|
from __future__ import print_function, division |
|
import torch |
|
import argparse |
|
import numpy as np |
|
import torch.nn as nn |
|
import time |
|
import os |
|
from core.evaler import eval_model |
|
from core.dataloader import get_dataset |
|
from core import models |
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--val_img_dir', type=str, |
|
help='Validation image directory') |
|
parser.add_argument('--val_landmarks_dir', type=str, |
|
help='Validation landmarks directory') |
|
parser.add_argument('--num_landmarks', type=int, default=68, |
|
help='Number of landmarks') |
|
|
|
|
|
parser.add_argument('--ckpt_save_path', type=str, |
|
help='a directory to save checkpoint file') |
|
parser.add_argument('--pretrained_weights', type=str, |
|
help='a directory to save pretrained_weights') |
|
|
|
|
|
parser.add_argument('--batch_size', type=int, default=25, |
|
help='learning rate decay after each epoch') |
|
|
|
|
|
parser.add_argument('--hg_blocks', type=int, default=4, |
|
help='Number of HG blocks to stack') |
|
parser.add_argument('--gray_scale', type=str, default="False", |
|
help='Whether to convert RGB image into gray scale during training') |
|
parser.add_argument('--end_relu', type=str, default="False", |
|
help='Whether to add relu at the end of each HG module') |
|
|
|
args = parser.parse_args() |
|
|
|
VAL_IMG_DIR = args.val_img_dir |
|
VAL_LANDMARKS_DIR = args.val_landmarks_dir |
|
CKPT_SAVE_PATH = args.ckpt_save_path |
|
BATCH_SIZE = args.batch_size |
|
PRETRAINED_WEIGHTS = args.pretrained_weights |
|
GRAY_SCALE = False if args.gray_scale == 'False' else True |
|
HG_BLOCKS = args.hg_blocks |
|
END_RELU = False if args.end_relu == 'False' else True |
|
NUM_LANDMARKS = args.num_landmarks |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
writer = SummaryWriter(CKPT_SAVE_PATH) |
|
|
|
dataloaders, dataset_sizes = get_dataset(VAL_IMG_DIR, VAL_LANDMARKS_DIR, |
|
BATCH_SIZE, NUM_LANDMARKS) |
|
use_gpu = torch.cuda.is_available() |
|
model_ft = models.FAN(HG_BLOCKS, END_RELU, GRAY_SCALE, NUM_LANDMARKS) |
|
|
|
if PRETRAINED_WEIGHTS != "None": |
|
checkpoint = torch.load(PRETRAINED_WEIGHTS) |
|
if 'state_dict' not in checkpoint: |
|
model_ft.load_state_dict(checkpoint) |
|
else: |
|
pretrained_weights = checkpoint['state_dict'] |
|
model_weights = model_ft.state_dict() |
|
pretrained_weights = {k: v for k, v in pretrained_weights.items() \ |
|
if k in model_weights} |
|
model_weights.update(pretrained_weights) |
|
model_ft.load_state_dict(model_weights) |
|
|
|
model_ft = model_ft.to(device) |
|
|
|
model_ft = eval_model(model_ft, dataloaders, dataset_sizes, writer, use_gpu, 1, 'val', CKPT_SAVE_PATH, NUM_LANDMARKS) |
|
|
|
|