|
""" |
|
# Copyright 2020 Adobe |
|
# All Rights Reserved. |
|
|
|
# NOTICE: Adobe permits you to use, modify, and distribute this file in |
|
# accordance with the terms of the Adobe license agreement accompanying |
|
# it. |
|
|
|
""" |
|
|
|
import os |
|
import torch.nn.parallel |
|
import torch.optim as optim |
|
import torch.utils.data |
|
import time |
|
import torch.nn as nn |
|
from src.dataset.audio2landmark.audio2landmark_dataset import Speaker_aware_branch_Dataset |
|
from src.models.model_audio2landmark_speaker_aware import Audio2landmark_speaker_aware |
|
from src.models.model_audio2landmark import Audio2landmark_content |
|
from util.utils import Record, get_n_params |
|
from tensorboardX import SummaryWriter |
|
from util.icp import icp |
|
import numpy as np |
|
from scipy.spatial.transform import Rotation as R |
|
from scipy.signal import savgol_filter |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
class Speaker_aware_branch(): |
|
|
|
def __init__(self, opt_parser): |
|
print('Run on device:', device) |
|
|
|
|
|
for key in vars(opt_parser).keys(): |
|
print(key, ':', vars(opt_parser)[key]) |
|
self.opt_parser = opt_parser |
|
self.dump_dir = opt_parser.dump_dir |
|
self.std_face_id = np.loadtxt('dataset/utils/STD_FACE_LANDMARKS.txt') |
|
|
|
|
|
|
|
self.std_face_id = self.std_face_id.reshape(1, 204) |
|
self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device) |
|
|
|
if(not opt_parser.test_end2end): |
|
|
|
self.train_data = Speaker_aware_branch_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name, |
|
num_window_frames=opt_parser.num_window_frames, |
|
num_window_step=opt_parser.num_window_step, |
|
status='train', use_11spk_only=opt_parser.use_11spk_only) |
|
self.train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=opt_parser.batch_size, |
|
shuffle=False, num_workers=0, |
|
collate_fn=self.train_data.my_collate_in_segments) |
|
|
|
print('Train num videos: {}'.format(len(self.train_data))) |
|
self.eval_data = Speaker_aware_branch_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name, |
|
num_window_frames=opt_parser.num_window_frames, |
|
num_window_step=opt_parser.num_window_step, |
|
status='val', use_11spk_only=opt_parser.use_11spk_only) |
|
self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=opt_parser.batch_size, |
|
shuffle=False, num_workers=0, |
|
collate_fn=self.eval_data.my_collate_in_segments) |
|
print('EVAL num videos: {}'.format(len(self.eval_data))) |
|
else: |
|
self.eval_data = Speaker_aware_branch_Dataset(dump_dir='examples/dump', |
|
dump_name='random', |
|
status='val', |
|
num_window_frames=18, |
|
num_window_step=1) |
|
|
|
|
|
|
|
|
|
|
|
self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=1, |
|
shuffle=False, num_workers=0, |
|
collate_fn=self.eval_data.my_collate_in_segments) |
|
print('EVAL num videos: {}'.format(len(self.eval_data))) |
|
|
|
|
|
|
|
self.G = Audio2landmark_speaker_aware( |
|
spk_emb_enc_size=opt_parser.spk_emb_enc_size, |
|
transformer_d_model=opt_parser.transformer_d_model, |
|
N=opt_parser.transformer_N, heads=opt_parser.transformer_heads, |
|
pos_dim=opt_parser.pos_dim, |
|
use_prior_net=True) |
|
|
|
for p in self.G.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
print('G: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.G)/1.0e6)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (opt_parser.init_content_encoder.split('/')[-1] != ''): |
|
model_dict = self.G.state_dict() |
|
ckpt = torch.load(opt_parser.init_content_encoder) |
|
