File size: 2,830 Bytes
655630b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# Cognitive Network
A PyTorch implementation of a differentiable cognitive network with dynamic structure learning, memory consolidation, and neurotransmitter-modulated plasticity.
## Features
- ๐ง Dynamic network structure that evolves based on performance
- ๐ญ Differentiable memory system with importance-based consolidation
- ๐ Hebbian plasticity with neurotransmitter modulation
- ๐ฏ Self-organizing architecture with adaptive connections
- ๐ก Emotional context integration for learning modulation
## Installation
```bash
pip install cognitive-net
```
Or install from source:
```bash
git clone https://github.com/yourusername/cognitive-net.git
cd cognitive-net
pip install -e .
```
## Quick Start
```python
import torch
from cognitive_net import DynamicCognitiveNet
# Initialize network
net = DynamicCognitiveNet(input_size=10, output_size=2)
# Sample data
x = torch.randn(10)
y = torch.randn(2)
# Training step
loss = net.train_step(x, y)
print(f"Training loss: {loss:.4f}")
```
## Components
### CognitiveMemory
The memory system implements:
- Importance-based memory storage
- Adaptive consolidation
- Attention-based retrieval
### CognitiveNode
Individual nodes feature:
- Dynamic weight plasticity
- Neurotransmitter modulation
- Local memory systems
### DynamicCognitiveNet
The network provides:
- Self-organizing structure
- Performance-based connection updates
- Emotional context integration
- Adaptive learning mechanisms
## Usage Examples
### Basic Training Loop
```python
# Initialize network
net = DynamicCognitiveNet(input_size=5, output_size=1)
# Training data
X = torch.randn(100, 5)
y = torch.randn(100, 1)
# Training loop
for epoch in range(10):
total_loss = 0
for i in range(len(X)):
loss = net.train_step(X[i], y[i])
total_loss += loss
print(f"Epoch {epoch+1}, Average Loss: {total_loss/len(X):.4f}")
```
### Memory Usage
```python
from cognitive_net import CognitiveMemory
# Initialize memory system
memory = CognitiveMemory(context_size=64)
# Store new memory
context = torch.randn(64)
memory.add_memory(context, activation=0.8)
# Retrieve similar contexts
query = torch.randn(64)
retrieved = memory.retrieve(query)
```
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Citation
If you use this code in your research, please cite:
```bibtex
@software{cognitive_net2024,
title = {Cognitive Network: Dynamic Structure Learning with Memory},
author = {Your Name},
year = {2024},
publisher = {GitHub},
url = {https://github.com/yourusername/cognitive-net}
}
```
## Acknowledgments
- PyTorch team for the excellent deep learning framework
- Research community for inspiration and feedback |