
args.output_len |
|
) |
|
test_data = load_data(args, "test") |
|
|
|
|
|
test_set = AITWDatasetImg( |
|
test_data, |
|
tokenizer, |
|
args.input_len, |
|
args.output_len |
|
) |
|
|
|
datacollator = DataCollatorForSeq2Seq(tokenizer) |
|
print("model parameters: ", model.num_parameters()) |
|
|
|
|
|
metric = evaluate.load("rouge") |
|
def compute_metrics_rouge(eval_preds): |
|
preds, targets = eval_preds |
|
if isinstance(preds, tuple): |
|
preds = preds[0] |
|
preds= np.where(preds != -100, preds, tokenizer.pad_token_id) |
|
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
|
|
result = metric.compute(predictions=preds, references=targets) |
|
result = {k: round(v * 100, 4) for k, v in result.items()} |
|
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] |
|
result["gen_len"] = np.mean(prediction_lens) |
|
return result |
|
|
|
|
|
if args.final_eval: |
|
training_args = Seq2SeqTrainingArguments( |
|
save_dir, |
|
do_train=True if args.evaluate_dir is None else False, |
|
do_eval=False, |
|
warmup_ratio=args.warmup_ratio, |
|
evaluation_strategy="no", |
|
logging_strategy="steps", |
|
save_strategy="epoch", |
|
save_total_limit = 2, |
|
learning_rate= args.lr, |
|
eval_accumulation_steps=args.eval_acc, |
|
per_device_train_batch_size=args.bs, |
|
per_device_eval_batch_size=args.eval_bs, |
|
weight_decay=0.01, |
|
num_train_epochs=args.epoch, |
|
predict_with_generate=args.use_generate, |
|
generation_max_length=args.output_len, |
|
report_to="none", |
|
local_rank=args.local_rank |
|
) |
|
|
|
else: |
|
training_args = Seq2SeqTrainingArguments( |
|
save_dir, |
|
do_train=True if args.evaluate_dir is None else False, |
|
do_eval=True, |
|
warmup_ratio=args.warmup_ratio, |
|
evaluation_strategy="epoch", |
|
logging_strategy="steps", |
|
save_strategy="epoch", |
|
save_total_limit = 2, |
|
learning_rate= args.lr, |
|
eval_accumulation_steps=args.eval_acc, |
|
per_device_train_batch_size=args.bs, |
|
per_device_eval_batch_size=args.eval_bs, |
|
weight_decay=0.01, |
|
num_train_epochs=args.epoch, |
|
metric_for_best_model="rougeL", |
|
predict_with_generate=args.use_generate, |
|
generation_max_length=args.output_len, |
|
load_best_model_at_end=True, |
|
report_to="none", |
|
local_rank=args.local_rank |
|
) |
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_set, |
|
eval_dataset=eval_set, |
|
data_collator=datacollator, |
|
tokenizer=tokenizer, |
|
compute_metrics = compute_metrics_rouge |
|
) |
|
|
|
if args.evaluate_dir is None: |
|
trainer.train() |
|
trainer.save_model(save_dir) |
|
|
|
|
|
|
|
|
|
metrics = {} |
|
|
|
predict_results = trainer.predict(test_dataset=test_set, max_length=args.output_len) |
|
if trainer.is_world_process_zero(): |
|
preds, targets = predict_results.predictions, predict_results.label_ids |
|
preds= np.where(preds != -100, preds, tokenizer.pad_token_id) |
|
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
|
|
action_correct = 0 |
|
text_correct = 0 |
|
type_correct = 0 |
|
|
|
reference_test_positions = test_set.anno_positions |
|
|
|
output_data = [] |
|
|
|
pattern = r'(?<=Action Decision:\s).*' |
|
|
|
assert len(preds) == len(targets) == len(reference_test_positions) |
|
for idx, pred in enumerate(preds): |
|
try: |
|
