WIZ1112 commited on
Commit
d91f8da
·
verified ·
1 Parent(s): dfbd9d2

Upload 10 files

Browse files
README.md CHANGED
@@ -1,3 +1,384 @@
1
- ---
2
- license: unknown
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jhgan/ko-sroberta-multitask
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:93961
11
+ - loss:CosineSimilarityLoss
12
+ widget:
13
+ - source_sentence: 송구함
14
+ sentences:
15
+ - 연민
16
+ - 질색
17
+ - 약오름
18
+ - source_sentence: 갈등
19
+ sentences:
20
+ - 죄송스러움
21
+ - 흥분
22
+ - 친애
23
+ - source_sentence: 동경
24
+ sentences:
25
+ - 울적함
26
+ - 영광스러움
27
+ - 연모
28
+ - source_sentence: 망설임
29
+ sentences:
30
+ - 역겨움
31
+ - 황송함
32
+ - 질투
33
+ - source_sentence: 겁남
34
+ sentences:
35
+ - 선호
36
+ - 역정
37
+ - 후련함
38
+ ---
39
+
40
+ # SentenceTransformer based on jhgan/ko-sroberta-multitask
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask) <!-- at revision ab957ae6a91e99c4cad36d52063a2a9cf1bf4419 -->
49
+ - **Maximum Sequence Length:** 128 tokens
50
+ - **Output Dimensionality:** 768 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("sentence_transformers_model_id")
87
+ # Run inference
88
+ sentences = [
89
+ '겁남',
90
+ '선호',
91
+ '후련함',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+
146
+ * Size: 93,961 training samples
147
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
148
+ * Approximate statistics based on the first 1000 samples:
149
+ | | sentence_0 | sentence_1 | label |
150
+ |:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------|
151
+ | type | string | string | float |
152
+ | details | <ul><li>min: 3 tokens</li><li>mean: 3.96 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.92 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 0.13</li><li>mean: 0.31</li><li>max: 0.93</li></ul> |
153
+ * Samples:
154
+ | sentence_0 | sentence_1 | label |
155
+ |:-----------------|:-----------------|:--------------------------------|
156
+ | <code>자만심</code> | <code>처량함</code> | <code>0.3356956711091378</code> |
157
+ | <code>실망</code> | <code>연민</code> | <code>0.3267507385483022</code> |
158
+ | <code>감동</code> | <code>이뻐함</code> | <code>0.6483006382304752</code> |
159
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
160
+ ```json
161
+ {
162
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
163
+ }
164
+ ```
165
+
166
+ ### Training Hyperparameters
167
+ #### Non-Default Hyperparameters
168
+
169
+ - `per_device_train_batch_size`: 16
170
+ - `per_device_eval_batch_size`: 16
171
+ - `num_train_epochs`: 4
172
+ - `multi_dataset_batch_sampler`: round_robin
173
+
174
+ #### All Hyperparameters
175
+ <details><summary>Click to expand</summary>
176
+
177
+ - `overwrite_output_dir`: False
178
+ - `do_predict`: False
179
+ - `eval_strategy`: no
180
+ - `prediction_loss_only`: True
181
+ - `per_device_train_batch_size`: 16
182
+ - `per_device_eval_batch_size`: 16
183
+ - `per_gpu_train_batch_size`: None
184
+ - `per_gpu_eval_batch_size`: None
185
+ - `gradient_accumulation_steps`: 1
186
+ - `eval_accumulation_steps`: None
187
+ - `torch_empty_cache_steps`: None
188
+ - `learning_rate`: 5e-05
189
+ - `weight_decay`: 0.0
190
+ - `adam_beta1`: 0.9
191
+ - `adam_beta2`: 0.999
192
+ - `adam_epsilon`: 1e-08
193
+ - `max_grad_norm`: 1
194
+ - `num_train_epochs`: 4
195
+ - `max_steps`: -1
196
+ - `lr_scheduler_type`: linear
197