pretrained_dict = {k: v for k, v in ckpt['model_g_face_id'].items() |
|
if 'bilstm' in k or 'fc_prior' in k} |
|
model_dict.update(pretrained_dict) |
|
self.G.load_state_dict(model_dict) |
|
print('======== LOAD INIT POS MODEL {} ========='.format(opt_parser.init_content_encoder)) |
|
|
|
if (opt_parser.load_a2l_G_name.split('/')[-1] != ''): |
|
model_dict = self.G.state_dict() |
|
ckpt = torch.load(opt_parser.load_a2l_G_name) |
|
pretrained_dict = {k: v for k, v in ckpt['G'].items() |
|
if 'out.' not in k and 'out_pos_1.' not in k} |
|
model_dict.update(pretrained_dict) |
|
|
|
self.G.load_state_dict(model_dict) |
|
print('======== LOAD PRETRAINED SPEAKER AWARE MODEL {} ========='.format(opt_parser.load_a2l_G_name)) |
|
|
|
self.G.to(device) |
|
|
|
''' Speech content model ''' |
|
self.C = Audio2landmark_content(num_window_frames=18, in_size=80, use_prior_net=True, |
|
bidirectional=False, drop_out=0.) |
|
ckpt = torch.load(opt_parser.load_a2l_C_name) |
|
self.C.load_state_dict(ckpt['model_g_face_id']) |
|
print('======== LOAD PRETRAINED FACE ID MODEL {} ========='.format(opt_parser.load_a2l_C_name)) |
|
self.C.to(device) |
|
|
|
self.loss_mse = torch.nn.MSELoss() |
|
self.loss_bce = torch.nn.BCELoss() |
|
|
|
self.opt_G = optim.Adam(self.G.parameters(), lr=opt_parser.lr, weight_decay=opt_parser.reg_lr) |
|
|
|
|
|
self.test_embs = {} |
|
if(not opt_parser.test_end2end): |
|
for i, batch in enumerate(self.eval_dataloader): |
|
global_id, video_name = self.eval_data[i][0][1][0], self.eval_data[i][0][1][1][:-4] |
|
if(video_name.split('_x_')[1] not in self.test_embs.keys()): |
|
inputs_fl, inputs_au, inputs_emb, _, _, _ = batch |
|
self.test_embs[video_name.split('_x_')[1]] = inputs_emb[0] |
|
else: |
|
self.emb_data = Speaker_aware_branch_Dataset(dump_dir='examples/dump', |
|
dump_name='celeb_normrot', |
|
status='val', |
|
num_window_frames=18, |
|
num_window_step=1, |
|
use_11spk_only=opt_parser.use_11spk_only) |
|
self.emb_dataloader = torch.utils.data.DataLoader(self.emb_data, batch_size=1, |
|
shuffle=False, num_workers=0, |
|
collate_fn=self.emb_data.my_collate_in_segments) |
|
for i, batch in enumerate(self.emb_dataloader): |
|
global_id, video_name = self.emb_data[i][0][1][0], self.emb_data[i][0][1][1][:-4] |
|
if(video_name.split('_x_')[1] not in self.test_embs.keys()): |
|
inputs_fl, inputs_au, inputs_emb, _, _, _ = batch |
|
self.test_embs[video_name.split('_x_')[1]] = inputs_emb[0] |
|
|
|
print(self.test_embs.keys(), len(self.test_embs.keys())) |
|
self.test_embs_dic = {key: i for i, key in enumerate(self.test_embs.keys())} |
|
|
|
if (opt_parser.write): |
|
self.writer = SummaryWriter(log_dir=os.path.join(opt_parser.log_dir, opt_parser.name)) |
|
self.writer_count = {'TRAIN_epoch': 0, 'TRAIN_batch': 0, 'TRAIN_in_batch': 0, |
|
'EVAL_epoch': 0, 'EVAL_batch': 0, 'EVAL_in_batch': 0} |
|
|
|
self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) |
|
self.anchor_t_shape = np.loadtxt('dataset/utils//STD_FACE_LANDMARKS.txt') |
|
self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :] |
|
|
|
def __train_speaker_aware__(self, fls, aus, embs, face_id, reg_fls, rot_trans, rot_quats, |
|
use_residual=False, is_training=True): |
|
|
|
fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False) |
|
reg_fls_gt = reg_fls[:, 0, :].detach().clone().requires_grad_(False) |
|
|
|
if (face_id.shape[0] == 1): |
|
face_id = face_id.repeat(aus.shape[0], 1) |
|
face_id = face_id.requires_grad_(False) |
|
content_branch_face_id = face_id.detach() |
|
|
|
