File size: 7,021 Bytes
7cdd981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
from thirdparty.face_of_art.logging_functions import *
import os
import numpy as np
from menpo.shape import PointCloud
from menpofit.clm import GradientDescentCLMFitter
import pickle
import math
jaw_line_inds = np.arange(0, 17)
nose_inds = np.arange(27, 36)
left_eye_inds = np.arange(36, 42)
right_eye_inds = np.arange(42, 48)
left_brow_inds = np.arange(17, 22)
right_brow_inds = np.arange(22, 27)
mouth_inds = np.arange(48, 68)
def sigmoid(x, rate, offset):
return 1 / (1 + math.exp(-rate * (x - offset)))
def calculate_evidence(patch_responses, rate=0.25, offset=20):
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
rspmapShape = patch_responses[0, 0, ...].shape
n_points = patch_responses.shape[0]
y_weight = [np.sum(patch_responses[i, 0, ...], axis=1) for i in range(n_points)]
x_weight = [np.sum(patch_responses[i, 0, ...], axis=0) for i in range(n_points)]
# y_weight /= y_weight.sum()
# x_weight /= x_weight.sum()
y_coordinate = range(0, rspmapShape[0])
x_coordinate = range(0, rspmapShape[1])
varList = [(np.abs(
np.average((y_coordinate - np.average(y_coordinate, weights=y_weight[i])) ** 2, weights=y_weight[i])),
np.abs(np.average((x_coordinate - np.average(x_coordinate, weights=x_weight[i])) ** 2,
weights=x_weight[i])))
for i in range(n_points)]
# patch_responses[patch_responses<0.001] = 0
prpList = [
(np.sum(patch_responses[i, 0, ...], axis=(-1, -2)), np.sum(patch_responses[i, 0, ...], axis=(-1, -2)))
for i in range(n_points)]
var = np.array(varList).flatten()
var[var == 0] = np.finfo(float).eps
var = np.sqrt(var)
var = 1 / var
weight = np.array(prpList).flatten()
weight *= var
# offset = np.average(weight) - 20
weight = [sigmoid(i, rate, offset) for i in weight]
weight = np.array(weight)
return weight
def get_patches_around_landmarks(heat_maps, menpo_shape, patch_size=(30,30), image_shape=256):
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
padH = int(image_shape / 2)
padW = int(image_shape / 2)
rps_zeros = np.zeros((1, 2 * image_shape, 2 * image_shape, menpo_shape.n_points))
rps_zeros[0, padH:padH + image_shape, padW:padW + image_shape, :] = heat_maps
rOffset = np.floor(patch_size[0] / 2).astype(int)
lOffset = patch_size[0] - rOffset
rspList = [rps_zeros[0, y - rOffset:y + lOffset, x - rOffset:x + lOffset, i] for i in range(menpo_shape.n_points)
for y in [np.around(menpo_shape.points[i][0] + 1 + padH).astype(int)]
for x in [np.around(menpo_shape.points[i][1] + 1 + padW).astype(int)]]
patches = np.array(rspList)[:, None, :, :]
return patches
def pdm_correct(init_shape, pdm_model, part_inds=None):
""" correct landmarks using pdm (point distribution model)"""
pdm_model.set_target(PointCloud(init_shape))
if part_inds is None:
return pdm_model.target.points
else:
return pdm_model.target.points[part_inds]
def weighted_pdm_transform(input_pdm_model, patches, shape, inirho=20):
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
weight = calculate_evidence(patches, rate=0.5, offset=10).reshape((1, -1))
pdm_model = input_pdm_model.copy()
# write project_weight
ini_rho2_inv_prior = np.hstack((np.zeros((4,)), inirho / pdm_model.model.eigenvalues))
J = np.rollaxis(pdm_model.d_dp(None), -1, 1)
J = J.reshape((-1, J.shape[-1]))
initial_shape_mean = shape.points.ravel() - pdm_model.model._mean
iniJe = - J.T.dot(initial_shape_mean * weight[0])
iniJWJ = J.T.dot(np.diag(weight[0]).dot(J))
inv_JJ = np.linalg.inv(iniJWJ + np.diag(ini_rho2_inv_prior))
initial_p = -inv_JJ.dot(iniJe)
# Update pdm
pdm_model._from_vector_inplace(initial_p)
return pdm_model.target.points
def w_pdm_correct(init_shape, patches, pdm_model, part_inds=None):
""" correct landmarks using weighted pdm"""
points = weighted_pdm_transform(input_pdm_model=pdm_model, patches=patches, shape=PointCloud(init_shape))
if (part_inds is not None and pdm_model.n_points < 68) or part_inds is None:
return points
else:
return points[part_inds]
def feature_based_pdm_corr(lms_init, models_dir, train_type='basic', patches=None):
""" correct landmarks using part-based pdm"""
jaw_line_inds = np.arange(0, 17)
nose_inds = np.arange(27, 36)
left_eye_inds = np.arange(36, 42)
right_eye_inds = np.arange(42, 48)
left_brow_inds = np.arange(17, 22)
right_brow_inds = np.arange(22, 27)
mouth_inds = np.arange(48, 68)
'''
selected number of PCs:
jaw:7
eye:3
brow:2
nose:5
mouth:7
'''
new_lms = np.zeros((68, 2))
parts = ['l_brow', 'r_brow', 'l_eye', 'r_eye', 'mouth', 'nose', 'jaw']
part_inds_opt = [left_brow_inds, right_brow_inds, left_eye_inds, right_eye_inds, mouth_inds, nose_inds,
jaw_line_inds]
pc_opt = [2, 2, 3, 3, 7, 5, 7]
for i, part in enumerate(parts):
part_inds = part_inds_opt[i]
pc = pc_opt[i]
temp_model = os.path.join(models_dir, train_type + '_' + part + '_' + str(pc))
filehandler = open(temp_model, "rb")
try:
pdm_temp = pickle.load(filehandler)
except UnicodeDecodeError:
pdm_temp = pickle.load(filehandler, fix_imports=True, encoding="latin1")
filehandler.close()
if patches is None:
part_lms_pdm = pdm_correct(lms_init[part_inds], pdm_temp)
else:
part_lms_pdm = w_pdm_correct(
init_shape=lms_init[part_inds], patches=patches, pdm_model=pdm_temp, part_inds=part_inds)
new_lms[part_inds] = part_lms_pdm
return new_lms
def clm_correct(clm_model_path, image, map, lms_init):
""" tune landmarks using clm (constrained local model)"""
filehandler = open(os.path.join(clm_model_path), "rb")
try:
part_model = pickle.load(filehandler)
except UnicodeDecodeError:
part_model = pickle.load(filehandler, fix_imports=True, encoding="latin1")
filehandler.close()
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
part_model.opt = dict()
part_model.opt['numIter'] = 5
part_model.opt['kernel_covariance'] = 10
part_model.opt['sigOffset'] = 25
part_model.opt['sigRate'] = 0.25
part_model.opt['pdm_rho'] = 20
part_model.opt['verbose'] = False
part_model.opt['rho2'] = 20
part_model.opt['ablation'] = (True, True)
part_model.opt['ratio1'] = 0.12
part_model.opt['ratio2'] = 0.08
part_model.opt['smooth'] = True
fitter = GradientDescentCLMFitter(part_model, n_shape=30)
image.rspmap_data = np.swapaxes(np.swapaxes(map, 1, 3), 2, 3)
fr = fitter.fit_from_shape(image=image, initial_shape=PointCloud(lms_init), gt_shape=PointCloud(lms_init))
w_pdm_clm = fr.final_shape.points
return w_pdm_clm
|