|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer |
|
from peft import get_peft_model, LoraConfig, TaskType |
|
from datasets import load_from_disk |
|
import torch |
|
|
|
|
|
|
|
model_name = "Visdom9/Norah" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map={"": "cpu"}) |
|
|
|
|
|
|
|
config = LoraConfig( |
|
task_type="CAUSAL_LM", |
|
r=8, |
|
lora_alpha=32, |
|
lora_dropout=0.1 |
|
) |
|
|
|
|
|
model = get_peft_model(model, config) |
|
|
|
|
|
tokenized_dataset = load_from_disk("tokenized_norah") |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./norah_lora", |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=2, |
|
learning_rate=5e-5, |
|
num_train_epochs=3, |
|
save_steps=500, |
|
save_total_limit=2, |
|
logging_steps=10, |
|
fp16=False |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained("./norah_lora") |
|
tokenizer.save_pretrained("./norah_lora") |
|
|
|
print("β
Fine-tuning complete! Model saved in 'norah_lora'") |
|
|