d_real_dt, d_fake_dt, d_real_dl, d_fake_dl, g_fake_dt, g_fake_dl, d_ano_dt = 0., 0., 0., 0., 0., 0., 0. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' ====================================================== |
|
Generator G |
|
====================================================== ''' |
|
|
|
for name, p in self.G.named_parameters(): |
|
p.requires_grad = True |
|
|
|
fl_dis_pred, pos_pred, _, spk_encode = self.G(aus, |
|
embs * self.opt_parser.emb_coef, |
|
face_id, |
|
add_z_spk=True) |
|
|
|
if (use_residual): |
|
baseline_pred_fls, _ = self.C(aus[:, 0:18, :], content_branch_face_id) |
|
|
|
''' CALIBRATION in TEST TIME ''' |
|
if (not is_training): |
|
|
|
smooth_length = int(min(fl_dis_pred.shape[0] - 1, 51) // 2 * 2 + 1) |
|
fl_dis_pred = savgol_filter(fl_dis_pred.cpu().numpy(), smooth_length, 3, axis=0) |
|
fl_dis_pred *= self.opt_parser.amp_pos |
|
|
|
|
|
fl_dis_pred = fl_dis_pred.reshape((-1, 68, 3)) |
|
index1 = list(range(60-1, 55-1, -1)) |
|
index2 = list(range(68-1, 65-1, -1)) |
|
mean_out = 0.5 * (fl_dis_pred[:, 49:54] + fl_dis_pred[:, index1]) |
|
mean_in = 0.5 * (fl_dis_pred[:, 61:64] + fl_dis_pred[:, index2]) |
|
fl_dis_pred[:, 49:54] = fl_dis_pred[:, index1] = mean_out |
|
fl_dis_pred[:, 61:64] = fl_dis_pred[:, index2] = mean_in |
|
fl_dis_pred = fl_dis_pred.reshape(-1, 204) |
|
|
|
fl_dis_pred = torch.tensor(fl_dis_pred).to(device) * self.opt_parser.amp_pos |
|
|
|
mean_face_id = torch.mean(baseline_pred_fls.detach(), dim=0, keepdim=True) |
|
|
|
content_branch_face_id -= mean_face_id.view(1, 204) * 1.0 |
|
baseline_pred_fls, _ = self.C(aus[:, 0:18, :], content_branch_face_id) |
|
|
|
|
|
baseline_pred_fls[:, 48 * 3::3] *= self.opt_parser.amp_lip_x |
|
baseline_pred_fls[:, 48 * 3 + 1::3] *= self.opt_parser.amp_lip_y |
|
|
|
fl_dis_pred += baseline_pred_fls.detach() |
|
|
|
|
|
fl_dis_pred = fl_dis_pred + face_id[0:1].detach() |
|
|
|
|
|
loss_reg_fls = torch.nn.functional.l1_loss(fl_dis_pred, reg_fls_gt) |
|
|
|
|
|
''' use laplacian smooth loss ''' |
|
loss_laplacian = 0. |
|
if (self.opt_parser.lambda_laplacian_smooth_loss > 0.0): |
|
n1 = [1] + list(range(0, 16)) + [18] + list(range(17, 21)) + [23] + list(range(22, 26)) + \ |
|
[28] + list(range(27, 35)) + [41] + list(range(36, 41)) + [47] + list(range(42, 47)) + \ |
|
[59] + list(range(48, 59)) + [67] + list(range(60, 67)) |
|
n2 = list(range(1, 17)) + [15] + list(range(18, 22)) + [20] + list(range(23, 27)) + [25] + \ |
|
list(range(28, 36)) + [34] + list(range(37, 42)) + [36] + list(range(43, 48)) + [42] + \ |
|
list(range(49, 60)) + [48] + list(range(61, 68)) + [60] |
|
V = (fl_dis_pred + face_id[0:1]).view(-1, 68, 3) |
|
L_V = V - 0.5 * (V[:, n1, :] + V[:, n2, :]) |
|
G = reg_fls_gt.view(-1, 68, 3) |
|
L_G = G - 0.5 * (G[:, n1, :] + G[:, n2, :]) |
|
loss_laplacian = torch.nn.functional.l1_loss(L_V, L_G) |
|
|
|
|
|
if(self.opt_parser.pos_dim == 7): |
|
pos_gt = torch.cat([rot_quats[:, 0], rot_trans[:, 0, :, 3]], dim=1) |
|
|
|
loss_pos = torch.nn.functional.l1_loss(pos_pred, pos_gt) |
|
else: |
|
pos_gt = rot_trans[:, 0].view(-1, 12) |
|
loss_pos = torch.nn.functional.l1_loss(pos_pred, pos_gt) |
|
|
|
loss = loss_reg_fls + loss_laplacian * self.opt_parser.lambda_laplacian_smooth_loss + loss_pos |
|
|
|
|
|
if(is_training): |
|
self.opt_G.zero_grad() |
|
loss.backward() |
|
self.opt_G.step() |
|
|
|
if (self.opt_parser.pos_dim == 7): |
|
pos_pred[:, 0:4] = torch.nn.functional.normalize(pos_pred[:, 0:4], p=2, dim=1) |
|
return fl_dis_pred, pos_pred, face_id[0:1, :], (loss, loss_reg_fls, loss_laplacian, loss_pos) |
|
|
|
