File size: 2,830 Bytes
655630b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Cognitive Network

A PyTorch implementation of a differentiable cognitive network with dynamic structure learning, memory consolidation, and neurotransmitter-modulated plasticity.

## Features

- ๐Ÿง  Dynamic network structure that evolves based on performance
- ๐Ÿ’ญ Differentiable memory system with importance-based consolidation
- ๐Ÿ”„ Hebbian plasticity with neurotransmitter modulation
- ๐ŸŽฏ Self-organizing architecture with adaptive connections
- ๐Ÿ’ก Emotional context integration for learning modulation

## Installation

```bash
pip install cognitive-net
```

Or install from source:

```bash
git clone https://github.com/yourusername/cognitive-net.git
cd cognitive-net
pip install -e .
```

## Quick Start

```python
import torch
from cognitive_net import DynamicCognitiveNet

# Initialize network
net = DynamicCognitiveNet(input_size=10, output_size=2)

# Sample data
x = torch.randn(10)
y = torch.randn(2)

# Training step
loss = net.train_step(x, y)
print(f"Training loss: {loss:.4f}")
```

## Components

### CognitiveMemory

The memory system implements:
- Importance-based memory storage
- Adaptive consolidation
- Attention-based retrieval

### CognitiveNode

Individual nodes feature:
- Dynamic weight plasticity
- Neurotransmitter modulation
- Local memory systems

### DynamicCognitiveNet

The network provides:
- Self-organizing structure
- Performance-based connection updates
- Emotional context integration
- Adaptive learning mechanisms

## Usage Examples

### Basic Training Loop

```python
# Initialize network
net = DynamicCognitiveNet(input_size=5, output_size=1)

# Training data
X = torch.randn(100, 5)
y = torch.randn(100, 1)

# Training loop
for epoch in range(10):
    total_loss = 0
    for i in range(len(X)):
        loss = net.train_step(X[i], y[i])
        total_loss += loss
    print(f"Epoch {epoch+1}, Average Loss: {total_loss/len(X):.4f}")
```

### Memory Usage

```python
from cognitive_net import CognitiveMemory

# Initialize memory system
memory = CognitiveMemory(context_size=64)

# Store new memory
context = torch.randn(64)
memory.add_memory(context, activation=0.8)

# Retrieve similar contexts
query = torch.randn(64)
retrieved = memory.retrieve(query)
```

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Citation

If you use this code in your research, please cite:

```bibtex
@software{cognitive_net2024,
  title = {Cognitive Network: Dynamic Structure Learning with Memory},
  author = {Your Name},
  year = {2024},
  publisher = {GitHub},
  url = {https://github.com/yourusername/cognitive-net}
}
```

## Acknowledgments

- PyTorch team for the excellent deep learning framework
- Research community for inspiration and feedback