# cognitive_net/node.py import torch import torch.nn as nn from collections import deque from .memory import CognitiveMemory class CognitiveNode(nn.Module): """Autonomous neural unit with neuromodulatory dynamics""" def __init__(self, node_id: int, input_size: int): super().__init__() self.id = node_id self.input_size = input_size # Adaptive processing components self.weights = nn.Parameter(torch.randn(input_size) * 0.1) self.bias = nn.Parameter(torch.zeros(1)) self.memory = CognitiveMemory(context_size=input_size) # Neuromodulatory state self.dopamine = nn.Parameter(torch.tensor(0.5)) self.serotonin = nn.Parameter(torch.tensor(0.5)) # Activation history (rolling window) self.recent_activations = deque(maxlen=100) def forward(self, inputs: torch.Tensor) -> torch.Tensor: # Memory integration mem_context = self.memory.retrieve(inputs) combined = inputs * 0.7 + mem_context * 0.3 # Neurotransmitter-modulated activation base_activation = torch.tanh(combined @ self.weights + self.bias) modulated = base_activation * (1 + torch.sigmoid(self.dopamine) - torch.sigmoid(self.serotonin)) # Memory consolidation self.memory.add_memory(inputs, modulated.item()) self.recent_activations.append(modulated.item()) return modulated def update_plasticity(self, reward: float): """Adaptive neuromodulation based on performance""" with torch.no_grad(): self.dopamine += reward * 0.1 self.serotonin -= reward * 0.05 # Maintain neurotransmitter bounds self.dopamine.clamp_(0, 1) self.serotonin.clamp_(0, 1)