def __train_pass__(self, epoch, log_loss, is_training=True): |
|
st_epoch = time.time() |
|
|
|
|
|
if (is_training): |
|
self.G.train() |
|
self.C.train() |
|
data = self.train_data |
|
dataloader = self.train_dataloader |
|
status = 'TRAIN' |
|
else: |
|
self.G.eval() |
|
self.C.eval() |
|
data = self.eval_data |
|
dataloader = self.eval_dataloader |
|
status = 'EVAL' |
|
|
|
|
|
|
|
random_clip_index = list(range(len(dataloader))) |
|
print('random_clip_index', random_clip_index) |
|
|
|
for i, batch in enumerate(dataloader): |
|
|
|
|
|
|
|
|
|
st = time.time() |
|
global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] |
|
|
|
|
|
|
|
inputs_fl, inputs_au, inputs_emb, inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = batch |
|
|
|
|
|
|
|
|
|
if (is_training): |
|
rand_start = np.random.randint(0, inputs_fl.shape[0] // 5, 1).reshape(-1) |
|
inputs_fl = inputs_fl[rand_start[0]:] |
|
inputs_au = inputs_au[rand_start[0]:] |
|
inputs_emb = inputs_emb[rand_start[0]:] |
|
inputs_reg_fl = inputs_reg_fl[rand_start[0]:] |
|
inputs_rot_tran = inputs_rot_tran[rand_start[0]:] |
|
inputs_rot_quat = inputs_rot_quat[rand_start[0]:] |
|
|
|
inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device) |
|
inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = inputs_reg_fl.to(device), inputs_rot_tran.to(device), inputs_rot_quat.to(device) |
|
|
|
std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] |
|
seg_bs = self.opt_parser.segment_batch_size |
|
|
|
close_fl_list = inputs_fl[::10, 0, :] |
|
idx = self.__close_face_lip__(close_fl_list.detach().cpu().numpy()) |
|
input_face_id = close_fl_list[idx:idx + 1, :] |
|
|
|
''' register face ''' |
|
if (self.opt_parser.use_reg_as_std): |
|
landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3) |
|
frame_t_shape = landmarks[self.t_shape_idx, :] |
|
T, distance, itr = icp(frame_t_shape, self.anchor_t_shape) |
|
landmarks = np.hstack((landmarks, np.ones((68, 1)))) |
|
registered_landmarks = np.dot(T, landmarks.T).T |
|
input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False, |
|
dtype=torch.float).to(device) |
|
|
|
for j in range(0, inputs_fl.shape[0], seg_bs): |
|
|
|
inputs_fl_segments = inputs_fl[j: j + seg_bs] |
|
inputs_au_segments = inputs_au[j: j + seg_bs] |
|
inputs_emb_segments = inputs_emb[j: j + seg_bs] |
|
inputs_reg_fl_segments = inputs_reg_fl[j: j + seg_bs] |
|
inputs_rot_tran_segments = inputs_rot_tran[j: j + seg_bs] |
|
inputs_rot_quat_segments = inputs_rot_quat[j: j + seg_bs] |
|
|
|
if(inputs_fl_segments.shape[0] < 10): |
|
continue |
|
|
|
if(self.opt_parser.test_emb): |
|
input_face_id = self.std_face_id |
|
|
|
fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_reg_fls, loss_laplacian, loss_pos) = \ |
|
self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments, |
|
input_face_id, inputs_reg_fl_segments, inputs_rot_tran_segments, |
|
inputs_rot_quat_segments, |
|
is_training=is_training, |
|
use_residual=self.opt_parser.use_residual) |
|
|
|
fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy() |
|
pos_pred = pos_pred.data.cpu().numpy() |
|
fl_std = inputs_reg_fl_segments[:, 0, :].data.cpu().numpy() |
|
pos_std = inputs_rot_tran_segments[:, 0, :].data.cpu().numpy() |
|
''' solve inverse lip ''' |
|
if(not is_training): |
|
fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) |
|
|
|
fl_dis_pred_pos = fl_dis_pred_pos.reshape((-1, 68, 3)) |
|
fl_std = fl_std.reshape((-1, 68, 3)) |
|
if(self.opt_parser.pos_dim == 12): |
|
pos_pred = pos_pred.reshape((-1, 3, 4)) |
|
for k in range(fl_dis_pred_pos.shape[0]): |
