cognitive_net / network.py
vincentiusyoshuac's picture
Update network.py
ddcd0d7 verified
raw
history blame
4.31 kB
# cognitive_net/network.py
import torch
import torch.nn as nn
import torch.optim as optim
import math
from typing import Dict, List, Optional
from .node import CognitiveNode
class DynamicCognitiveNet(nn.Module):
"""Self-organizing neural architecture with structural plasticity"""
def __init__(self, input_size: int, output_size: int):
super().__init__()
self.input_size = input_size
self.output_size = output_size
# Neural population
self.input_nodes = nn.ModuleList([
CognitiveNode(i, 1) for i in range(input_size)
])
self.output_nodes = nn.ModuleList([
CognitiveNode(input_size + i, 1) for i in range(output_size)
])
# Structural configuration
self.connections: Dict[str, nn.Parameter] = nn.ParameterDict()
self._init_base_connections()
# Meta-learning components
self.emotional_state = nn.Parameter(torch.tensor(0.0))
self.optimizer = optim.AdamW(self.parameters(), lr=0.001)
self.loss_fn = nn.MSELoss()
def _init_base_connections(self):
"""Initialize sparse input-output connectivity"""
for i, in_node in enumerate(self.input_nodes):
for j, out_node in enumerate(self.output_nodes):
conn_id = f"{in_node.id}->{out_node.id}"
self.connections[conn_id] = nn.Parameter(
torch.randn(1) * 0.1
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Input processing
activations = {}
for i, node in enumerate(self.input_nodes):
activations[node.id] = node(x[i].unsqueeze(0))
# Output integration
outputs = []
for out_node in self.output_nodes:
integrated = []
for in_node in self.input_nodes:
conn_id = f"{in_node.id}->{out_node.id}"
weight = torch.sigmoid(self.connections[conn_id])
integrated.append(activations[in_node.id] * weight)
if integrated:
combined = sum(integrated) / math.sqrt(len(integrated))
outputs.append(out_node(combined))
return torch.cat(outputs)
def structural_update(self, global_reward: float):
"""Evolutionary architecture modification"""
# Connection strength adaptation
for conn_id, weight in self.connections.items():
if global_reward > 0:
new_weight = weight + 0.1 * global_reward
else:
new_weight = weight * 0.95
self.connections[conn_id].data = new_weight.clamp(-1, 1)
# Structural neurogenesis
if global_reward < -0.5:
new_conn = self._generate_connection()
if new_conn not in self.connections:
self.connections[new_conn] = nn.Parameter(
torch.randn(1) * 0.1
)
def _generate_connection(self) -> str:
"""Create new input-output connection based on activity"""
input_act = {n.id: np.mean(n.recent_activations)
for n in self.input_nodes if n.recent_activations}
output_act = {n.id: np.mean(n.recent_activations)
for n in self.output_nodes if n.recent_activations}
if not input_act or not output_act:
return ""
src = min(input_act, key=input_act.get) # type: ignore
tgt = min(output_act, key=output_act.get) # type: ignore
return f"{src}->{tgt}"
def train_step(self, x: torch.Tensor, y: torch.Tensor) -> float:
self.optimizer.zero_grad()
pred = self(x)
loss = self.loss_fn(pred, y)
# Structural regularization
reg_loss = sum(p.abs().mean() for p in self.connections.values())
total_loss = loss + 0.01 * reg_loss
total_loss.backward()
self.optimizer.step()
# Emotional state adaptation
self.emotional_state.data = torch.sigmoid(
self.emotional_state + (0.5 - loss.item()) * 0.1
)
# Structural reorganization
self.structural_update(0.5 - loss.item())
return total_loss.item()