import torch import torch.nn as nn from .memory import CognitiveMemory class CognitiveNode(nn.Module): """Differentiable cognitive node with dynamic plasticity""" def __init__(self, node_id: int, input_size: int): super().__init__() self.id = node_id self.input_size = input_size self.activation = 0.0 # Dynamic input weights with Hebbian plasticity self.weights = nn.Parameter(torch.randn(1)) # Changed from input_size to 1 self.bias = nn.Parameter(torch.zeros(1)) # Memory system - adjusted context size self.memory = CognitiveMemory(context_size=1) # Changed from input_size to 1 # Neurotransmitter levels self.dopamine = nn.Parameter(torch.tensor(0.5)) self.serotonin = nn.Parameter(torch.tensor(0.5)) # Store recent activations self.recent_activations = {} def forward(self, inputs: torch.Tensor) -> torch.Tensor: # Ensure inputs is a single value tensor inputs = inputs.reshape(1) # Memory influence mem_context = self.memory.retrieve(inputs) # Combine inputs with memory context combined = inputs * 0.7 + mem_context * 0.3 # Adaptive activation with neurotransmitter modulation base_activation = torch.tanh(combined * self.weights + self.bias) modulated = base_activation * (1 + self.dopamine - self.serotonin) # Update memory self.memory.add_memory(inputs, modulated.item()) # Store recent activation self.recent_activations[len(self.recent_activations)] = modulated.item() if len(self.recent_activations) > 100: self.recent_activations.pop(min(self.recent_activations.keys())) return modulated def update_plasticity(self, reward: float): """Update neurotransmitter levels based on reward signal""" self.dopamine.data = torch.sigmoid(self.dopamine + reward * 0.1) self.serotonin.data = torch.sigmoid(self.serotonin - reward * 0.05)