|
fl_dis_pred_pos[k] = np.dot(pos_pred[k, :3, :3].T + np.eye(3), |
|
(fl_dis_pred_pos[k] - pos_pred[k, :, 3].T).T).T |
|
pos_std = pos_std.reshape((-1, 3, 4)) |
|
for k in range(fl_std.shape[0]): |
|
fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), |
|
(fl_std[k] - pos_std[k, :, 3].T).T).T |
|
else: |
|
if(not is_training): |
|
smooth_length = int(min(pos_pred.shape[0] - 1, 27) // 2 * 2 + 1) |
|
pos_pred = savgol_filter(pos_pred, smooth_length, 3, axis=0) |
|
quat = pos_pred[:, :4] |
|
trans = pos_pred[:, 4:] |
|
for k in range(fl_dis_pred_pos.shape[0]): |
|
fl_dis_pred_pos[k] = np.dot(R.from_quat(quat[k]).as_matrix().T, |
|
(fl_dis_pred_pos[k] - trans[k:k+1]).T).T |
|
pos_std = pos_std.reshape((-1, 3, 4)) |
|
for k in range(fl_std.shape[0]): |
|
fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), |
|
(fl_std[k] - pos_std[k, :, 3].T).T).T |
|
|
|
fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))] |
|
std_fls_list += [fl_std.reshape((-1, 204))] |
|
|
|
for key in log_loss.keys(): |
|
if (key not in locals().keys()): |
|
continue |
|
if (type(locals()[key]) == float): |
|
log_loss[key].add(locals()[key]) |
|
else: |
|
log_loss[key].add(locals()[key].data.cpu().numpy()) |
|
|
|
if (epoch % self.opt_parser.jpg_freq == 0 and i in random_clip_index): |
|
def save_fls_av(fake_fls_list, postfix='', ifsmooth=True): |
|
fake_fls_np = np.concatenate(fake_fls_list) |
|
filename = 'fake_fls_{}_{}_{}.txt'.format(epoch, video_name, postfix) |
|
np.savetxt( |
|
os.path.join(self.opt_parser.dump_dir, '../nn_result', self.opt_parser.name, filename), |
|
fake_fls_np, fmt='%.6f') |
|
audio_filename = '{:05d}_{}_audio.wav'.format(global_id, video_name) |
|
from util.vis import Vis_old |
|
Vis_old(run_name=self.opt_parser.name, pred_fl_filename=filename, audio_filename=audio_filename, |
|
fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, i, postfix), |
|
postfix=postfix, root_dir=self.opt_parser.root_dir, ifsmooth=ifsmooth) |
|
|
|
if (True): |
|
if (self.opt_parser.show_animation): |
|
print('show animation ....') |
|
save_fls_av(fls_pred_pos_list, 'pred', ifsmooth=True) |
|
save_fls_av(std_fls_list, 'std', ifsmooth=False) |
|
|
|
if (self.opt_parser.verbose <= 1): |
|
print('{} Epoch: #{} batch #{}/{}'.format(status, epoch, i, len(dataloader)), end=': ') |
|
for key in log_loss.keys(): |
|
print(key, '{:.5f}'.format(log_loss[key].per('batch')), end=', ') |
|
print('') |
|
self.__tensorboard_write__(status, log_loss, 'batch') |
|
|
|
if (self.opt_parser.verbose <= 2): |
|
print('==========================================================') |
|
print('{} Epoch: #{}'.format(status, epoch), end=':') |
|
for key in log_loss.keys(): |
|
print(key, '{:.4f}'.format(log_loss[key].per('epoch')), end=', ') |
|
print('Epoch time usage: {:.2f} sec\n==========================================================\n'.format(time.time() - st_epoch)) |
|
self.__save_model__(save_type='last_epoch', epoch=epoch) |
|
if(epoch % self.opt_parser.ckpt_epoch_freq == 0): |
|
self.__save_model__(save_type='e_{}'.format(epoch), epoch=epoch) |
|
self.__tensorboard_write__(status, log_loss, 'epoch') |
|
|
|
|
|
def test_end2end(self, jpg_shape): |
|
|
|
self.G.eval() |
|
self.C.eval() |
|
data = self.eval_data |
|
dataloader = self.eval_dataloader |
|
|
|
for i, batch in enumerate(dataloader): |
|
|
|
global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] |
|
|
|
inputs_fl, inputs_au, inputs_emb, inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = batch |
|
|
|
