File size: 9,730 Bytes
7c627aa fef4011 7c627aa 7682d52 1f54dd5 83d136a 1f54dd5 89b29bb 1f54dd5 89b29bb 8e4a339 7682d52 1f54dd5 7682d52 7c627aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
base_model:
- nothingiisreal/MN-12B-Starcannon-v3
- MarinaraSpaghetti/NemoMix-Unleashed-12B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: cc-by-nc-4.0
---

Starcannon-Unleashed-12B-v1.0-GGUF
==================================
Static quants of [**VongolaChouko/Starcannon-Unleashed-12B-v1.0**](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0).
This model was converted to GGUF format from [VongolaChouko/Starcannon-Unleashed-12B-v1.0](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0) for more details on the model.
**I recommend using them with [koboldcpp](https://github.com/LostRuins/koboldcpp). You can find their latest release here: [koboldcpp-1.76](https://github.com/LostRuins/koboldcpp/releases)**
<hr/>
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Split | Description |
| -------- | ---------- | --------- | ----- | ----------- |
| [Starcannon-Unleashed-12B-v1.0-FP16.gguf](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0-GGUF/blob/main/Starcannon-Unleashed-12B-v1.0-FP16.gguf) | f16 | 24.50GB | false | Full F16 weights. |
| [Mistral-Nemo-Instruct-2407-Q8_0.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q8_0.gguf) | Q8_0 | 13.02GB | false | Extremely high quality, generally unneeded but max available quant. |
| [Starcannon-Unleashed-12B-v1.0-Q6_K.gguf](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0-GGUF/blob/main/Starcannon-Unleashed-12B-v1.0-Q6_K.gguf) | Q6_K | 10.06GB | false | Very high quality, near perfect, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q5_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q5_K_L.gguf) | Q5_K_L | 9.14GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q5_K_M.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q5_K_M.gguf) | Q5_K_M | 8.73GB | false | High quality, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q5_K_S.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q5_K_S.gguf) | Q5_K_S | 8.52GB | false | High quality, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q4_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_K_L.gguf) | Q4_K_L | 7.98GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q4_K_M.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_K_M.gguf) | Q4_K_M | 7.48GB | false | Good quality, default size for must use cases, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q3_K_XL.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_XL.gguf) | Q3_K_XL | 7.15GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
| [Mistral-Nemo-Instruct-2407-Q4_K_S.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_K_S.gguf) | Q4_K_S | 7.12GB | false | Slightly lower quality with more space savings, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q4_0.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0.gguf) | Q4_0 | 7.09GB | false | Legacy format, generally not worth using over similarly sized formats |
| [Mistral-Nemo-Instruct-2407-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_8_8.gguf) | Q4_0_8_8 | 7.07GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
| [Mistral-Nemo-Instruct-2407-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_4_8.gguf) | Q4_0_4_8 | 7.07GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
| [Mistral-Nemo-Instruct-2407-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_4_4.gguf) | Q4_0_4_4 | 7.07GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
| [Mistral-Nemo-Instruct-2407-IQ4_XS.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-IQ4_XS.gguf) | IQ4_XS | 6.74GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [Mistral-Nemo-Instruct-2407-Q3_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_L.gguf) | Q3_K_L | 6.56GB | false | Lower quality but usable, good for low RAM availability. |
| [Mistral-Nemo-Instruct-2407-Q3_K_M.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_M.gguf) | Q3_K_M | 6.08GB | false | Low quality. |
| [Mistral-Nemo-Instruct-2407-IQ3_M.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-IQ3_M.gguf) | IQ3_M | 5.72GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [Mistral-Nemo-Instruct-2407-Q3_K_S.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_S.gguf) | Q3_K_S | 5.53GB | false | Low quality, not recommended. |
| [Mistral-Nemo-Instruct-2407-Q2_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q2_K_L.gguf) | Q2_K_L | 5.45GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
| [Mistral-Nemo-Instruct-2407-IQ3_XS.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-IQ3_XS.gguf) | IQ3_XS | 5.31GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [Mistral-Nemo-Instruct-2407-Q2_K.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q2_K.gguf) | Q2_K | 4.79GB | false | Very low quality but surprisingly usable. |
| [Mistral-Nemo-Instruct-2407-IQ2_M.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-IQ2_M.gguf) | IQ2_M | 4.44GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
## Instruct
Both ChatML and Mistral should work fine. Personally, I tested this using ChatML. I found that I like the model's responses better when I use this format. Try to test it out and observe which one you like best. :D
## Settings
I recommend using these setings:
[Starcannon-Unleashed-12B-v1.0-ST-Formatting-2024-10-29.json](https://huggingface.co/VongolaChouko/Starcannon-Unleashed-12B-v1.0/blob/main/Starcannon-Unleashed-12B-v1.0-ST-Formatting-2024-10-29.json)
**IMPORTANT: Open Silly Tavern and use "Master Import", which can be found under "A" tab — Advanced Formatting. Replace the "INSERT WORLD HERE" placeholders with the world/universe in which your charcater belongs to. If not applicable, just remove that part.**

Temperature 1.15 - 1.25 is good, but lower should also work well, as long as you also tweak the Min P and XTC to ensure the model won't choke. Play around with it to see what suits your taste.
This is a modified version of MarinaraSpaghetti's Mistral-Small-Correct.json, transformed into ChatML.
You can find the original version here: [MarinaraSpaghetti/SillyTavern-Settings](https://huggingface.co/MarinaraSpaghetti/SillyTavern-Settings/tree/main/Customized)
## To use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo VongolaChouko/Starcannon-Unleashed-12B-v1.0-Q6_K-GGUF --hf-file starcannon-unleashed-12b-v1.0-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo VongolaChouko/Starcannon-Unleashed-12B-v1.0-Q6_K-GGUF --hf-file starcannon-unleashed-12b-v1.0-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo VongolaChouko/Starcannon-Unleashed-12B-v1.0-Q6_K-GGUF --hf-file starcannon-unleashed-12b-v1.0-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo VongolaChouko/Starcannon-Unleashed-12B-v1.0-Q6_K-GGUF --hf-file starcannon-unleashed-12b-v1.0-q6_k.gguf -c 2048
``` |