first test
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 271.40 +/- 20.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786f758772e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786f75877380>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786f75877420>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786f758774c0>", "_build": "<function ActorCriticPolicy._build at 0x786f75877560>", "forward": "<function ActorCriticPolicy.forward at 0x786f75877600>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786f758776a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786f75877740>", "_predict": "<function ActorCriticPolicy._predict at 0x786f758777e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786f75877880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786f75877920>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786f758779c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786f759db940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1756400817408886096, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACApxC9wyF9ugKrE7oaoAO2/uXHuf2+LDkAAIA/AACAP4bDLb4LNJk+0N+gPs1zlL7YAyo9wlU+vQAAAAAAAAAATfbYva51pLrSL/my4FQvsEsx1zo13bczAACAPwAAgD9mPYq8OclfPi28nLzU0xW+Ovt/PJ90qr0AAAAAAAAAABrMQL3Os8U9mmQwve4sKr4sOak8v0OYvQAAAAAAAAAAzRlpvXUVOT71Ru87vrZ1vtOMQb2i2c28AAAAAAAAAAAzW5Y8DobmPVOlbb4Ouzi+a7wAvuZDtroAAAAAAAAAAMBA7r04Oeo+/jB4PmwKh76SDtU9CBwKPQAAAAAAAAAAgL87PujYyz6A4fK9FrCdviEHZz1VG4G9AAAAAAAAAACaDXa84WiOuhZpdbl3D2a0BW05OYJ7jjgAAIA/AACAP1PGTb7cyyI/8jORPl02gL5/7p69ip95PgAAAAAAAAAAzSo9Pci9qbw855q762P7PFhf2r0tdw46AACAPwAAgD/Nts88uU+7P7TKqT6syYE+FZUoPEG/FT4AAAAAAAAAAE20NL4R5K4/qJHOvt2E6r7Vy2K++tmZvQAAAAAAAAAABklGvv2KLz8j1HE+PRF8vsFx8LwQUPw9AAAAAAAAAAAazlo9dHCxP5z3oT4RjIW+Cs24PVtxgj4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF9ADe0ojOeMAWyUTegDjAF0lEdAk/v2qgh8pnV9lChoBkdAcTQqNp/PPmgHTREBaAhHQJP8GTaCcwx1fZQoaAZHQHGJqPn0TURoB00mAWgIR0CT/KbEgntwdX2UKGgGR0BwrzUSZjQRaAdNBwFoCEdAk/1OFL39JnV9lChoBkdAcddlY2bXpWgHTV4BaAhHQJP9cRK6Fuh1fZQoaAZHQHAs88gZCOZoB00yAWgIR0CT/wq6OHWSdX2UKGgGR0BvRUXJo0yhaAdNFAFoCEdAk/8elfqoqHV9lChoBkdAcQyOlfqoqGgHTSABaAhHQJQAlOEdvKl1fZQoaAZHQHITH974SHxoB01BAWgIR0CUALTzND