xmlNer-biobert
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: xlm-roberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: xmlNer-biobert
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# xmlNer-biobert
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0843
|
25 |
+
- Precision: 0.9481
|
26 |
+
- Recall: 0.9752
|
27 |
+
- F1: 0.9615
|
28 |
+
- Accuracy: 0.9816
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 16
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 5
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
60 |
+
| 0.4975 | 1.0 | 612 | 0.1100 | 0.9268 | 0.9546 | 0.9405 | 0.9713 |
|
61 |
+
| 0.1263 | 2.0 | 1224 | 0.0902 | 0.9359 | 0.9720 | 0.9536 | 0.9776 |
|
62 |
+
| 0.0894 | 3.0 | 1836 | 0.0861 | 0.9437 | 0.9725 | 0.9579 | 0.9790 |
|
63 |
+
| 0.0687 | 4.0 | 2448 | 0.0841 | 0.9461 | 0.9748 | 0.9603 | 0.9809 |
|
64 |
+
| 0.0497 | 5.0 | 3060 | 0.0843 | 0.9481 | 0.9752 | 0.9615 | 0.9816 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.45.1
|
70 |
+
- Pytorch 2.4.0
|
71 |
+
- Datasets 3.0.1
|
72 |
+
- Tokenizers 0.20.0
|
config.json
CHANGED
@@ -84,7 +84,7 @@
|
|
84 |
"output_past": true,
|
85 |
"pad_token_id": 1,
|
86 |
"position_embedding_type": "absolute",
|
87 |
-
"torch_dtype": "
|
88 |
"transformers_version": "4.45.1",
|
89 |
"type_vocab_size": 1,
|
90 |
"use_cache": true,
|
|
|
84 |
"output_past": true,
|
85 |
"pad_token_id": 1,
|
86 |
"position_embedding_type": "absolute",
|
87 |
+
"torch_dtype": "float16",
|
88 |
"transformers_version": "4.45.1",
|
89 |
"type_vocab_size": 1,
|
90 |
"use_cache": true,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29fd74a23df7089dd78d6db00037304e768483ad553f355cfda33a5b525a8e5
|
3 |
+
size 554976180
|
runs/Nov20_18-32-49_4ea90b97e6a4/events.out.tfevents.1732130510.4ea90b97e6a4.30.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f60d4b9ba771140d525d0e994fbadec419eff85ebb0ad3be46f212e31f31e875
|
3 |
+
size 560
|