--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xmlNer-biobert results: [] --- # xmlNer-biobert This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0843 - Precision: 0.9481 - Recall: 0.9752 - F1: 0.9615 - Accuracy: 0.9816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4975 | 1.0 | 612 | 0.1100 | 0.9268 | 0.9546 | 0.9405 | 0.9713 | | 0.1263 | 2.0 | 1224 | 0.0902 | 0.9359 | 0.9720 | 0.9536 | 0.9776 | | 0.0894 | 3.0 | 1836 | 0.0861 | 0.9437 | 0.9725 | 0.9579 | 0.9790 | | 0.0687 | 4.0 | 2448 | 0.0841 | 0.9461 | 0.9748 | 0.9603 | 0.9809 | | 0.0497 | 5.0 | 3060 | 0.0843 | 0.9481 | 0.9752 | 0.9615 | 0.9816 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0