+jdX2UKGgGR0BwqcB5ooNNaAdNLQFoCEdAlAG4Chew93V9lChoBkdAcKNf0VafSWgHTTIBaAhHQJQB9D0Dlo11fZQoaAZHQHAPB7NSqERoB00BAWgIR0CUAhynDR+jdX2UKGgGR0BzsZoJzDGcaAdNCQFoCEdAlAJYlMRHw3V9lChoBkdAcOBaJhvzfGgHTS0BaAhHQJQEjpOerdZ1fZQoaAZHQG+BiaAnUlRoB00mAWgIR0CUBNo371qWdX2UKGgGR0ByxypWFN+LaAdNPgFoCEdAlATq+i8Fp3V9lChoBkdAcuHSc9W6smgHS/FoCEdAlAbfYao/A3V9lChoBkdAcLBfwI+nqGgHTVIBaAhHQJQHKKHfuTl1fZQoaAZHQHFz/X05EMNoB005AWgIR0CUBybnHNordX2UKGgGR0BwzXSE12q2aAdNdQFoCEdAlAl5YLb5/XV9lChoBkdAccoMvRJEpmgHTRgBaAhHQJQKK3F1jiJ1fZQoaAZHQHIqr3Cbc45oB00bAWgIR0CUCm5+YtxudX2UKGgGR0BvvGKfnOjZaAdL8mgIR0CUCoQmNR3vdX2UKGgGR0BwbCOyVv/BaAdNXwFoCEdAlArFkxyn1nV9lChoBkdAcqyxm03OwGgHTQQBaAhHQJQLgLQXyiF1fZQoaAZHQHN5KClJpWVoB00fAWgIR0CUC9E8aGYbdX2UKGgGR0BuUxas6q82aAdNKAFoCEdAlAxsdT5wfnV9lChoBkdAbccwvg3tKWgHTScBaAhHQJQQRGvwEyN1fZQoaAZHQHDpsGorFwVoB00oAWgIR0CUEGusLfDUdX2UKGgGR0BxldZX+2mYaAdNEgFoCEdAlBJvXTVlPXV9lChoBkdAb2AR02cawWgHTXQBaAhHQJQTdjG1hLJ1fZQoaAZHQHBhdUwSJ0poB01SAWgIR0CUFIyyD7IldX2UKGgGR0BwsX9MsYl6aAdNFwFoCEdAlBUBiLEUCnV9lChoBkdAcv03+dbxE2gHTVsBaAhHQJQVHjwQUYd1fZQoaAZHQHEbixiXpnpoB00JAWgIR0CUFVptJnQIdX2UKGgGR0Bwz+Df3vhIaAdNAAFoCEdAlBVlUEPlMnV9lChoBkdAcQjD5j6N2mgHTRkBaAhHQJQV3ZL7Ged1fZQoaAZHQHBpZm29cr1oB00JAWgIR0CUFlbbUPQOdX2UKGgGR0ByGM3tKIznaAdNGQFoCEdAlBaKXv6TGHV9lChoBkdAcV1LIgeRxWgHTU4BaAhHQJQXBIQOFxp1fZQoaAZHQGDd0cOskptoB03oA2gIR0CUFz2QXAM2dX2UKGgGR0BxzM9B8hLXaAdNHwFoCEdAlBdR6By0bHV9lChoBkdAcpuChew9q2gHTRoBaAhHQJQaz6CUX551fZQoaAZHQHJmPechC+loB01NAWgIR0CULH81n/T9dX2UKGgGR0BFEHdGiHqNaAdL4GgIR0CULPbZOBUadX2UKGgGR0BxT8Rvm5lOaAdNYQFoCEdAlC0Q1R+BpnV9lChoBkdAbwe3QUpNK2gHTTEBaAhHQJQtu5uqFRJ1fZQoaAZHQG3M3Mpw0fpoB0v2aAhHQJQuQn6VMVV1fZQoaAZHQHIGWFBY3ehoB00WAWgIR0CULnU6xPfsdX2UKGgGR0BigLROUMXraAdN6ANoCEdAlC7LFjurqHV9lChoBkdAcGG59Vmz0GgHTUYBaAhHQJQvgJokAxV1fZQoaAZHQHCqQk5ZKWdoB01HAWgIR0CUL/FJQLuydX2UKGgGR0BwWgt03fhuaAdNGQFoCEdAlDA4e9zwMHV9lChoBkdAbj40O3DvVmgHTTMBaAhHQJQwtiCrcTJ1fZQoaAZHQHAwbwKBuoBoB00UAWgIR0CUMMsFMZgpdX2UKGgGR0BzE8DDCP6saAdNHgFoCEdAlDDR0IToMnV9lChoBkdAcYaREnb7CWgHTYMBaAhHQJQxw5EMLF51fZQoaAZHQG/g4PoV2zRoB00XAWgIR0CUNJIX0oSddX2UKGgGR0BxWeu5jH4oaAdNCwFoCEdAlDT+t4iX6nV9lChoBkdActULOzIFNmgHTQ0BaAhHQJQ1KVhTfix1fZQoaAZHQHNPjAnDziFoB0vuaAhHQJQ1U/keZG91fZQoaAZHQHEp3WnTAnFoB00oAWgIR0CUNXjB2wFDdX2UKGgGR0BzwiAQQL/kaAdNCgFoCEdAlDaueWfK6nV9lChoBkdAb+DxR2r4nGgHTR4BaAhHQJQ2+0JF9a51fZQoaAZHQHDXK/EfkmxoB006AWgIR0CUNymMfigkdX2UKGgGR0ByKfxUedTYaAdNGwFoCEdAlDfdqtYCAHV9lChoBkdAcyQu1F6RhmgHS+9oCEdAlDftYfW+XnV9lChoBkdAbE97Lt/nXGgHTRYBaAhHQJQ4HOPeYUp1fZQoaAZHQG2iyWJJoTRoB00OAmgIR0CUOEGPPszEdX2UKGgGR0By5TOX3QD3aAdNFAFoCEdAlDi/wy6+WXV9lChoBkdAcyCE/0NBnmgHTSgBaAhHQJQ4uOZLIxR1fZQoaAZHQHAC1qJuVHFoB01YAWgIR0CUOkgYP5HmdX2UKGgGR0BttKm/FirlaAdNMgFoCEdAlDppVXFLnXV9lChoBkdAc46KP4mCy2gHS/9oCEdAlDyUSuhbn3V9lChoBkdAcNw+jua4MGgHTQ0BaAhHQJQ88OFxn4B1fZQoaAZHQHKWlJg9eQdoB00UAWgIR0CUPZeeWfK7dX2UKGgGR0Bx031QIldDaAdNFwFoCEdAlD3jK1XvIHV9lChoBkdAcMRzUI9kjGgHTRABaAhHQJQ/iFrVOKx1fZQoaAZHQHI/DviLl3hoB00fAWgIR0CUP8LrHEMtdX2UKGgGR0BysPTfBN21aAdNGAFoCEdAlEAiOFQEZHV9lChoBkdAckQFCb+cY2gHTYEBaAhHQJRBBHFxXGR1fZQoaAZHQHLB80YTCchoB00ZAWgIR0CUQRAYHgP3dX2UKGgGR0BtbOcvugHvaAdNIQFoCEdAlEFv1ct5EHV9lChoBkdAcbxaGYa5w2gHTUYBaAhHQJRDEE+xGDt1fZQoaAZHQHIc7hm5DqpoB007AWgIR0CUQ2Fkxyn2dX2UKGgGR0ByqXD8+A3DaAdNaAFoCEdAlEPgmReTmnV9lChoBkdAcjactGus92gHTWcBaAhHQJRErY287IV1fZQoaAZHQHEv0mhM8HRoB007AWgIR0CURWoG6f8NdX2UKGgGR0BwDIgmqo60aAdNEAFoCEdAlEYoy0rsjXV9lChoBkdAcPK4N7SiNGgHTWcBaAhHQJRGj9Hc1wZ1fZQoaAZHQHBIv6TGHYZoB00cAWgIR0CURwmKqGUOdX2UKGgGR0By1OuGKyfMaAdNOwFoCEdAlEcrlmvnsHV9lChoBkdAcRaI/qxC6mgHTSoBaAhHQJRHpivxH5J1fZQoaAZHQHFZ1zU7SzBoB00DAWgIR0CUR8EPlMh6dX2UKGgGR0BwSBq/M4cWaAdNFwFoCEdAlEhmbobGWHV9lChoBkdAb3NnjABT42gHTQMBaAhHQJRIu20AtFt1fZQoaAZHQHBNwM6RyOtoB00VAWgIR0CUSSt2LYPHdX2UKGgGR0BwvgZl4C6paAdNVwFoCEdAlEpeyzHCGnV9lChoBkdAcy1a7mMfimgHTRUBaAhHQJRLLviLl3h1fZQoaAZHQHCdJm29cr1oB01aAWgIR0CUS22Dg62fdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.12.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.8.0+cu126", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc24887c91bc40848dce532c561b40522500b72c6dbf212ecb17f95fadef13c7
|
3 |
+
size 149187