for key in ['irx71tYyI-Q', 'J-NPsvtQ8lE', 'Z7WRt--g-h4', 'E0zgrhQ0QDw', 'bXpavyiCu10', 'W6uRNCJmdtI', 'sxCbrYjBsGA', 'wAAMEC1OsRc', '_ldiVrXgZKc', '48uYS3bHIA8', 'E_kmpT-EfOg']: |
|
emb_val = self.test_embs[key] |
|
inputs_emb = np.tile(emb_val, (inputs_emb.shape[0], 1)) |
|
inputs_emb = torch.tensor(inputs_emb, dtype=torch.float, requires_grad=False) |
|
|
|
|
|
|
|
|
|
|
|
inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device) |
|
inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = inputs_reg_fl.to(device), inputs_rot_tran.to(device), inputs_rot_quat.to(device) |
|
|
|
std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] |
|
seg_bs = self.opt_parser.segment_batch_size |
|
|
|
|
|
input_face_id = torch.tensor(jpg_shape.reshape(1, 204), requires_grad=False, dtype=torch.float).to(device) |
|
|
|
''' register face ''' |
|
if (True): |
|
landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3) |
|
frame_t_shape = landmarks[self.t_shape_idx, :] |
|
T, distance, itr = icp(frame_t_shape, self.anchor_t_shape) |
|
landmarks = np.hstack((landmarks, np.ones((68, 1)))) |
|
registered_landmarks = np.dot(T, landmarks.T).T |
|
input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False, |
|
dtype=torch.float).to(device) |
|
|
|
for j in range(0, inputs_fl.shape[0], seg_bs): |
|
|
|
inputs_fl_segments = inputs_fl[j: j + seg_bs] |
|
inputs_au_segments = inputs_au[j: j + seg_bs] |
|
inputs_emb_segments = inputs_emb[j: j + seg_bs] |
|
inputs_reg_fl_segments = inputs_reg_fl[j: j + seg_bs] |
|
inputs_rot_tran_segments = inputs_rot_tran[j: j + seg_bs] |
|
inputs_rot_quat_segments = inputs_rot_quat[j: j + seg_bs] |
|
|
|
if(inputs_fl_segments.shape[0] < 10): |
|
continue |
|
|
|
fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_reg_fls, loss_laplacian, loss_pos) = \ |
|
self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments, |
|
input_face_id, inputs_reg_fl_segments, inputs_rot_tran_segments, |
|
inputs_rot_quat_segments, |
|
is_training=False, use_residual=True) |
|
|
|
fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy() |
|
pos_pred = pos_pred.data.cpu().numpy() |
|
fl_std = inputs_reg_fl_segments[:, 0, :].data.cpu().numpy() |
|
pos_std = inputs_rot_tran_segments[:, 0, :].data.cpu().numpy() |
|
|
|
''' solve inverse lip ''' |
|
fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) |
|
|
|
fl_dis_pred_pos = fl_dis_pred_pos.reshape((-1, 68, 3)) |
|
fl_std = fl_std.reshape((-1, 68, 3)) |
|
if(self.opt_parser.pos_dim == 12): |
|
pos_pred = pos_pred.reshape((-1, 3, 4)) |
|
for k in range(fl_dis_pred_pos.shape[0]): |
|
fl_dis_pred_pos[k] = np.dot(pos_pred[k, :3, :3].T + np.eye(3), |
|
(fl_dis_pred_pos[k] - pos_pred[k, :, 3].T).T).T |
|
pos_std = pos_std.reshape((-1, 3, 4)) |
|
for k in range(fl_std.shape[0]): |
|
fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), |
|
(fl_std[k] - pos_std[k, :, 3].T).T).T |
|
else: |
|
smooth_length = int(min(pos_pred.shape[0] - 1, 27) // 2 * 2 + 1) |
|
pos_pred = savgol_filter(pos_pred, smooth_length, 3, axis=0) |
|
quat = pos_pred[:, :4] |
|
trans = pos_pred[:, 4:] |
|
for k in range(fl_dis_pred_pos.shape[0]): |
|
fl_dis_pred_pos[k] = np.dot(R.from_quat(quat[k]).as_matrix().T, |
|
(fl_dis_pred_pos[k] - trans[k:k+1]).T).T |
|
pos_std = pos_std.reshape((-1, 3, 4)) |
|
for k in range(fl_std.shape[0]): |
|
fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), |
|
(fl_std[k] - pos_std[k, :, 3].T).T).T |
|
|
|
fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))] |
|
std_fls_list += [fl_std.reshape((-1, 204))] |
|
|
|
