Text Classification
Transformers
Safetensors
new
custom_code
princeton-nlp commited on
Commit
b74903d
·
verified ·
1 Parent(s): 62b1206

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -196
README.md CHANGED
@@ -1,199 +1,103 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - WebOrganizer/TopicAnnotations-Llama-3.1-8B
5
+ - WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8
6
+ base_model:
7
+ - Alibaba-NLP/gte-base-en-v1.5
8
  ---
9
+ # WebOrganizer/TopicClassifier
10
+
11
+ [[Paper](ARXIV_TBD)] [[Website](WEBSITE_TBD)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)]
12
+
13
+ The TopicClassifier organizes web content into 17 categories based on the URL and text contents of web pages.
14
+ The model is a [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) with 140M parameters fine-tuned on the following training data:
15
+ 1. [WebOrganizer/TopicAnnotations-Llama-3.1-8B](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-8B): 1M documents annotated by Llama-3.1-8B (first-stage training)
16
+ 2. [WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8): 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training)
17
+
18
+ ##### All Domain Classifiers
19
+ - [WebOrganizer/FormatClassifier](https://huggingface.co/WebOrganizer/FormatClassifier) (using URL and text contents)
20
+ - [WebOrganizer/FormatClassifier-NoURL](https://huggingface.co/WebOrganizer/FormatClassifier-NoURL) (using only text contents)
21
+ - [WebOrganizer/TopicClassifier](https://huggingface.co/WebOrganizer/TopicClassifier) *← you are here!*
22
+ - [WebOrganizer/TopicClassifier-NoURL](https://huggingface.co/WebOrganizer/TopicClassifier-NoURL) (using only text contents)
23
+
24
+ ## Usage
25
+
26
+ This classifier expects input in the following input format:
27
+ ```
28
+ {url}
29
+
30
+ {text}
31
+ ```
32
+
33
+ Example:
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
36
+
37
+ tokenizer = AutoTokenizer.from_pretrained("WebOrganizer/TopicClassifier")
38
+ model = AutoModelForSequenceClassification.from_pretrained(
39
+ "WebOrganizer/TopicClassifier",
40
+ trust_remote_code=True,
41
+ use_memory_efficient_attention=False)
42
+
43
+ web_page = """http://www.example.com
44
+
45
+ How to build a computer from scratch? Here are the components you need..."""
46
+
47
+ inputs = tokenizer([web_page], return_tensors="pt")
48
+ outputs = model(**inputs)
49
+
50
+ probs = outputs.logits.softmax(dim=-1)
51
+ print(probs.argmax(dim=-1))
52
+ # -> 5 ("Hardware" topic)
53
+ ```
54
+
55
+ You can convert the `logits` of the model with a softmax to obtain a probability distribution over the following 24 categories (in order of labels, also see `id2label` and `label2id` in the model config):
56
+ 1. Adult
57
+ 2. Art & Design
58
+ 3. Software Dev.
59
+ 4. Crime & Law
60
+ 5. Education & Jobs
61
+ 6. Hardware
62
+ 7. Entertainment
63
+ 8. Social Life
64
+ 9. Fashion & Beauty
65
+ 10. Finance & Business
66
+ 11. Food & Dining
67
+ 12. Games
68
+ 13. Health
69
+ 14. History
70
+ 15. Home & Hobbies
71
+ 16. Industrial
72
+ 17. Literature
73
+ 18. Politics
74
+ 19. Religion
75
+ 20. Science & Tech.
76
+ 21. Software
77
+ 22. Sports & Fitness
78
+ 23. Transportation
79
+ 24. Travel
80
+
81
+ The full definitions of the categories can be found in the [taxonomy config](https://github.com/CodeCreator/WebOrganizer/blob/main/define_domains/taxonomies/topics.yaml).
82
+
83
+ ##### Efficient Inference
84
+ We recommend that you use the efficient gte-base-en-v1.5 implementation by enabling unpadding and memory efficient attention. This __requires installing `xformers`__ and loading the model like
85
+ ```python
86
+ AutoModelForSequenceClassification.from_pretrained(
87
+ "WebOrganizer/TopicClassifier",
88
+ trust_remote_code=True,
89
+ unpad_inputs=True,
90
+ use_memory_efficient_attention=True,
91
+ torch_dtype=torch.bfloat16
92
+ )
93
+ ```
94
+ See details [here](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).
95
+
96
+ ## Citation
97
+ ```bibtex
98
+ @article{wettig2025organize,
99
+ title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation},
100
+ author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini},
101
+ year={2025}
102
+ }
103
+ ```