import torch import torch.nn as nn import torch.optim as optim import math import numpy as np from typing import Dict, Optional from .node import CognitiveNode class DynamicCognitiveNet(nn.Module): """Arsitektur jaringan dengan manajemen tensor yang robust""" def __init__(self, input_size: int, output_size: int): super().__init__() self.input_size = input_size self.output_size = output_size # Node dengan input size 1 self.input_nodes = nn.ModuleList([ CognitiveNode(i, 1) for i in range(input_size) ]) self.output_nodes = nn.ModuleList([ CognitiveNode(input_size + i, 1) for i in range(output_size) ]) # Manajemen koneksi self.connections = nn.ParameterDict() self._init_base_connections() # Sistem pembelajaran self.emotional_state = nn.Parameter(torch.tensor(0.0)) self.optimizer = optim.AdamW(self.parameters(), lr=0.001) self.loss_fn = nn.MSELoss() def _init_base_connections(self): """Inisialisasi koneksi input-output""" for in_node in self.input_nodes: for out_node in self.output_nodes: conn_id = f"{in_node.id}->{out_node.id}" self.connections[conn_id] = nn.Parameter( torch.randn(1) * 0.1 ) def forward(self, x: torch.Tensor) -> torch.Tensor: # Validasi dimensi input x = x.view(-1) # Pemrosesan input activations = {} for i, node in enumerate(self.input_nodes): activations[node.id] = node(x[i].unsqueeze(0)) # Integrasi output outputs = [] for out_node in self.output_nodes: integrated = [] for in_node in self.input_nodes: conn_id = f"{in_node.id}->{out_node.id}" weight = torch.sigmoid(self.connections[conn_id]) integrated.append(activations[in_node.id] * weight) if integrated: combined = sum(integrated) / math.sqrt(len(integrated)) outputs.append(out_node(combined)) return torch.stack(outputs).squeeze() def structural_update(self, global_reward: float): """Update struktur jaringan""" # Update kekuatan koneksi for conn_id in list(self.connections.keys()): new_weight = self.connections[conn_id] + 0.1 * global_reward self.connections[conn_id].data = new_weight.clamp(-1, 1) # Pembuatan koneksi baru if global_reward < -0.5: new_conn = self._find_underutilized_connection() if new_conn and new_conn not in self.connections: self.connections[new_conn] = nn.Parameter(torch.randn(1) * 0.1) def _find_underutilized_connection(self) -> Optional[str]: """Mencari pasangan node yang kurang aktif""" input_act = {n.id: np.mean(n.recent_activations) for n in self.input_nodes if n.recent_activations} output_act = {n.id: np.mean(n.recent_activations) for n in self.output_nodes if n.recent_activations} if not input_act or not output_act: return None src = min(input_act, key=lambda k: input_act[k]) tgt = min(output_act, key=lambda k: output_act[k]) return f"{src}->{tgt}" def train_step(self, x: torch.Tensor, y: torch.Tensor) -> float: """Training step dengan error handling""" self.optimizer.zero_grad() try: pred = self(x.view(-1)) loss = self.loss_fn(pred, y.view(-1)) except Exception as e: print(f"Error forward: {e}") return float('nan') # Regularisasi struktural reg_loss = sum(p.abs().mean() for p in self.connections.values()) total_loss = loss + 0.01 * reg_loss try: total_loss.backward() self.optimizer.step() except Exception as e: print(f"Error backward: {e}") return float('nan') # Update emosi self.emotional_state.data = torch.sigmoid( self.emotional_state + (0.5 - loss.item()) * 0.1 ) self.structural_update(0.5 - loss.item()) return total_loss.item()