result = re.search(pattern, targets[idx]) |
|
target_text = result.group(0) |
|
target_text = target_text.strip() |
|
|
|
reference = eval("{" + target_text + "}") |
|
except: |
|
print("reference error") |
|
continue |
|
|
|
try: |
|
result = re.search(pattern, preds[idx]) |
|
pred_text = result.group(0) |
|
pred_text = pred_text.strip() |
|
|
|
pred = eval("{" + pred_text + "}") |
|
action_1_touch_yx = eval(pred["touch_point"]) |
|
action_1_lift_yx = eval(pred["lift_point"]) |
|
action_1_action_type = action_type.ActionType[pred["action_type"]].value |
|
action_1_typed_text = pred["typed_text"].lower() |
|
action_1_typed_text = action_1_typed_text.strip() |
|
|
|
action_1_wrap = f'"action_type": "{action_1_action_type}", "touch_point": "{action_1_touch_yx}", "lift_point": "{action_1_lift_yx}", "typed_text": "{action_1_typed_text}"' |
|
action_1_wrap = action_1_wrap.replace('"', "'") |
|
except: |
|
pred = '{ "action_type": "TYPE", "touch_point": "[-1.0, -1.0]", "lift_point": "[-1.0, -1.0]", "typed_text": "Invalid"}' |
|
|
|
action_2_touch_yx = eval(reference["touch_point"]) |
|
action_2_lift_yx = eval(reference["lift_point"]) |
|
action_2_action_type = action_type.ActionType[reference["action_type"]].value |
|
action_2_typed_text = reference["typed_text"].lower() |
|
|
|
action_2_wrap = f'"action_type": "{action_2_action_type}", "touch_point": "{action_2_touch_yx}", "lift_point": "{action_2_lift_yx}", "typed_text": "{action_2_typed_text}"' |
|
action_2_wrap = action_2_wrap.replace('"', "'") |
|
|
|
annotation_positions = reference_test_positions[idx] |
|
|
|
try: |
|
check_match = action_matching.check_actions_match( |
|
action_1_touch_yx, |
|
action_1_lift_yx, |
|
action_1_action_type, |
|
action_2_touch_yx, |
|
action_2_lift_yx, |
|
action_2_action_type, |
|
annotation_positions |
|
) |
|
|
|
except Exception as exc: |
|
print(idx, action_1_touch_yx, action_1_lift_yx) |
|
check_match = False |
|
match_label = "invalid" |
|
|
|
if check_match: |
|
action_correct += 1 |
|
match_label = 1 |
|
else: |
|
match_label = 0 |
|
if check_match and (action_1_typed_text in action_2_typed_text or action_2_typed_text in action_1_typed_text): |
|
text_correct += 1 |
|
if action_1_action_type == action_2_action_type: |
|
type_correct += 1 |
|
|
|
action_data = {"pred": action_1_wrap, "target": action_2_wrap, "match_label": match_label} |
|
output_data.append(action_data) |
|
|
|
metrics["accuracy"] = "{:.2f}".format(action_correct/len(targets) * 100) |
|
metrics["text_acc"] = "{:.2f}".format(text_correct/len(targets) * 100) |
|
metrics["type_acc"] = "{:.2f}".format(type_correct/len(targets) * 100) |
|
metrics["action_correct"] = action_correct |
|
metrics["text_correct"] = text_correct |
|
metrics["type_correct"] = type_correct |
|
metrics["total_num"] = len(targets) |
|
print(metrics) |
|
output_data = { |
|
"metrics": metrics, |
|
"data": output_data |
|
} |
|
print(save_dir) |
|
if args.eval_name: |
|
output_prediction_file = os.path.join(save_dir,f"predictions_ans_test_{args.eval_name}.json") |
|
else: |
|
output_prediction_file = os.path.join(save_dir,"predictions_ans_test.json") |
|
with open(output_prediction_file, "w") as writer: |
|
writer.write(json.dumps(output_data, indent=4)) |
|
|