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x786f758772e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786f75877380>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786f75877420>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786f758774c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x786f75877560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x786f75877600>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x786f758776a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786f75877740>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x786f758777e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786f75877880>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786f75877920>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x786f758779c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x786f759db940>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1756400817408886096,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACApxC9wyF9ugKrE7oaoAO2/uXHuf2+LDkAAIA/AACAP4bDLb4LNJk+0N+gPs1zlL7YAyo9wlU+vQAAAAAAAAAATfbYva51pLrSL/my4FQvsEsx1zo13bczAACAPwAAgD9mPYq8OclfPi28nLzU0xW+Ovt/PJ90qr0AAAAAAAAAABrMQL3Os8U9mmQwve4sKr4sOak8v0OYvQAAAAAAAAAAzRlpvXUVOT71Ru87vrZ1vtOMQb2i2c28AAAAAAAAAAAzW5Y8DobmPVOlbb4Ouzi+a7wAvuZDtroAAAAAAAAAAMBA7r04Oeo+/jB4PmwKh76SDtU9CBwKPQAAAAAAAAAAgL87PujYyz6A4fK9FrCdviEHZz1VG4G9AAAAAAAAAACaDXa84WiOuhZpdbl3D2a0BW05OYJ7jjgAAIA/AACAP1PGTb7cyyI/8jORPl02gL5/7p69ip95PgAAAAAAAAAAzSo9Pci9qbw855q762P7PFhf2r0tdw46AACAPwAAgD/Nts88uU+7P7TKqT6syYE+FZUoPEG/FT4AAAAAAAAAAE20NL4R5K4/qJHOvt2E6r7Vy2K++tmZvQAAAAAAAAAABklGvv2KLz8j1HE+PRF8vsFx8LwQUPw9AAAAAAAAAAAazlo9dHCxP5z3oT4RjIW+Cs24PVtxgj4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF9ADe0ojOeMAWyUTegDjAF0lEdAk/v2qgh8pnV9lChoBkdAcTQqNp/PPmgHTREBaAhHQJP8GTaCcwx1fZQoaAZHQHGJqPn0TURoB00mAWgIR0CT/KbEgntwdX2UKGgGR0BwrzUSZjQRaAdNBwFoCEdAk/1OFL39JnV9lChoBkdAcddlY2bXpWgHTV4BaAhHQJP9cRK6Fuh1fZQoaAZHQHAs88gZCOZoB00yAWgIR0CT/wq6OHWSdX2UKGgGR0BvRUXJo0yhaAdNFAFoCEdAk/8elfqoqHV9lChoBkdAcQyOlfqoqGgHTSABaAhHQJQAlOEdvKl1fZQoaAZHQHITH974SHxoB01BAWgIR0CUALTzND+jdX2UKGgGR0BwqcB5ooNNaAdNLQFoCEdAlAG4Chew93V9lChoBkdAcKNf0VafSWgHTTIBaAhHQJQB9D0Dlo11fZQoaAZHQHAPB7NSqERoB00BAWgIR0CUAhynDR+jdX2UKGgGR0BzsZoJzDGcaAdNCQFoCEdAlAJYlMRHw3V9lChoBkdAcOBaJhvzfGgHTS0BaAhHQJQEjpOerdZ1fZQoaAZHQG+BiaAnUlRoB00mAWgIR0CUBNo371qWdX2UKGgGR0ByxypWFN+LaAdNPgFoCEdAlATq+i8Fp3V9lChoBkdAcuHSc9W6smgHS/FoCEdAlAbfYao/A3V9lChoBkdAcLBfwI+nqGgHTVIBaAhHQJQHKKHfuTl1fZQoaAZHQHFz/X05EMNoB005AWgIR0CUBybnHNordX2UKGgGR0BwzXSE12q2aAdNdQFoCEdAlAl5YLb5/XV9lChoBkdAccoMvRJEpmgHTRgBaAhHQJQKK3F1jiJ1fZQoaAZHQHIqr3Cbc45oB00bAWgIR0CUCm5+YtxudX2UKGgGR0BvvGKfnOjZaAdL8mgIR0CUCoQmNR3vdX2UKGgGR0BwbCOyVv/BaAdNXwFoCEdAlArFkxyn1nV9lChoBkdAcqyxm03OwGgHTQQBaAhHQJQLgLQXyiF1fZQoaAZHQHN5KClJpWVoB00fAWgIR0CUC9E8aGYbdX2UKGgGR0BuUxas6q82aAdNKAFoCEdAlAxsdT5wfnV9lChoBkdAbccwvg3tKWgHTScBaAhHQJQQRGvwEyN1fZQoaAZHQHDpsGorFwVoB00oAWgIR0CUEGusLfDUdX2UKGgGR0BxldZX+2mYaAdNEgFoCEdAlBJvXTVlPXV9lChoBkdAb2AR02cawWgHTXQBaAhHQJQTdjG1hLJ1fZQoaAZHQHBhdUwSJ0poB01SAWgIR0CUFIyyD7IldX2UKGgGR0BwsX9MsYl6aAdNFwFoCEdAlBUBiLEUCnV9lChoBkdAcv03+dbxE2gHTVsBaAhHQJQVHjwQUYd1fZQoaAZHQHEbixiXpnpoB00JAWgIR0CUFVptJnQIdX2UKGgGR0Bwz+Df3vhIaAdNAAFoCEdAlBVlUEPlMnV9lChoBkdAcQjD5j6N2mgHTRkBaAhHQJQV3ZL7Ged1fZQoaAZHQHBpZm29cr1oB00JAWgIR0CUFlbbUPQOdX2UKGgGR0ByGM3tKIznaAdNGQFoCEdAlBaKXv6TGHV9lChoBkdAcV1LIgeRxWgHTU4BaAhHQJQXBIQOFxp1fZQoaAZHQGDd0cOskptoB03oA2gIR0CUFz2QXAM2dX2UKGgGR0BxzM9B8hLXaAdNHwFoCEdAlBdR6By0bHV9lChoBkdAcpuChew9q2gHTRoBaAhHQJQaz6CUX551fZQoaAZHQHJmPechC+loB01NAWgIR0CULH81n/T9dX2UKGgGR0BFEHdGiHqNaAdL4GgIR0CULPbZOBUadX2UKGgGR0BxT8Rvm5lOaAdNYQFoCEdAlC0Q1R+BpnV9lChoBkdAbwe3QUpNK2gHTTEBaAhHQJQtu5uqFRJ1fZQoaAZHQG3M3Mpw0fpoB0v2aAhHQJQuQn6VMVV1fZQoaAZHQHIGWFBY3ehoB00WAWgIR0CULnU6xPfsdX2UKGgGR0BigLROUMXraAdN6ANoCEdAlC7LFjurqHV9lChoBkdAcGG59Vmz0GgHTUYBaAhHQJQvgJokAxV1fZQoaAZHQHCqQk5ZKWdoB01HAWgIR0CUL/FJQLuydX2UKGgGR0BwWgt03fhuaAdNGQFoCEdAlDA4e9zwMHV9lChoBkdAbj40O3DvVmgHTTMBaAhHQJQwtiCrcTJ1fZQoaAZHQHAwbwKBuoBoB00UAWgIR0CUMMsFMZgpdX2UKGgGR0BzE8DDCP6saAdNHgFoCEdAlDDR0IToMnV9lChoBkdAcYaREnb7CWgHTYMBaAhHQJQxw5EMLF51fZQoaAZHQG/g4PoV2zRoB00XAWgIR0CUNJIX0oSddX2UKGgGR0BxWeu5jH4oaAdNCwFoCEdAlDT+t4iX6nV9lChoBkdActULOzIFNmgHTQ0BaAhHQJQ1KVhTfix1fZQoaAZHQHNPjAnDziFoB0vuaAhHQJQ1U/keZG91fZQoaAZHQHEp3WnTAnFoB00oAWgIR0CUNXjB2wFDdX2UKGgGR0BzwiAQQL/kaAdNCgFoCEdAlDaueWfK6nV9lChoBkdAb+DxR2r4nGgHTR4BaAhHQJQ2+0JF9a51fZQoaAZHQHDXK/EfkmxoB006AWgIR0CUNymMfigkdX2UKGgGR0ByKfxUedTYaAdNGwFoCEdAlDfdqtYCAHV9lChoBkdAcyQu1F6RhmgHS+9oCEdAlDftYfW+XnV9lChoBkdAbE97Lt/nXGgHTRYBaAhHQJQ4HOPeYUp1fZQoaAZHQG2iyWJJoTRoB00OAmgIR0CUOEGPPszEdX2UKGgGR0By5TOX3QD3aAdNFAFoCEdAlDi/wy6+WXV9lChoBkdAcyCE