Update README.md
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ The model is a [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en
|
|
15 |
1. [WebOrganizer/TopicAnnotations-Llama-3.1-8B](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-8B): 1M documents annotated by Llama-3.1-8B (first-stage training)
|
16 |
2. [WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8): 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training)
|
17 |
|
18 |
-
|
19 |
- [WebOrganizer/FormatClassifier](https://huggingface.co/WebOrganizer/FormatClassifier)
|
20 |
- [WebOrganizer/FormatClassifier-NoURL](https://huggingface.co/WebOrganizer/FormatClassifier-NoURL)
|
21 |
- [WebOrganizer/TopicClassifier](https://huggingface.co/WebOrganizer/TopicClassifier) *← you are here!*
|
@@ -80,7 +80,7 @@ You can convert the `logits` of the model with a softmax to obtain a probability
|
|
80 |
|
81 |
The full definitions of the categories can be found in the [taxonomy config](https://github.com/CodeCreator/WebOrganizer/blob/main/define_domains/taxonomies/topics.yaml).
|
82 |
|
83 |
-
|
84 |
We recommend that you use the efficient gte-base-en-v1.5 implementation by enabling unpadding and memory efficient attention. This __requires installing `xformers`__ (see more [here](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers)) and loading the model like:
|
85 |
```python
|
86 |
AutoModelForSequenceClassification.from_pretrained(
|
|
|
15 |
1. [WebOrganizer/TopicAnnotations-Llama-3.1-8B](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-8B): 1M documents annotated by Llama-3.1-8B (first-stage training)
|
16 |
2. [WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8): 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training)
|
17 |
|
18 |
+
#### All Domain Classifiers
|
19 |
- [WebOrganizer/FormatClassifier](https://huggingface.co/WebOrganizer/FormatClassifier)
|
20 |
- [WebOrganizer/FormatClassifier-NoURL](https://huggingface.co/WebOrganizer/FormatClassifier-NoURL)
|
21 |
- [WebOrganizer/TopicClassifier](https://huggingface.co/WebOrganizer/TopicClassifier) *← you are here!*
|
|
|
80 |
|
81 |
The full definitions of the categories can be found in the [taxonomy config](https://github.com/CodeCreator/WebOrganizer/blob/main/define_domains/taxonomies/topics.yaml).
|
82 |
|
83 |
+
#### Efficient Inference
|
84 |
We recommend that you use the efficient gte-base-en-v1.5 implementation by enabling unpadding and memory efficient attention. This __requires installing `xformers`__ (see more [here](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers)) and loading the model like:
|
85 |
```python
|
86 |
AutoModelForSequenceClassification.from_pretrained(
|