File size: 1,862 Bytes
a135dcc
1f0ef7a
 
a135dcc
1f0ef7a
 
 
a135dcc
1f0ef7a
 
 
 
 
a135dcc
 
1f0ef7a
a135dcc
1f0ef7a
a135dcc
1f0ef7a
 
 
a135dcc
 
 
1f0ef7a
a135dcc
1f0ef7a
 
 
a135dcc
 
 
 
1f0ef7a
a135dcc
1f0ef7a
a135dcc
9d2804b
1f0ef7a
a135dcc
1f0ef7a
a135dcc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# cognitive_net/node.py
import torch
import torch.nn as nn
from collections import deque
from .memory import CognitiveMemory

class CognitiveNode(nn.Module):
    """Autonomous neural unit with neuromodulatory dynamics"""
    def __init__(self, node_id: int, input_size: int):
        super().__init__()
        self.id = node_id
        self.input_size = input_size
        
        # Adaptive processing components
        self.weights = nn.Parameter(torch.randn(input_size) * 0.1)
        self.bias = nn.Parameter(torch.zeros(1))
        self.memory = CognitiveMemory(context_size=input_size)
        
        # Neuromodulatory state
        self.dopamine = nn.Parameter(torch.tensor(0.5))
        self.serotonin = nn.Parameter(torch.tensor(0.5))
        
        # Activation history (rolling window)
        self.recent_activations = deque(maxlen=100)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        # Memory integration
        mem_context = self.memory.retrieve(inputs)
        combined = inputs * 0.7 + mem_context * 0.3
        
        # Neurotransmitter-modulated activation
        base_activation = torch.tanh(combined @ self.weights + self.bias)
        modulated = base_activation * (1 + torch.sigmoid(self.dopamine) 
                                     - torch.sigmoid(self.serotonin))
        
        # Memory consolidation
        self.memory.add_memory(inputs, modulated.item())
        self.recent_activations.append(modulated.item())
        
        return modulated

    def update_plasticity(self, reward: float):
        """Adaptive neuromodulation based on performance"""
        with torch.no_grad():
            self.dopamine += reward * 0.1
            self.serotonin -= reward * 0.05
            # Maintain neurotransmitter bounds
            self.dopamine.clamp_(0, 1)
            self.serotonin.clamp_(0, 1)