File size: 20,436 Bytes
7cdd981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
from src.models.model_image_translation import ResUnetGenerator, VGGLoss
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import time
import numpy as np
import cv2
import os, glob
from src.dataset.image_translation.image_translation_dataset import vis_landmark_on_img, vis_landmark_on_img98, vis_landmark_on_img74
from thirdparty.AdaptiveWingLoss.core import models
from thirdparty.AdaptiveWingLoss.utils.utils import get_preds_fromhm
import face_alignment
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Image_translation_block():
def __init__(self, opt_parser, single_test=False):
print('Run on device {}'.format(device))
# for key in vars(opt_parser).keys():
# print(key, ':', vars(opt_parser)[key])
self.opt_parser = opt_parser
# model
if(opt_parser.add_audio_in):
self.G = ResUnetGenerator(input_nc=7, output_nc=3, num_downs=6, use_dropout=False)
else:
self.G = ResUnetGenerator(input_nc=6, output_nc=3, num_downs=6, use_dropout=False)
if (opt_parser.load_G_name != ''):
ckpt = torch.load(opt_parser.load_G_name)
try:
self.G.load_state_dict(ckpt['G'])
except:
tmp = nn.DataParallel(self.G)
tmp.load_state_dict(ckpt['G'])
self.G.load_state_dict(tmp.module.state_dict())
del tmp
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs in G mode!")
self.G = nn.DataParallel(self.G)
self.G.to(device)
if(not single_test):
# dataset
if(opt_parser.use_vox_dataset == 'raw'):
if(opt_parser.comb_fan_awing):
from src.dataset.image_translation.image_translation_dataset import \
image_translation_raw74_dataset as image_translation_dataset
elif(opt_parser.add_audio_in):
from src.dataset.image_translation.image_translation_dataset import image_translation_raw98_with_audio_dataset as \
image_translation_dataset
else:
from src.dataset.image_translation.image_translation_dataset import image_translation_raw98_dataset as \
image_translation_dataset
else:
from src.dataset.image_translation.image_translation_dataset import image_translation_preprocessed98_dataset as \
image_translation_dataset
self.dataset = image_translation_dataset(num_frames=opt_parser.num_frames)
self.dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=opt_parser.batch_size,
shuffle=True,
num_workers=opt_parser.num_workers)
# criterion
self.criterionL1 = nn.L1Loss()
self.criterionVGG = VGGLoss()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs in VGG model!")
self.criterionVGG = nn.DataParallel(self.criterionVGG)
self.criterionVGG.to(device)
# optimizer
self.optimizer = torch.optim.Adam(self.G.parameters(), lr=opt_parser.lr, betas=(0.5, 0.999))
# writer
if(opt_parser.write):
self.writer = SummaryWriter(log_dir=os.path.join(opt_parser.log_dir, opt_parser.name))
self.count = 0
# ===========================================================
# online landmark alignment : Awing
# ===========================================================
PRETRAINED_WEIGHTS = 'thirdparty/AdaptiveWingLoss/ckpt/WFLW_4HG.pth'
GRAY_SCALE = False
HG_BLOCKS = 4
END_RELU = False
NUM_LANDMARKS = 98
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_ft = models.FAN(HG_BLOCKS, END_RELU, GRAY_SCALE, NUM_LANDMARKS)
checkpoint = torch.load(PRETRAINED_WEIGHTS)
if 'state_dict' not in checkpoint:
model_ft.load_state_dict(checkpoint)
else:
pretrained_weights = checkpoint['state_dict']
model_weights = model_ft.state_dict()
pretrained_weights = {k: v for k, v in pretrained_weights.items() \
if k in model_weights}
model_weights.update(pretrained_weights)
model_ft.load_state_dict(model_weights)
print('Load AWing model sucessfully')
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs for AWing!")