+ - `lr_scheduler_kwargs`: {}
198
+ - `warmup_ratio`: 0.0
199
+ - `warmup_steps`: 0
200
+ - `log_level`: passive
201
+ - `log_level_replica`: warning
202
+ - `log_on_each_node`: True
203
+ - `logging_nan_inf_filter`: True
204
+ - `save_safetensors`: True
205
+ - `save_on_each_node`: False
206
+ - `save_only_model`: False
207
+ - `restore_callback_states_from_checkpoint`: False
208
+ - `no_cuda`: False
209
+ - `use_cpu`: False
210
+ - `use_mps_device`: False
211
+ - `seed`: 42
212
+ - `data_seed`: None
213
+ - `jit_mode_eval`: False
214
+ - `use_ipex`: False
215
+ - `bf16`: False
216
+ - `fp16`: False
217
+ - `fp16_opt_level`: O1
218
+ - `half_precision_backend`: auto
219
+ - `bf16_full_eval`: False
220
+ - `fp16_full_eval`: False
221
+ - `tf32`: None
222
+ - `local_rank`: 0
223
+ - `ddp_backend`: None
224
+ - `tpu_num_cores`: None
225
+ - `tpu_metrics_debug`: False
226
+ - `debug`: []
227
+ - `dataloader_drop_last`: False
228
+ - `dataloader_num_workers`: 0
229
+ - `dataloader_prefetch_factor`: None
230
+ - `past_index`: -1
231
+ - `disable_tqdm`: False
232
+ - `remove_unused_columns`: True
233
+ - `label_names`: None
234
+ - `load_best_model_at_end`: False
235
+ - `ignore_data_skip`: False
236
+ - `fsdp`: []
237
+ - `fsdp_min_num_params`: 0
238
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
239
+ - `fsdp_transformer_layer_cls_to_wrap`: None
240
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
241
+ - `deepspeed`: None
242
+ - `label_smoothing_factor`: 0.0
243
+ - `optim`: adamw_torch
244
+ - `optim_args`: None
245
+ - `adafactor`: False
246
+ - `group_by_length`: False
247
+ - `length_column_name`: length
248
+ - `ddp_find_unused_parameters`: None
249
+ - `ddp_bucket_cap_mb`: None
250
+ - `ddp_broadcast_buffers`: False
251
+ - `dataloader_pin_memory`: True
252
+ - `dataloader_persistent_workers`: False
253
+ - `skip_memory_metrics`: True
254
+ - `use_legacy_prediction_loop`: False
255
+ - `push_to_hub`: False
256
+ - `resume_from_checkpoint`: None
257
+ - `hub_model_id`: None
258
+ - `hub_strategy`: every_save
259
+ - `hub_private_repo`: False
260
+ - `hub_always_push`: False
261
+ - `gradient_checkpointing`: False
262
+ - `gradient_checkpointing_kwargs`: None
263
+ - `include_inputs_for_metrics`: False
264
+ - `eval_do_concat_batches`: True
265
+ - `fp16_backend`: auto
266
+ - `push_to_hub_model_id`: None
267
+ - `push_to_hub_organization`: None
268
+ - `mp_parameters`:
269
+ - `auto_find_batch_size`: False
270
+ - `full_determinism`: False
271
+ - `torchdynamo`: None
272
+ - `ray_scope`: last
273
+ - `ddp_timeout`: 1800
274
+ - `torch_compile`: False
275
+ - `torch_compile_backend`: None
276
+ - `torch_compile_mode`: None
277
+ - `dispatch_batches`: None
278
+ - `split_batches`: None
279
+ - `include_tokens_per_second`: False
280
+ - `include_num_input_tokens_seen`: False
281
+ - `neftune_noise_alpha`: None
282
+ - `optim_target_modules`: None
283
+ - `batch_eval_metrics`: False
284
+ - `eval_on_start`: False
285
+ - `eval_use_gather_object`: False
286
+ - `batch_sampler`: batch_sampler
287
+ - `multi_dataset_batch_sampler`: round_robin
288
+
289
+ </details>
290
+
291
+ ### Training Logs
292
+ | Epoch | Step | Training Loss |
293
+ |:------:|:-----:|:-------------:|
294
+ | 0.0851 | 500 | 0.0114 |
295
+ | 0.1703 | 1000 | 0.0065 |
296
+ | 0.2554 | 1500 | 0.0048 |
297
