Update README.md
Browse files
README.md
CHANGED
@@ -4,9 +4,20 @@ language:
|
|
4 |
- pl
|
5 |
datasets:
|
6 |
- Wikipedia
|
|
|
7 |
tags:
|
8 |
-
- sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
|
|
10 |
# SHerbert large - Polish SentenceBERT
|
11 |
SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text.
|
12 |
|
|
|
4 |
- pl
|
5 |
datasets:
|
6 |
- Wikipedia
|
7 |
+
pipeline_tag: sentence-similarity
|
8 |
tags:
|
9 |
+
- sentence-transformers
|
10 |
+
- feature-extraction
|
11 |
+
- sentence-similarity
|
12 |
+
widget:
|
13 |
+
- source_sentence: "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego."
|
14 |
+
sentences:
|
15 |
+
- "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju."
|
16 |
+
- "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. "
|
17 |
+
- "Samica o długości ciała 10–11 mm, szczoteczki na tylnych nogach służące do zbierania pyłku oraz włoski na końcu odwłoka jaskrawo pomarańczowoczerwone. "
|
18 |
+
example_title: "Uczenie maszynowe"
|
19 |
---
|
20 |
+
|
21 |
# SHerbert large - Polish SentenceBERT
|
22 |
SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text.
|
23 |
|