self.fa_model = nn.DataParallel(model_ft).to(self.device).eval()
else:
self.fa_model = model_ft.to(self.device).eval()
# ===========================================================
# online landmark alignment : FAN
# ===========================================================
if(opt_parser.comb_fan_awing):
if(opt_parser.fan_2or3D == '2D'):
self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D,
device='cuda' if torch.cuda.is_available() else "cpu",
flip_input=True)
else:
self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D,
device='cuda' if torch.cuda.is_available() else "cpu",
flip_input=True)
def __train_pass__(self, epoch, is_training=True):
st_epoch = time.time()
if(is_training):
self.G.train()
status = 'TRAIN'
else:
self.G.eval()
status = 'EVAL'
g_time = 0.0
for i, batch in enumerate(self.dataloader):
if(i >= len(self.dataloader)-2):
break
st_batch = time.time()
if(self.opt_parser.comb_fan_awing):
image_in, image_out, fan_pred_landmarks = batch
fan_pred_landmarks = fan_pred_landmarks.reshape(-1, 68, 3).detach().cpu().numpy()
elif(self.opt_parser.add_audio_in):
image_in, image_out, audio_in = batch
audio_in = audio_in.reshape(-1, 1, 256, 256).to(device)
else:
image_in, image_out = batch
with torch.no_grad():
# # online landmark (AwingNet)
image_in, image_out = \
image_in.reshape(-1, 3, 256, 256).to(device), image_out.reshape(-1, 3, 256, 256).to(device)
inputs = image_out
outputs, boundary_channels = self.fa_model(inputs)
pred_heatmap = outputs[-1][:, :-1, :, :].detach().cpu()
pred_landmarks, _ = get_preds_fromhm(pred_heatmap)
pred_landmarks = pred_landmarks.numpy() * 4
# online landmark (FAN) -> replace jaw + eye brow in AwingNet
if(self.opt_parser.comb_fan_awing):
fl_jaw_eyebrow = fan_pred_landmarks[:, 0:27, 0:2]
fl_rest = pred_landmarks[:, 51:, :]
pred_landmarks = np.concatenate([fl_jaw_eyebrow, fl_rest], axis=1).astype(np.int)
# draw landmark on while bg
img_fls = []
for pred_fl in pred_landmarks:
img_fl = np.ones(shape=(256, 256, 3)) * 255.0
if(self.opt_parser.comb_fan_awing):
img_fl = vis_landmark_on_img74(img_fl, pred_fl) # 74x2
else:
img_fl = vis_landmark_on_img98(img_fl, pred_fl) # 98x2
img_fls.append(img_fl.transpose((2, 0, 1)))
img_fls = np.stack(img_fls, axis=0).astype(np.float32) / 255.0
image_fls_in = torch.tensor(img_fls, requires_grad=False).to(device)
if(self.opt_parser.add_audio_in):
# print(image_fls_in.shape, image_in.shape, audio_in.shape)
image_in = torch.cat([image_fls_in, image_in, audio_in], dim=1)
else:
image_in = torch.cat([image_fls_in, image_in], dim=1)
# image_in, image_out = \
# image_in.reshape(-1, 6, 256, 256).to(device), image_out.reshape(-1, 3, 256, 256).to(device)
# image2image net fp
g_out = self.G(image_in)
g_out = torch.tanh(g_out)
loss_l1 = self.criterionL1(g_out, image_out)
loss_vgg, loss_style = self.criterionVGG(g_out, image_out, style=True)
loss_vgg, loss_style = torch.mean(loss_vgg), torch.mean(loss_style)
loss = loss_l1 + loss_vgg + loss_style
if(is_training):
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# log
if(self.opt_parser.write):
self.writer.add_scalar('loss', loss.cpu().detach().numpy(), self.count)
self.writer.add_scalar('loss_l1', loss_l1.cpu().detach().numpy(), self.count)
self.writer.add_scalar('loss_vgg', loss_vgg.cpu().detach().numpy(), self.count)
self.count += 1
# save image to track training process
if (i % self.opt_parser.jpg_freq == 0):
vis_in = np.concatenate([image_in[0, 3:6].cpu().detach().numpy().transpose((1, 2, 0)),
image_in[0, 0:3].cpu().detach().numpy().transpose((1, 2, 0))], axis=1)
vis_out = np.concatenate([image_out[0].cpu().detach().numpy().transpose((1, 2, 0)),
g_out[0].cpu().detach().numpy().transpose((1, 2, 0))], axis=1)
vis = np.concatenate([vis_in, vis_out], axis=0)
try:
os.makedirs(os.path.join(self.opt_parser.jpg_dir, self.opt_parser.name))
except:
pass
cv2.imwrite(os.path.join(self.opt_parser.jpg_dir, self.opt_parser.name, 'e{:03d}_b{:04d}.jpg'.format(epoch, i)), vis * 255.0)
# save ckpt
if (i % self.opt_parser.ckpt_last_freq == 0):
self.__save_model__('last', epoch)
print("Epoch {}, Batch {}/{}, loss {:.4f}, l1 {:.4f}, vggloss {:.4f}, styleloss {:.4f} time {:.4f}".format(
epoch, i, len(self.dataset) // self.opt_parser.batch_size,
loss.cpu().detach().numpy(),
loss_l1.cpu().detach().numpy(),
loss_vgg.cpu().detach().numpy(),
loss_style.cpu().detach().numpy(),
time.time() - st_batch))
g_time += time.time() - st_batch
if(self.opt_parser.test_speed):
if(i >= 100):
break
print('Epoch time usage:', time.time() - st_epoch, 'I/O time usage:', time.time() - st_epoch - g_time, '\n=========================')
if(self.opt_parser.test_speed):
exit(0)
if(epoch % self.opt_parser.ckpt_epoch_freq == 0):
self.__save_model__('{:02d}'.format(epoch), epoch)
def __save_model__(self, save_type, epoch):
try:
os.makedirs(os.path.join(self.opt_parser.ckpt_dir, self.opt_parser.name))
except:
pass
if (self.opt_parser.write):
torch.save({
'G': self.G.state_dict(),
'opt': self.optimizer,
'epoch': epoch
}, os.path.join(self.opt_parser.ckpt_dir, self.opt_parser.name, 'ckpt_{}.pth'.format(save_type)))
def train(self):
for epoch in range(self.opt_parser.nepoch):
self.__train_pass__(epoch, is_training=True)
def test(self):
if (self.opt_parser.use_vox_dataset == 'raw'):
if(self.opt_parser.add_audio_in):
from src.dataset.image_translation.image_translation_dataset import \
image_translation_raw98_with_audio_test_dataset as image_translation_test_dataset
else:
from src.dataset.image_translation.image_translation_dataset import image_translation_raw98_test_dataset as image_translation_test_dataset
else:
from src.dataset.image_translation.image_translation_dataset import image_translation_preprocessed98_test_dataset as image_translation_test_dataset
self.dataset = image_translation_test_dataset(num_frames=self.opt_parser.num_frames)
self.dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=1,
shuffle=True,
num_workers=self.opt_parser.num_workers)
self.G.eval()
for i, batch in enumerate(self.dataloader):
print(i, 50)
if (i > 50):
break
if (self.opt_parser.add_audio_in):
image_in, image_out, audio_in = batch
audio_in = audio_in.reshape(-1, 1, 256, 256).to(device)
else:
image_in, image_out = batch
# # online landmark (AwingNet)
with torch.no_grad():
image_in, image_out = \
image_in.reshape(-1, 3, 256, 256).to(device), image_out.reshape(-1, 3, 256, 256).to(device)
pred_landmarks = []
for j in range(image_in.shape[0] // 16):
inputs = image_out[j*16:j*16+16]
outputs, boundary_channels = self.fa_model(inputs)
pred_heatmap = outputs[-1][:, :-1, :, :].detach().cpu()
pred_landmark, _ = get_preds_fromhm(pred_heatmap)
pred_landmarks.append(pred_landmark.numpy() * 4)
pred_landmarks = np.concatenate(pred_landmarks, axis=0)
# draw landmark on while bg
img_fls = []
for pred_fl in pred_landmarks:
img_fl = np.ones(shape=(256, 256, 3)) * 255.0
img_fl = vis_landmark_on_img98(img_fl, pred_fl) # 98x2
img_fls.append(img_fl.transpose((2, 0, 1)))
img_fls = np.stack(img_fls, axis=0).astype(np.float32) / 255.0
image_fls_in = torch.tensor(img_fls, requires_grad=False).to(device)
if (self.opt_parser.add_audio_in):
# print(image_fls_in.shape, image_in.shape, audio_in.shape)
image_in = torch.cat([image_fls_in,
image_in[0:image_fls_in.shape[0]],
audio_in[0:image_fls_in.shape[0]]], dim=1)
else:
image_in = torch.cat([image_fls_in, image_in[0:image_fls_in.shape[0]]], dim=1)
# normal 68 test dataset
# image_in, image_out = image_in.reshape(-1, 6, 256, 256), image_out.reshape(-1, 3, 256, 256)
# random single frame
# cv2.imwrite('random_img_{}.jpg'.format(i), np.swapaxes(image_out[5].numpy(),0, 2)*255.0)
image_in, image_out = image_in.to(device), image_out.to(device)