/0NBnmgHTSgBaAhHQJQ4uOZLIxR1fZQoaAZHQHAC1qJuVHFoB01YAWgIR0CUOkgYP5HmdX2UKGgGR0BttKm/FirlaAdNMgFoCEdAlDppVXFLnXV9lChoBkdAc46KP4mCy2gHS/9oCEdAlDyUSuhbn3V9lChoBkdAcNw+jua4MGgHTQ0BaAhHQJQ88OFxn4B1fZQoaAZHQHKWlJg9eQdoB00UAWgIR0CUPZeeWfK7dX2UKGgGR0Bx031QIldDaAdNFwFoCEdAlD3jK1XvIHV9lChoBkdAcMRzUI9kjGgHTRABaAhHQJQ/iFrVOKx1fZQoaAZHQHI/DviLl3hoB00fAWgIR0CUP8LrHEMtdX2UKGgGR0BysPTfBN21aAdNGAFoCEdAlEAiOFQEZHV9lChoBkdAckQFCb+cY2gHTYEBaAhHQJRBBHFxXGR1fZQoaAZHQHLB80YTCchoB00ZAWgIR0CUQRAYHgP3dX2UKGgGR0BtbOcvugHvaAdNIQFoCEdAlEFv1ct5EHV9lChoBkdAcbxaGYa5w2gHTUYBaAhHQJRDEE+xGDt1fZQoaAZHQHIc7hm5DqpoB007AWgIR0CUQ2Fkxyn2dX2UKGgGR0ByqXD8+A3DaAdNaAFoCEdAlEPgmReTmnV9lChoBkdAcjactGus92gHTWcBaAhHQJRErY287IV1fZQoaAZHQHEv0mhM8HRoB007AWgIR0CURWoG6f8NdX2UKGgGR0BwDIgmqo60aAdNEAFoCEdAlEYoy0rsjXV9lChoBkdAcPK4N7SiNGgHTWcBaAhHQJRGj9Hc1wZ1fZQoaAZHQHBIv6TGHYZoB00cAWgIR0CURwmKqGUOdX2UKGgGR0By1OuGKyfMaAdNOwFoCEdAlEcrlmvnsHV9lChoBkdAcRaI/qxC6mgHTSoBaAhHQJRHpivxH5J1fZQoaAZHQHFZ1zU7SzBoB00DAWgIR0CUR8EPlMh6dX2UKGgGR0BwSBq/M4cWaAdNFwFoCEdAlEhmbobGWHV9lChoBkdAb3NnjABT42gHTQMBaAhHQJRIu20AtFt1fZQoaAZHQHBNwM6RyOtoB00VAWgIR0CUSSt2LYPHdX2UKGgGR0BwvgZl4C6paAdNVwFoCEdAlEpeyzHCGnV9lChoBkdAcy1a7mMfimgHTRUBaAhHQJRLLviLl3h1fZQoaAZHQHCdJm29cr1oB01aAWgIR0CUS22Dg62fdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95fa85a90369e0d33026ea684921059ad60acd164512a702142461b0a48334ec
|
3 |
+
size 88695
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8906fb9dfb0fb65c17fcf5a7eac2aa6e1950ac37bcf40a29cff5cd249c04c1c2
|
3 |
+
size 44095
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07c7431cf6005e7d8f367d79e995f63e2f9b981a37e3437b795d058f9af4308b
|
3 |
+
size 1261
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
|
2 |
+
- Python: 3.12.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.8.0+cu126
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 2.0.2
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:484f2910822a2bca53a5bc3876f063d5ccce462281808b7f4777287aad73c2f4
|
3 |
+
size 162549
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 271.4037191, "std_reward": 20.479536935766397, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-08-28T17:32:28.173321"}
|