cognitive_net / memory.py
vincentiusyoshuac's picture
Update memory.py
b668479 verified
raw
history blame
2.18 kB
# cognitive_net/memory.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
from typing import Deque, Dict, Any
class CognitiveMemory(nn.Module):
"""Differentiable memory system with biological consolidation mechanisms"""
def __init__(self, context_size: int, capacity: int = 100):
super().__init__()
self.context_size = context_size
self.capacity = capacity
self.memory_queue: Deque[Dict[str, Any]] = deque(maxlen=capacity)
# Memory projection layers with adaptive scaling
self.key_proj = nn.Linear(context_size, 64)
self.value_proj = nn.Linear(context_size, 64)
self.importance_decay = nn.Parameter(torch.tensor(0.95))
# Consolidation parameters
self.consolidation_threshold = 0.7
self.age_decay = 0.1
def add_memory(self, context: torch.Tensor, activation: float):
"""Store memory with dynamic importance weighting"""
importance = torch.sigmoid(torch.tensor(activation * 0.5 + 0.2))
self.memory_queue.append({
'context': context.detach().clone(),
'importance': importance,
'age': torch.tensor(0.0)
})
def consolidate_memories(self):
"""Memory optimization through importance-based pruning"""
new_queue = deque(maxlen=self.capacity)
for mem in self.memory_queue:
mem['importance'] *= self.importance_decay
mem['age'] += self.age_decay
if mem['importance'] > 0.2:
new_queue.append(mem)
self.memory_queue = new_queue
def retrieve(self, query: torch.Tensor) -> torch.Tensor:
"""Content-based memory retrieval with attention"""
if not self.memory_queue:
return torch.zeros(64, device=query.device)
contexts = torch.stack([m['context'] for m in self.memory_queue])
keys = self.key_proj(contexts)
values = self.value_proj(contexts)
query_proj = self.key_proj(query.unsqueeze(0))
scores = F.softmax(keys @ query_proj.T, dim=0)
return (scores * values).sum(dim=0)