writer = cv2.VideoWriter('tmp_{:04d}.mp4'.format(i), cv2.VideoWriter_fourcc(*'mjpg'), 25, (256*4, 256))
for j in range(image_in.shape[0] // 16):
g_out = self.G(image_in[j*16:j*16+16])
g_out = torch.tanh(g_out)
# norm 68 pts
# g_out = np.swapaxes(g_out.cpu().detach().numpy(), 1, 3)
# ref_out = np.swapaxes(image_out[j*16:j*16+16].cpu().detach().numpy(), 1, 3)
# ref_in = np.swapaxes(image_in[j*16:j*16+16, 3:6, :, :].cpu().detach().numpy(), 1, 3)
# fls_in = np.swapaxes(image_in[j * 16:j * 16 + 16, 0:3, :, :].cpu().detach().numpy(), 1, 3)
g_out = g_out.cpu().detach().numpy().transpose((0, 2, 3, 1))
g_out[g_out < 0] = 0
ref_out = image_out[j * 16:j * 16 + 16].cpu().detach().numpy().transpose((0, 2, 3, 1))
ref_in = image_in[j * 16:j * 16 + 16, 3:6, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1))
fls_in = image_in[j * 16:j * 16 + 16, 0:3, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1))
for k in range(g_out.shape[0]):
frame = np.concatenate((ref_in[k], g_out[k], fls_in[k], ref_out[k]), axis=1) * 255.0
writer.write(frame.astype(np.uint8))
writer.release()
os.system('ffmpeg -y -i tmp_{:04d}.mp4 -pix_fmt yuv420p random_{:04d}.mp4'.format(i, i))
os.system('rm tmp_{:04d}.mp4'.format(i))
def single_test(self, jpg=None, fls=None, filename=None, prefix='', grey_only=False):
import time
st = time.time()
self.G.eval()
if(jpg is None):
jpg = glob.glob1(self.opt_parser.single_test, '*.jpg')[0]
jpg = cv2.imread(os.path.join(self.opt_parser.single_test, jpg))
if(fls is None):
fls = glob.glob1(self.opt_parser.single_test, '*.txt')[0]
fls = np.loadtxt(os.path.join(self.opt_parser.single_test, fls))
fls = fls * 95
fls[:, 0::3] += 130
fls[:, 1::3] += 80
writer = cv2.VideoWriter('out.mp4', cv2.VideoWriter_fourcc(*'mjpg'), 62.5, (256 * 3, 256))
for i, frame in enumerate(fls):
img_fl = np.ones(shape=(256, 256, 3)) * 255
fl = frame.astype(int)
img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3)))
frame = np.concatenate((img_fl, jpg), axis=2).astype(np.float32)/255.0
image_in, image_out = frame.transpose((2, 0, 1)), np.zeros(shape=(3, 256, 256))
# image_in, image_out = frame.transpose((2, 1, 0)), np.zeros(shape=(3, 256, 256))
image_in, image_out = torch.tensor(image_in, requires_grad=False), \
torch.tensor(image_out, requires_grad=False)
image_in, image_out = image_in.reshape(-1, 6, 256, 256), image_out.reshape(-1, 3, 256, 256)
image_in, image_out = image_in.to(device), image_out.to(device)
g_out = self.G(image_in)
g_out = torch.tanh(g_out)
g_out = g_out.cpu().detach().numpy().transpose((0, 2, 3, 1))
g_out[g_out < 0] = 0
ref_in = image_in[:, 3:6, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1))
fls_in = image_in[:, 0:3, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1))
# g_out = g_out.cpu().detach().numpy().transpose((0, 3, 2, 1))
# g_out[g_out < 0] = 0
# ref_in = image_in[:, 3:6, :, :].cpu().detach().numpy().transpose((0, 3, 2, 1))
# fls_in = image_in[:, 0:3, :, :].cpu().detach().numpy().transpose((0, 3, 2, 1))
if(grey_only):
g_out_grey =np.mean(g_out, axis=3, keepdims=True)
g_out[:, :, :, 0:1] = g_out[:, :, :, 1:2] = g_out[:, :, :, 2:3] = g_out_grey
for i in range(g_out.shape[0]):
frame = np.concatenate((ref_in[i], g_out[i], fls_in[i]), axis=1) * 255.0
writer.write(frame.astype(np.uint8))
writer.release()
print('Time - only video:', time.time() - st)
if(filename is None):
filename = 'v'
os.system('ffmpeg -loglevel error -y -i out.mp4 -i {} -pix_fmt yuv420p -strict -2 examples/{}_{}.mp4'.format(
'examples/'+filename[9:-16]+'.wav',
prefix, filename[:-4]))
# os.system('rm out.mp4')
print('Time - ffmpeg add audio:', time.time() - st)
|