Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,103 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- WebOrganizer/TopicAnnotations-Llama-3.1-8B
|
5 |
+
- WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8
|
6 |
+
base_model:
|
7 |
+
- Alibaba-NLP/gte-base-en-v1.5
|
8 |
---
|
9 |
+
# WebOrganizer/TopicClassifier
|
10 |
+
|
11 |
+
[[Paper](ARXIV_TBD)] [[Website](WEBSITE_TBD)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)]
|
12 |
+
|
13 |
+
The TopicClassifier organizes web content into 17 categories based on the URL and text contents of web pages.
|
14 |
+
The model is a [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) with 140M parameters fine-tuned on the following training data:
|
15 |
+
1. [WebOrganizer/TopicAnnotations-Llama-3.1-8B](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-8B): 1M documents annotated by Llama-3.1-8B (first-stage training)
|
16 |
+
2. [WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8): 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training)
|
17 |
+
|
18 |
+
##### All Domain Classifiers
|
19 |
+
- [WebOrganizer/FormatClassifier](https://huggingface.co/WebOrganizer/FormatClassifier) (using URL and text contents)
|
20 |
+
- [WebOrganizer/FormatClassifier-NoURL](https://huggingface.co/WebOrganizer/FormatClassifier-NoURL) (using only text contents)
|
21 |
+
- [WebOrganizer/TopicClassifier](https://huggingface.co/WebOrganizer/TopicClassifier) *← you are here!*
|
22 |
+
- [WebOrganizer/TopicClassifier-NoURL](https://huggingface.co/WebOrganizer/TopicClassifier-NoURL) (using only text contents)
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
This classifier expects input in the following input format:
|
27 |
+
```
|
28 |
+
{url}
|
29 |
+
|
30 |
+
{text}
|
31 |
+
```
|
32 |
+
|
33 |
+
Example:
|
34 |
+
```python
|
35 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("WebOrganizer/TopicClassifier")
|
38 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
39 |
+
"WebOrganizer/TopicClassifier",
|
40 |
+
trust_remote_code=True,
|
41 |
+
use_memory_efficient_attention=False)
|
42 |
+
|
43 |
+
web_page = """http://www.example.com
|
44 |
+
|
45 |
+
How to build a computer from scratch? Here are the components you need..."""
|
46 |
+
|
47 |
+
inputs = tokenizer([web_page], return_tensors="pt")
|
48 |
+
outputs = model(**inputs)
|
49 |
+
|
50 |
+
probs = outputs.logits.softmax(dim=-1)
|
51 |
+
print(probs.argmax(dim=-1))
|
52 |
+
# -> 5 ("Hardware" topic)
|
53 |
+
```
|
54 |
+
|
55 |
+
You can convert the `logits` of the model with a softmax to obtain a probability distribution over the following 24 categories (in order of labels, also see `id2label` and `label2id` in the model config):
|
56 |
+
1. Adult
|
57 |
+
2. Art & Design
|
58 |
+
3. Software Dev.
|
59 |
+
4. Crime & Law
|
60 |
+
5. Education & Jobs
|
61 |
+
6. Hardware
|
62 |
+
7. Entertainment
|
63 |
+
8. Social Life
|
64 |
+
9. Fashion & Beauty
|
65 |
+
10. Finance & Business
|
66 |
+
11. Food & Dining
|
67 |
+
12. Games
|
68 |
+
13. Health
|
69 |
+
14. History
|
70 |
+
15. Home & Hobbies
|
71 |
+
16. Industrial
|
72 |
+
17. Literature
|
73 |
+
18. Politics
|
74 |
+
19. Religion
|
75 |
+
20. Science & Tech.
|
76 |
+
21. Software
|
77 |
+
22. Sports & Fitness
|
78 |
+
23. Transportation
|
79 |
+
24. Travel
|
80 |
+
|
81 |
+
The full definitions of the categories can be found in the [taxonomy config](https://github.com/CodeCreator/WebOrganizer/blob/main/define_domains/taxonomies/topics.yaml).
|
82 |
+
|
83 |
+
##### Efficient Inference
|
84 |
+
We recommend that you use the efficient gte-base-en-v1.5 implementation by enabling unpadding and memory efficient attention. This __requires installing `xformers`__ and loading the model like
|
85 |
+
```python
|
86 |
+
AutoModelForSequenceClassification.from_pretrained(
|
87 |
+
"WebOrganizer/TopicClassifier",
|
88 |
+
trust_remote_code=True,
|
89 |
+
unpad_inputs=True,
|
90 |
+
use_memory_efficient_attention=True,
|
91 |
+
torch_dtype=torch.bfloat16
|
92 |
+
)
|
93 |
+
```
|
94 |
+
See details [here](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).
|
95 |
+
|
96 |
+
## Citation
|
97 |
+
```bibtex
|
98 |
+
@article{wettig2025organize,
|
99 |
+
title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation},
|
100 |
+
author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini},
|
101 |
+
year={2025}
|
102 |
+
}
|
103 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|