fake_fls_np = np.concatenate(fls_pred_pos_list) |
|
filename = 'pred_fls_{}_{}.txt'.format(video_name.split('/')[-1], key) |
|
np.savetxt(os.path.join('examples', filename), fake_fls_np, fmt='%.6f') |
|
|
|
|
|
def __close_face_lip__(self, fl): |
|
facelandmark = fl.reshape(-1, 68, 3) |
|
from util.geo_math import area_of_polygon |
|
min_area_lip, idx = 999, 0 |
|
for i, fls in enumerate(facelandmark): |
|
area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2]) |
|
if (area_of_mouth < min_area_lip): |
|
min_area_lip = area_of_mouth |
|
idx = i |
|
return idx |
|
|
|
def train(self): |
|
train_loss = {key: Record(['epoch', 'batch']) for key in |
|
['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']} |
|
|
|
eval_loss = {key: Record(['epoch', 'batch']) for key in |
|
['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']} |
|
for epoch in range(self.opt_parser.nepoch): |
|
self.__train_pass__(epoch=epoch, log_loss=train_loss, is_training=True) |
|
|
|
|
|
|
|
def test(self): |
|
train_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in |
|
['loss', 'loss_g', 'loss_laplacian']} |
|
eval_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in |
|
['loss_pos', 'loss_g', 'loss_laplacian']} |
|
with torch.no_grad(): |
|
self.__train_pass__(epoch=0, log_loss=eval_loss, is_training=False) |
|
|
|
def __tensorboard_write__(self, status, loss, t): |
|
if (self.opt_parser.write): |
|
for key in loss.keys(): |
|
self.writer.add_scalar('{}_loss_{}_{}'.format(status, t, key), loss[key].per(t), |
|
self.writer_count[status + '_' + t]) |
|
loss[key].clean(t) |
|
self.writer_count[status + '_' + t] += 1 |
|
else: |
|
for key in loss.keys(): |
|
loss[key].clean(t) |
|
|
|
def __save_model__(self, save_type, epoch): |
|
if (self.opt_parser.write): |
|
torch.save({ |
|
'G': self.G.state_dict(), |
|
'epoch': epoch |
|
}, os.path.join(self.opt_parser.ckpt_dir, 'ckpt_{}.pth'.format(save_type))) |
|
|
|
def adjust_learning_rate(self, optimizer, epoch): |
|
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" |
|
lr = self.opt_parser.lr * (0.3 ** (np.max((0, epoch + 0)) // 50)) |
|
lr = np.max((lr, 1e-5)) |
|
print('###### ==== > Adjust learning rate to ', lr) |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = lr |
|
|
|
|
|
def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy): |
|
for j in range(fl_dis_pred_pos_numpy.shape[0]): |
|
|
|
from util.geo_math import area_of_signed_polygon |
|
fls = fl_dis_pred_pos_numpy[j].reshape(68, 3) |
|
area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2]) |
|
if (area_of_mouth < 0): |
|
fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]) |
|
fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] |
|
fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]) |
|
fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] |
|
fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]) |
|
fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] |
|
p = max([j-1, 0]) |
|
fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \ |
|
+ fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \ |
|
- fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3] |
|
fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \ |
|
+ fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \ |
|
- fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3] |
|
fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \ |
|
+ fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \ |
|
- fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3] |
|
return fl_dis_pred_pos_numpy |
|
|
|
|
|
|
|
|