+ | 0.3405 | 2000 | 0.0039 |
298
+ | 0.4257 | 2500 | 0.0032 |
299
+ | 0.5108 | 3000 | 0.003 |
300
+ | 0.5959 | 3500 | 0.0026 |
301
+ | 0.6811 | 4000 | 0.0026 |
302
+ | 0.7662 | 4500 | 0.0025 |
303
+ | 0.8514 | 5000 | 0.0022 |
304
+ | 0.9365 | 5500 | 0.0022 |
305
+ | 1.0216 | 6000 | 0.0021 |
306
+ | 1.1068 | 6500 | 0.0019 |
307
+ | 1.1919 | 7000 | 0.0017 |
308
+ | 1.2770 | 7500 | 0.0017 |
309
+ | 1.3622 | 8000 | 0.0017 |
310
+ | 1.4473 | 8500 | 0.0015 |
311
+ | 1.5324 | 9000 | 0.0015 |
312
+ | 1.6176 | 9500 | 0.0014 |
313
+ | 1.7027 | 10000 | 0.0014 |
314
+ | 1.7878 | 10500 | 0.0014 |
315
+ | 1.8730 | 11000 | 0.0012 |
316
+ | 1.9581 | 11500 | 0.0012 |
317
+ | 2.0432 | 12000 | 0.0013 |
318
+ | 2.1284 | 12500 | 0.0011 |
319
+ | 2.2135 | 13000 | 0.0011 |
320
+ | 2.2987 | 13500 | 0.0011 |
321
+ | 2.3838 | 14000 | 0.001 |
322
+ | 2.4689 | 14500 | 0.001 |
323
+ | 2.5541 | 15000 | 0.001 |
324
+ | 2.6392 | 15500 | 0.0009 |
325
+ | 2.7243 | 16000 | 0.0009 |
326
+ | 2.8095 | 16500 | 0.001 |
327
+ | 2.8946 | 17000 | 0.0009 |
328
+ | 2.9797 | 17500 | 0.0008 |
329
+ | 3.0649 | 18000 | 0.0008 |
330
+ | 3.1500 | 18500 | 0.0008 |
331
+ | 3.2351 | 19000 | 0.0007 |
332
+ | 3.3203 | 19500 | 0.0007 |
333
+ | 3.4054 | 20000 | 0.0008 |
334
+ | 3.4905 | 20500 | 0.0007 |
335
+ | 3.5757 | 21000 | 0.0007 |
336
+ | 3.6608 | 21500 | 0.0007 |
337
+ | 3.7460 | 22000 | 0.0007 |
338
+ | 3.8311 | 22500 | 0.0006 |
339
+ | 3.9162 | 23000 | 0.0006 |
340
+
341
+
342
+ ### Framework Versions
343
+ - Python: 3.10.12
344
+ - Sentence Transformers: 3.2.1
345
+ - Transformers: 4.44.2
346
+ - PyTorch: 2.5.0+cu121
347
+ - Accelerate: 0.34.2
348
+ - Datasets: 3.1.0
349
+ - Tokenizers: 0.19.1
350
+
351
+ ## Citation
352
+
353
+ ### BibTeX
354
+
355
+ #### Sentence Transformers
356
+ ```bibtex
357
+ @inproceedings{reimers-2019-sentence-bert,
358
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
359
+ author = "Reimers, Nils and Gurevych, Iryna",
360
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
361
+ month = "11",
362
+ year = "2019",
363
+ publisher = "Association for Computational Linguistics",
364
+ url = "https://arxiv.org/abs/1908.10084",
365
+ }
366
+ ```
367
+
368
+ <!--
369
+ ## Glossary
370
+
371
+ *Clearly define terms in order to be accessible across audiences.*
372
+ -->
373
+
374
+ <!--
375
+ ## Model Card Authors
376
+
377
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
378
+ -->
379
+
380
+ <!--
381
+ ## Model Card Contact
382
+
383
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
384
+ -->
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/Users/yunji/CorDive-pre/CorDive-pre/nlp-final/fine_tuned_similarity_model",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
@@ -22,7 +22,7 @@
22
  "position_embedding_type": "absolute",
23
  "tokenizer_class": "BertTokenizer",
24
  "torch_dtype": "float32",
25
- "transformers_version": "4.46.2",
26
  "type_vocab_size": 1,
27
  "use_cache": true,
28
  "vocab_size": 32000
 
1
  {
2
+ "_name_or_path": "jhgan/ko-sroberta-multitask",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
22
  "position_embedding_type": "absolute",
23
  "tokenizer_class": "BertTokenizer",
24
  "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
  "type_vocab_size": 1,
27
  "use_cache": true,
28
  "vocab_size": 32000
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }