update
Browse files- README.md +35 -5
- config.json +26 -14
- configuration_moonshine.py +0 -32
- generation_config.json +7 -0
- model.safetensors +2 -2
- modeling_moonshine.py +0 -512
- preprocessor_config.json +9 -0
- special_tokens_map.json +0 -1
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
README.md
CHANGED
|
@@ -6,13 +6,43 @@ library_name: transformers
|
|
| 6 |
pipeline_tag: automatic-speech-recognition
|
| 7 |
arxiv: https://arxiv.org/abs/2410.15608
|
| 8 |
---
|
| 9 |
-
#
|
| 10 |
|
| 11 |
[[Blog]](https://petewarden.com/2024/10/21/introducing-moonshine-the-new-state-of-the-art-for-speech-to-text/) [[Paper]](https://arxiv.org/abs/2410.15608) [[Installation]](https://github.com/usefulsensors/moonshine/blob/main/README.md) [[Podcast]](https://notebooklm.google.com/notebook/d787d6c2-7d7b-478c-b7d5-a0be4c74ae19/audio)
|
| 12 |
|
| 13 |
This is the model card for running the automatic speech recognition (ASR) models (Moonshine models) trained and released by Useful Sensors.
|
| 14 |
|
| 15 |
-
Following [Model Cards for Model Reporting (Mitchell et al.)](https://arxiv.org/abs/1810.03993), we're providing some information about the automatic speech recognition model. More information on how these models were trained and evaluated can be found [in the paper](https://arxiv.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
|
@@ -94,8 +124,8 @@ There are also potential dual-use concerns that come with releasing Moonshine. W
|
|
| 94 |
if sr != 16000:
|
| 95 |
audio = torchaudio.functional.resample(audio, sr, 16000)
|
| 96 |
|
| 97 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained('usefulsensors/moonshine-
|
| 98 |
-
tokenizer = PreTrainedTokenizerFast.from_pretrained('usefulsensors/moonshine-
|
| 99 |
|
| 100 |
tokens = model(audio)
|
| 101 |
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
@@ -113,4 +143,4 @@ If you benefit from our work, please cite us:
|
|
| 113 |
primaryClass={cs.SD},
|
| 114 |
url={https://arxiv.org/abs/2410.15608},
|
| 115 |
}
|
| 116 |
-
```
|
|
|
|
| 6 |
pipeline_tag: automatic-speech-recognition
|
| 7 |
arxiv: https://arxiv.org/abs/2410.15608
|
| 8 |
---
|
| 9 |
+
# Moonshine
|
| 10 |
|
| 11 |
[[Blog]](https://petewarden.com/2024/10/21/introducing-moonshine-the-new-state-of-the-art-for-speech-to-text/) [[Paper]](https://arxiv.org/abs/2410.15608) [[Installation]](https://github.com/usefulsensors/moonshine/blob/main/README.md) [[Podcast]](https://notebooklm.google.com/notebook/d787d6c2-7d7b-478c-b7d5-a0be4c74ae19/audio)
|
| 12 |
|
| 13 |
This is the model card for running the automatic speech recognition (ASR) models (Moonshine models) trained and released by Useful Sensors.
|
| 14 |
|
| 15 |
+
Following [Model Cards for Model Reporting (Mitchell et al.)](https://arxiv.org/abs/1810.03993), we're providing some information about the automatic speech recognition model. More information on how these models were trained and evaluated can be found [in the paper](https://arxiv.ojrg/abs/2410.15608). Note, a lot of the text has been copied verbatim from the [model card](https://github.com/openai/whisper/blob/main/model-card.md) for the Whisper model developed by OpenAI, because both models serve identical purposes, and carry identical risks.
|
| 16 |
+
|
| 17 |
+
## Usage
|
| 18 |
+
|
| 19 |
+
Moonshine is supported in Hugging Face 🤗 Transformers. To run the model, first install the Transformers library. For this example, we'll also install 🤗 Datasets to load toy audio dataset from the Hugging Face Hub, and 🤗 Accelerate to reduce the model loading time:
|
| 20 |
+
|
| 21 |
+
```bash
|
| 22 |
+
pip install --upgrade pip
|
| 23 |
+
pip install --upgrade transformers datasets[audio]
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from transformers import MoonshineForConditionalGeneration, AutoProcessor
|
| 28 |
+
from datasets import load_dataset, Audio
|
| 29 |
+
import torch
|
| 30 |
+
|
| 31 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 33 |
+
|
| 34 |
+
model = MoonshineForConditionalGeneration.from_pretrained('UsefulSensors/moonshine-base').to(device).to(torch_dtype)
|
| 35 |
+
processor = AutoProcessor.from_pretrained('UsefulSensors/moonshine-base')
|
| 36 |
+
|
| 37 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 38 |
+
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
| 39 |
+
sample = dataset[0]["audio"]
|
| 40 |
+
|
| 41 |
+
inputs = processor(sample["array"], return_tensors="pt").to(device).to(torch_dtype)
|
| 42 |
+
|
| 43 |
+
generated_ids = model.generate(**inputs)
|
| 44 |
+
print(processor.decode(generated_ids[0], skip_special_tokens=True))
|
| 45 |
+
```
|
| 46 |
|
| 47 |
## Model Details
|
| 48 |
|
|
|
|
| 124 |
if sr != 16000:
|
| 125 |
audio = torchaudio.functional.resample(audio, sr, 16000)
|
| 126 |
|
| 127 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained('usefulsensors/moonshine-tiny', trust_remote_code=True)
|
| 128 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained('usefulsensors/moonshine-tiny')
|
| 129 |
|
| 130 |
tokens = model(audio)
|
| 131 |
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
|
|
| 143 |
primaryClass={cs.SD},
|
| 144 |
url={https://arxiv.org/abs/2410.15608},
|
| 145 |
}
|
| 146 |
+
```
|
config.json
CHANGED
|
@@ -1,20 +1,32 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
-
"
|
| 4 |
],
|
| 5 |
-
"
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
-
"
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"model_type": "moonshine",
|
| 17 |
-
"
|
|
|
|
|
|
|
| 18 |
"torch_dtype": "float32",
|
| 19 |
-
"transformers_version": "4.
|
|
|
|
|
|
|
| 20 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "/home/eustache_lebihan/dev/add-moonshine/moonshine-base",
|
| 3 |
"architectures": [
|
| 4 |
+
"MoonshineForConditionalGeneration"
|
| 5 |
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"decoder_hidden_act": "silu",
|
| 10 |
+
"decoder_num_attention_heads": 8,
|
| 11 |
+
"decoder_num_hidden_layers": 8,
|
| 12 |
+
"decoder_num_key_value_heads": 8,
|
| 13 |
+
"decoder_start_token_id": 1,
|
| 14 |
+
"encoder_hidden_act": "gelu",
|
| 15 |
+
"encoder_num_attention_heads": 8,
|
| 16 |
+
"encoder_num_hidden_layers": 8,
|
| 17 |
+
"encoder_num_key_value_heads": 8,
|
| 18 |
+
"eos_token_id": 2,
|
| 19 |
+
"hidden_size": 416,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 1664,
|
| 22 |
+
"is_encoder_decoder": true,
|
| 23 |
+
"max_position_embeddings": 512,
|
| 24 |
"model_type": "moonshine",
|
| 25 |
+
"partial_rotary_factor": 0.62,
|
| 26 |
+
"rope_scaling": null,
|
| 27 |
+
"rope_theta": 10000.0,
|
| 28 |
"torch_dtype": "float32",
|
| 29 |
+
"transformers_version": "4.48.0.dev0",
|
| 30 |
+
"use_cache": true,
|
| 31 |
+
"vocab_size": 32768
|
| 32 |
}
|
configuration_moonshine.py
DELETED
|
@@ -1,32 +0,0 @@
|
|
| 1 |
-
from transformers import PretrainedConfig
|
| 2 |
-
from typing import List
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
class MoonshineConfig(PretrainedConfig):
|
| 6 |
-
model_type = "moonshine"
|
| 7 |
-
|
| 8 |
-
def __init__(
|
| 9 |
-
self,
|
| 10 |
-
dim: int = 288,
|
| 11 |
-
inner_dim: int = None,
|
| 12 |
-
enc_depth: int = 8,
|
| 13 |
-
dec_depth: int = 8,
|
| 14 |
-
n_head: int = 8,
|
| 15 |
-
dec_voc_size: int = 32768,
|
| 16 |
-
enc_ff_swiglu: bool = False,
|
| 17 |
-
dec_ff_swiglu: bool = True,
|
| 18 |
-
**kwargs
|
| 19 |
-
):
|
| 20 |
-
if inner_dim is None:
|
| 21 |
-
inner_dim = dim
|
| 22 |
-
if inner_dim % n_head != 0:
|
| 23 |
-
raise ValueError("`inner dim` must be divisible by `n_head`")
|
| 24 |
-
self.dim = dim
|
| 25 |
-
self.inner_dim = inner_dim
|
| 26 |
-
self.enc_depth = enc_depth
|
| 27 |
-
self.dec_depth = dec_depth
|
| 28 |
-
self.n_head = n_head
|
| 29 |
-
self.dec_voc_size = dec_voc_size
|
| 30 |
-
self.enc_ff_swiglu = enc_ff_swiglu
|
| 31 |
-
self.dec_ff_swiglu = dec_ff_swiglu
|
| 32 |
-
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"decoder_start_token_id": 1,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"transformers_version": "4.48.0.dev0"
|
| 7 |
+
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e020c79d0a979a7ec099f718ff1cd2f19e92aead230d69654bca5975a8e1b862
|
| 3 |
+
size 246079928
|
modeling_moonshine.py
DELETED
|
@@ -1,512 +0,0 @@
|
|
| 1 |
-
from einops import rearrange
|
| 2 |
-
from einops.layers.torch import Rearrange
|
| 3 |
-
from torch import nn
|
| 4 |
-
from transformers import PreTrainedModel
|
| 5 |
-
|
| 6 |
-
import math
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
from .configuration_moonshine import MoonshineConfig
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class RotaryEmbedding(nn.Module):
|
| 13 |
-
def __init__(self, dim, base=10000):
|
| 14 |
-
super().__init__()
|
| 15 |
-
|
| 16 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 17 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 18 |
-
|
| 19 |
-
def forward(self, t):
|
| 20 |
-
freqs = torch.einsum("i , j -> i j", t.type_as(self.inv_freq), self.inv_freq)
|
| 21 |
-
freqs = torch.stack((freqs, freqs), dim=-1)
|
| 22 |
-
return rearrange(freqs, "... d r -> ... (d r)")
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def rotate_half(x):
|
| 26 |
-
x = rearrange(x, "... (d r) -> ... d r", r=2)
|
| 27 |
-
x1, x2 = x.unbind(dim=-1)
|
| 28 |
-
x = torch.stack((-x2, x1), dim=-1)
|
| 29 |
-
return rearrange(x, "... d r -> ... (d r)")
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def apply_rotary_pos_emb(t, freqs):
|
| 33 |
-
rot_dim, seq_len, orig_dtype = freqs.shape[-1], t.shape[-2], t.dtype
|
| 34 |
-
|
| 35 |
-
freqs = freqs[-seq_len:, :]
|
| 36 |
-
|
| 37 |
-
# partial rotary embeddings, Wang et al. GPT-J
|
| 38 |
-
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
| 39 |
-
t = t * freqs.cos() + rotate_half(t) * freqs.sin()
|
| 40 |
-
out = torch.cat((t, t_unrotated), dim=-1)
|
| 41 |
-
|
| 42 |
-
return out.type(orig_dtype)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
class MultiHeadAttention(nn.Module):
|
| 46 |
-
def __init__(self, dim, inner_dim, n_head):
|
| 47 |
-
super().__init__()
|
| 48 |
-
self.n_head = n_head
|
| 49 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 50 |
-
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
| 51 |
-
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
| 52 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 53 |
-
self.softmax = nn.Softmax(dim=-1)
|
| 54 |
-
|
| 55 |
-
# Scaled dot product attention
|
| 56 |
-
def sdp_attention(self, q, k_t, v, mask=None):
|
| 57 |
-
d_tensor = v.shape[3]
|
| 58 |
-
|
| 59 |
-
op = (q @ k_t) / math.sqrt(d_tensor)
|
| 60 |
-
if mask is not None:
|
| 61 |
-
op = op.masked_fill(mask, -torch.finfo(op.dtype).max)
|
| 62 |
-
score = self.softmax(op)
|
| 63 |
-
out = score @ v
|
| 64 |
-
|
| 65 |
-
# concat and pass to linear layer
|
| 66 |
-
out = rearrange(out, "b h n d -> b n (h d)")
|
| 67 |
-
return self.to_out(out)
|
| 68 |
-
|
| 69 |
-
def forward(self, q, k, v, rot_pos_emb=None, mask=None):
|
| 70 |
-
# dot product with weight matrices
|
| 71 |
-
q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)
|
| 72 |
-
|
| 73 |
-
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
|
| 74 |
-
k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
|
| 75 |
-
v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)
|
| 76 |
-
|
| 77 |
-
# apply RoPE
|
| 78 |
-
if rot_pos_emb is not None:
|
| 79 |
-
q = apply_rotary_pos_emb(q, rot_pos_emb)
|
| 80 |
-
k = apply_rotary_pos_emb(k, rot_pos_emb)
|
| 81 |
-
|
| 82 |
-
k_t = k.transpose(2, 3)
|
| 83 |
-
|
| 84 |
-
return self.sdp_attention(q, k_t, v, mask), k_t, v
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
class MultiHeadCausalSelfAttentionWithKVCache(MultiHeadAttention):
|
| 88 |
-
def __init__(self, dim, inner_dim, n_head):
|
| 89 |
-
super().__init__(dim, inner_dim, n_head)
|
| 90 |
-
|
| 91 |
-
def forward(self, q, k, v, k_cache, v_cache, rot_pos_emb, mask):
|
| 92 |
-
# dot product with weight matrices
|
| 93 |
-
q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)
|
| 94 |
-
|
| 95 |
-
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
|
| 96 |
-
k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
|
| 97 |
-
v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)
|
| 98 |
-
|
| 99 |
-
# apply RoPE
|
| 100 |
-
q = apply_rotary_pos_emb(q, rot_pos_emb)
|
| 101 |
-
k = apply_rotary_pos_emb(k, rot_pos_emb)
|
| 102 |
-
|
| 103 |
-
k_t = k.transpose(2, 3)
|
| 104 |
-
|
| 105 |
-
# Append new rows to K and V caches.
|
| 106 |
-
k_t = torch.concat((k_cache, k_t), dim=3)
|
| 107 |
-
v = torch.concat((v_cache, v), dim=2)
|
| 108 |
-
|
| 109 |
-
return super().sdp_attention(q, k_t, v, mask=mask), k_t, v
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
class MultiHeadCrossAttentionWithKVCache(MultiHeadAttention):
|
| 113 |
-
def __init__(self, dim, inner_dim, n_head):
|
| 114 |
-
super().__init__(dim, inner_dim, n_head)
|
| 115 |
-
|
| 116 |
-
def forward(self, q, k_cache, v_cache, mask):
|
| 117 |
-
q = self.to_q(q)
|
| 118 |
-
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
|
| 119 |
-
|
| 120 |
-
return super().sdp_attention(q, k_cache, v_cache, mask=mask)
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
class FFLinearGelu(nn.Module):
|
| 124 |
-
def __init__(self, dim, ff_mult=4):
|
| 125 |
-
super().__init__()
|
| 126 |
-
|
| 127 |
-
self.ff = nn.Sequential(
|
| 128 |
-
nn.Linear(dim, dim * ff_mult, bias=True),
|
| 129 |
-
nn.GELU(),
|
| 130 |
-
nn.Linear(dim * ff_mult, dim, bias=True),
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
def forward(self, x):
|
| 134 |
-
return self.ff(x)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
class FFSwiGLU(nn.Module):
|
| 138 |
-
def __init__(self, dim, ff_mult=4):
|
| 139 |
-
super().__init__()
|
| 140 |
-
|
| 141 |
-
self.ff_proj = nn.Linear(dim, dim * ff_mult, bias=True)
|
| 142 |
-
self.ff_noact = nn.Linear(dim, dim * ff_mult, bias=True)
|
| 143 |
-
self.ff_act = nn.SiLU()
|
| 144 |
-
self.ff_out = nn.Linear(dim * ff_mult, dim, bias=True)
|
| 145 |
-
|
| 146 |
-
def forward(self, x):
|
| 147 |
-
gate = self.ff_act(self.ff_proj(x))
|
| 148 |
-
x_noact = self.ff_noact(x)
|
| 149 |
-
x = x_noact * gate
|
| 150 |
-
return self.ff_out(x)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
class EncoderLayer(nn.Module):
|
| 154 |
-
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
|
| 155 |
-
super().__init__()
|
| 156 |
-
|
| 157 |
-
self.norm1 = nn.LayerNorm(dim, bias=False)
|
| 158 |
-
|
| 159 |
-
self.attention = MultiHeadAttention(dim, inner_dim=inner_dim, n_head=n_head)
|
| 160 |
-
|
| 161 |
-
self.norm2 = nn.LayerNorm(dim, bias=False)
|
| 162 |
-
|
| 163 |
-
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
|
| 164 |
-
|
| 165 |
-
def forward(self, x, rot_pos_emb, mask):
|
| 166 |
-
_x = x
|
| 167 |
-
x = self.norm1(x)
|
| 168 |
-
x, _, _ = self.attention(q=x, k=x, v=x, rot_pos_emb=rot_pos_emb, mask=mask)
|
| 169 |
-
x = x + _x
|
| 170 |
-
|
| 171 |
-
_x = x
|
| 172 |
-
x = self.norm2(x)
|
| 173 |
-
x = self.ff(x)
|
| 174 |
-
|
| 175 |
-
x = x + _x
|
| 176 |
-
return x
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
class Encoder(nn.Module):
|
| 180 |
-
def __init__(self, dim, inner_dim, n_head, n_layers, ff_swiglu):
|
| 181 |
-
super().__init__()
|
| 182 |
-
rot_embed_dim = max(inner_dim / n_head / 2, 32)
|
| 183 |
-
self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)
|
| 184 |
-
|
| 185 |
-
self.layers = nn.ModuleList(
|
| 186 |
-
[EncoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
|
| 187 |
-
)
|
| 188 |
-
self.post_norm = nn.LayerNorm(dim, bias=False)
|
| 189 |
-
|
| 190 |
-
def forward(self, x, mask):
|
| 191 |
-
pos = torch.arange(x.shape[-2], device=x.device)
|
| 192 |
-
rot_pos_emb = self.rot_pos_emb(pos)
|
| 193 |
-
|
| 194 |
-
for idx, layer in enumerate(self.layers):
|
| 195 |
-
x = layer(x, rot_pos_emb=rot_pos_emb, mask=mask)
|
| 196 |
-
return self.post_norm(x)
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
class DecoderLayer(nn.Module):
|
| 200 |
-
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
|
| 201 |
-
super().__init__()
|
| 202 |
-
|
| 203 |
-
self.norm1 = nn.LayerNorm(dim, bias=False)
|
| 204 |
-
|
| 205 |
-
self.self_attention = MultiHeadCausalSelfAttentionWithKVCache(
|
| 206 |
-
dim, inner_dim=inner_dim, n_head=n_head
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
self.norm2 = nn.LayerNorm(dim, bias=False)
|
| 210 |
-
self.cross_attention = MultiHeadCrossAttentionWithKVCache(
|
| 211 |
-
dim, inner_dim=inner_dim, n_head=n_head
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
-
self.norm3 = nn.LayerNorm(dim, bias=False)
|
| 215 |
-
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
|
| 216 |
-
|
| 217 |
-
def forward(self, x, k_cache, v_cache, x_attn_k_cache, x_attn_v_cache, rot_pos_emb, input_mask):
|
| 218 |
-
dim = x.size()[1]
|
| 219 |
-
causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
|
| 220 |
-
_x = x
|
| 221 |
-
x = self.norm1(x)
|
| 222 |
-
x, new_k_cache, new_v_cache = self.self_attention(
|
| 223 |
-
q=x,
|
| 224 |
-
k=x,
|
| 225 |
-
v=x,
|
| 226 |
-
k_cache=k_cache,
|
| 227 |
-
v_cache=v_cache,
|
| 228 |
-
rot_pos_emb=rot_pos_emb,
|
| 229 |
-
mask=causal_mask,
|
| 230 |
-
)
|
| 231 |
-
x = x + _x
|
| 232 |
-
|
| 233 |
-
_x = x
|
| 234 |
-
x = self.norm2(x)
|
| 235 |
-
x = self.cross_attention(q=x, k_cache=x_attn_k_cache, v_cache=x_attn_v_cache, mask=input_mask)
|
| 236 |
-
x = x + _x
|
| 237 |
-
|
| 238 |
-
_x = x
|
| 239 |
-
x = self.norm3(x)
|
| 240 |
-
x = self.ff(x)
|
| 241 |
-
x = x + _x
|
| 242 |
-
|
| 243 |
-
return x, new_k_cache, new_v_cache
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
class Decoder(nn.Module):
|
| 247 |
-
def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
|
| 248 |
-
super().__init__()
|
| 249 |
-
|
| 250 |
-
self.n_head = n_head
|
| 251 |
-
self.d_head = inner_dim // n_head
|
| 252 |
-
|
| 253 |
-
rot_embed_dim = max(inner_dim / n_head / 2, 32)
|
| 254 |
-
self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)
|
| 255 |
-
|
| 256 |
-
self.layers = nn.ModuleList(
|
| 257 |
-
[DecoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
|
| 258 |
-
)
|
| 259 |
-
self.final_norm = nn.LayerNorm(dim, bias=False)
|
| 260 |
-
self.token_embedding = nn.Embedding(dec_voc_size, dim)
|
| 261 |
-
|
| 262 |
-
def forward(self, x, input_mask, *args):
|
| 263 |
-
pos = torch.arange(x.shape[1], device=x.device)
|
| 264 |
-
rot_pos_emb = self.rot_pos_emb(pos)
|
| 265 |
-
x = self.token_embedding(x)
|
| 266 |
-
|
| 267 |
-
k_cache_new = []
|
| 268 |
-
v_cache_new = []
|
| 269 |
-
|
| 270 |
-
n_layer = len(self.layers)
|
| 271 |
-
k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
|
| 272 |
-
args[i : i + n_layer] for i in range(0, 4 * n_layer, n_layer)
|
| 273 |
-
]
|
| 274 |
-
for idx, layer in enumerate(self.layers):
|
| 275 |
-
x, new_k_line, new_v_line = layer(
|
| 276 |
-
x[:, -1:],
|
| 277 |
-
k_cache=k_cache[idx],
|
| 278 |
-
v_cache=v_cache[idx],
|
| 279 |
-
x_attn_k_cache=x_attn_k_cache[idx],
|
| 280 |
-
x_attn_v_cache=x_attn_v_cache[idx],
|
| 281 |
-
rot_pos_emb=rot_pos_emb,
|
| 282 |
-
input_mask=input_mask,
|
| 283 |
-
)
|
| 284 |
-
k_cache_new.append(new_k_line)
|
| 285 |
-
v_cache_new.append(new_v_line)
|
| 286 |
-
|
| 287 |
-
x = self.final_norm(x)
|
| 288 |
-
|
| 289 |
-
return x @ self.token_embedding.weight.t(), *k_cache_new, *v_cache_new
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
class InitialDecoderLayer(nn.Module):
|
| 293 |
-
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
|
| 294 |
-
super().__init__()
|
| 295 |
-
|
| 296 |
-
self.norm1 = nn.LayerNorm(dim, bias=False)
|
| 297 |
-
|
| 298 |
-
self.self_attention = MultiHeadAttention(
|
| 299 |
-
dim, inner_dim=inner_dim, n_head=n_head
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
self.norm2 = nn.LayerNorm(dim, bias=False)
|
| 303 |
-
self.cross_attention = MultiHeadAttention(
|
| 304 |
-
dim, inner_dim=inner_dim, n_head=n_head
|
| 305 |
-
)
|
| 306 |
-
|
| 307 |
-
self.norm3 = nn.LayerNorm(dim, bias=False)
|
| 308 |
-
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
|
| 309 |
-
|
| 310 |
-
def forward(self, x, context, rot_pos_emb, input_mask):
