File size: 7,021 Bytes
7cdd981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from thirdparty.face_of_art.logging_functions import *
import os
import numpy as np
from menpo.shape import PointCloud
from menpofit.clm import GradientDescentCLMFitter
import pickle
import math

jaw_line_inds = np.arange(0, 17)
nose_inds = np.arange(27, 36)
left_eye_inds = np.arange(36, 42)
right_eye_inds = np.arange(42, 48)
left_brow_inds = np.arange(17, 22)
right_brow_inds = np.arange(22, 27)
mouth_inds = np.arange(48, 68)


def sigmoid(x, rate, offset):
    return 1 / (1 + math.exp(-rate * (x - offset)))


def calculate_evidence(patch_responses, rate=0.25, offset=20):
    # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment

    rspmapShape = patch_responses[0, 0, ...].shape
    n_points = patch_responses.shape[0]

    y_weight = [np.sum(patch_responses[i, 0, ...], axis=1) for i in range(n_points)]
    x_weight = [np.sum(patch_responses[i, 0, ...], axis=0) for i in range(n_points)]

    # y_weight /= y_weight.sum()
    # x_weight /= x_weight.sum()

    y_coordinate = range(0, rspmapShape[0])
    x_coordinate = range(0, rspmapShape[1])

    varList = [(np.abs(
        np.average((y_coordinate - np.average(y_coordinate, weights=y_weight[i])) ** 2, weights=y_weight[i])),
                np.abs(np.average((x_coordinate - np.average(x_coordinate, weights=x_weight[i])) ** 2,
                                  weights=x_weight[i])))
               for i in range(n_points)]

    # patch_responses[patch_responses<0.001] = 0
    prpList = [
        (np.sum(patch_responses[i, 0, ...], axis=(-1, -2)), np.sum(patch_responses[i, 0, ...], axis=(-1, -2)))
        for i in range(n_points)]

    var = np.array(varList).flatten()
    var[var == 0] = np.finfo(float).eps
    var = np.sqrt(var)
    var = 1 / var

    weight = np.array(prpList).flatten()
    weight *= var

    # offset = np.average(weight) - 20
    weight = [sigmoid(i, rate, offset) for i in weight]

    weight = np.array(weight)

    return weight


def get_patches_around_landmarks(heat_maps, menpo_shape, patch_size=(30,30), image_shape=256):
    # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment

    padH = int(image_shape / 2)
    padW = int(image_shape / 2)

    rps_zeros = np.zeros((1, 2 * image_shape, 2 * image_shape, menpo_shape.n_points))
    rps_zeros[0, padH:padH + image_shape, padW:padW + image_shape, :] = heat_maps

    rOffset = np.floor(patch_size[0] / 2).astype(int)
    lOffset = patch_size[0] - rOffset

    rspList = [rps_zeros[0, y - rOffset:y + lOffset, x - rOffset:x + lOffset, i] for i in range(menpo_shape.n_points)
               for y in [np.around(menpo_shape.points[i][0] + 1 + padH).astype(int)]
               for x in [np.around(menpo_shape.points[i][1] + 1 + padW).astype(int)]]
    patches = np.array(rspList)[:, None, :, :]
    return patches


def pdm_correct(init_shape, pdm_model, part_inds=None):
    """ correct landmarks using pdm (point distribution model)"""
    pdm_model.set_target(PointCloud(init_shape))
    if part_inds is None:
        return pdm_model.target.points
    else:
        return pdm_model.target.points[part_inds]


def weighted_pdm_transform(input_pdm_model, patches, shape, inirho=20):
    # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
    weight = calculate_evidence(patches, rate=0.5, offset=10).reshape((1, -1))
    pdm_model = input_pdm_model.copy()

    # write project_weight
    ini_rho2_inv_prior = np.hstack((np.zeros((4,)), inirho / pdm_model.model.eigenvalues))
    J = np.rollaxis(pdm_model.d_dp(None), -1, 1)
    J = J.reshape((-1, J.shape[-1]))

    initial_shape_mean = shape.points.ravel() - pdm_model.model._mean
    iniJe = - J.T.dot(initial_shape_mean * weight[0])
    iniJWJ = J.T.dot(np.diag(weight[0]).dot(J))
    inv_JJ = np.linalg.inv(iniJWJ + np.diag(ini_rho2_inv_prior))
    initial_p = -inv_JJ.dot(iniJe)

    # Update pdm
    pdm_model._from_vector_inplace(initial_p)
    return pdm_model.target.points


def w_pdm_correct(init_shape, patches, pdm_model, part_inds=None):
    """ correct landmarks using weighted pdm"""

    points = weighted_pdm_transform(input_pdm_model=pdm_model, patches=patches, shape=PointCloud(init_shape))

    if (part_inds is not None and pdm_model.n_points < 68) or part_inds is None:
        return points
    else:
        return points[part_inds]


def feature_based_pdm_corr(lms_init, models_dir, train_type='basic', patches=None):
    """ correct landmarks using part-based pdm"""

    jaw_line_inds = np.arange(0, 17)
    nose_inds = np.arange(27, 36)
    left_eye_inds = np.arange(36, 42)
    right_eye_inds = np.arange(42, 48)
    left_brow_inds = np.arange(17, 22)
    right_brow_inds = np.arange(22, 27)
    mouth_inds = np.arange(48, 68)

    '''
    selected number of PCs:
    jaw:7
    eye:3
    brow:2
    nose:5
    mouth:7
    '''

    new_lms = np.zeros((68, 2))

    parts = ['l_brow', 'r_brow', 'l_eye', 'r_eye', 'mouth', 'nose', 'jaw']
    part_inds_opt = [left_brow_inds, right_brow_inds, left_eye_inds, right_eye_inds, mouth_inds, nose_inds,
                     jaw_line_inds]
    pc_opt = [2, 2, 3, 3, 7, 5, 7]

    for i, part in enumerate(parts):
        part_inds = part_inds_opt[i]
        pc = pc_opt[i]
        temp_model = os.path.join(models_dir, train_type + '_' + part + '_' + str(pc))
        filehandler = open(temp_model, "rb")
        try:
            pdm_temp = pickle.load(filehandler)
        except UnicodeDecodeError:
            pdm_temp = pickle.load(filehandler, fix_imports=True, encoding="latin1")
        filehandler.close()

        if patches is None:
            part_lms_pdm = pdm_correct(lms_init[part_inds], pdm_temp)
        else:
            part_lms_pdm = w_pdm_correct(
                init_shape=lms_init[part_inds], patches=patches, pdm_model=pdm_temp, part_inds=part_inds)

        new_lms[part_inds] = part_lms_pdm
    return new_lms


def clm_correct(clm_model_path, image, map, lms_init):
    """ tune landmarks using clm (constrained local model)"""

    filehandler = open(os.path.join(clm_model_path), "rb")
    try:
        part_model = pickle.load(filehandler)
    except UnicodeDecodeError:
        part_model = pickle.load(filehandler, fix_imports=True, encoding="latin1")
    filehandler.close()

    # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
    part_model.opt = dict()
    part_model.opt['numIter'] = 5
    part_model.opt['kernel_covariance'] = 10
    part_model.opt['sigOffset'] = 25
    part_model.opt['sigRate'] = 0.25
    part_model.opt['pdm_rho'] = 20
    part_model.opt['verbose'] = False
    part_model.opt['rho2'] = 20
    part_model.opt['ablation'] = (True, True)
    part_model.opt['ratio1'] = 0.12
    part_model.opt['ratio2'] = 0.08
    part_model.opt['smooth'] = True

    fitter = GradientDescentCLMFitter(part_model, n_shape=30)

    image.rspmap_data = np.swapaxes(np.swapaxes(map, 1, 3), 2, 3)

    fr = fitter.fit_from_shape(image=image, initial_shape=PointCloud(lms_init), gt_shape=PointCloud(lms_init))
    w_pdm_clm = fr.final_shape.points

    return w_pdm_clm