|
| 311 |
-
dim = x.size()[1]
|
| 312 |
-
causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
|
| 313 |
-
_x = x
|
| 314 |
-
x = self.norm1(x)
|
| 315 |
-
x, new_k_cache, new_v_cache = self.self_attention(
|
| 316 |
-
q=x,
|
| 317 |
-
k=x,
|
| 318 |
-
v=x,
|
| 319 |
-
rot_pos_emb=rot_pos_emb,
|
| 320 |
-
mask=causal_mask,
|
| 321 |
-
)
|
| 322 |
-
x = x + _x
|
| 323 |
-
|
| 324 |
-
_x = x
|
| 325 |
-
x = self.norm2(x)
|
| 326 |
-
x, x_attn_k_cache, x_attn_v_cache = self.cross_attention(
|
| 327 |
-
q=x, k=context, v=context, mask=input_mask,
|
| 328 |
-
)
|
| 329 |
-
x = x + _x
|
| 330 |
-
|
| 331 |
-
_x = x
|
| 332 |
-
x = self.norm3(x)
|
| 333 |
-
x = self.ff(x)
|
| 334 |
-
x = x + _x
|
| 335 |
-
|
| 336 |
-
return x, new_k_cache, new_v_cache, x_attn_k_cache, x_attn_v_cache
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
class DecoderInitial(Decoder):
|
| 340 |
-
def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
|
| 341 |
-
super().__init__(dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu)
|
| 342 |
-
self.layers = nn.ModuleList(
|
| 343 |
-
[
|
| 344 |
-
InitialDecoderLayer(dim, inner_dim, n_head, ff_swiglu)
|
| 345 |
-
for _ in range(n_layers)
|
| 346 |
-
]
|
| 347 |
-
)
|
| 348 |
-
|
| 349 |
-
def forward(self, x, enc_src, input_mask):
|
| 350 |
-
pos = torch.arange(x.shape[1], device=x.device)
|
| 351 |
-
rot_pos_emb = self.rot_pos_emb(pos)
|
| 352 |
-
x = self.token_embedding(x)
|
| 353 |
-
|
| 354 |
-
# Shape [n_layers, batch_size, n_head, seq_len, inner_dim]. Cache K transposed.
|
| 355 |
-
n_layer = len(self.layers)
|
| 356 |
-
k_cache = []
|
| 357 |
-
v_cache = []
|
| 358 |
-
x_attn_k_cache = []
|
| 359 |
-
x_attn_v_cache = []
|
| 360 |
-
|
| 361 |
-
for idx, layer in enumerate(self.layers):
|
| 362 |
-
x, new_k_line, new_v_line, new_x_attn_k_line, new_x_attn_v_line = layer(
|
| 363 |
-
x,
|
| 364 |
-
enc_src,
|
| 365 |
-
rot_pos_emb,
|
| 366 |
-
input_mask,
|
| 367 |
-
)
|
| 368 |
-
|
| 369 |
-
k_cache.append(new_k_line)
|
| 370 |
-
v_cache.append(new_v_line)
|
| 371 |
-
x_attn_k_cache.append(new_x_attn_k_line)
|
| 372 |
-
x_attn_v_cache.append(new_x_attn_v_line)
|
| 373 |
-
|
| 374 |
-
x = self.final_norm(x)
|
| 375 |
-
|
| 376 |
-
return (
|
| 377 |
-
x @ self.token_embedding.weight.t(),
|
| 378 |
-
*k_cache,
|
| 379 |
-
*v_cache,
|
| 380 |
-
*x_attn_k_cache,
|
| 381 |
-
*x_attn_v_cache,
|
| 382 |
-
)
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
class AudioPreprocessor(nn.Module):
|
| 386 |
-
def __init__(self, dim):
|
| 387 |
-
super().__init__()
|
| 388 |
-
self.audio_preprocess = nn.Sequential(
|
| 389 |
-
nn.Conv1d(1, dim, 127, 64, bias=False),
|
| 390 |
-
nn.Tanh(),
|
| 391 |
-
nn.GroupNorm(1, dim),
|
| 392 |
-
nn.Conv1d(dim, 2 * dim, 7, 3),
|
| 393 |
-
nn.GELU(),
|
| 394 |
-
nn.Conv1d(2 * dim, dim, 3, 2),
|
| 395 |
-
nn.GELU(),
|
| 396 |
-
Rearrange("... c s -> ... s c"),
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
def forward(self, src):
|
| 400 |
-
assert (
|
| 401 |
-
src.shape[-1] >= 1023
|
| 402 |
-
), f"src shape[-1] {src.shape[-1]} should be at least 1023"
|
| 403 |
-
src = src.reshape((-1, 1, src.shape[-1]))
|
| 404 |
-
return self.audio_preprocess(src)
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
class MoonshineModelTorch(nn.Module):
|
| 408 |
-
def __init__(
|
| 409 |
-
self,
|
| 410 |
-
dim,
|
| 411 |
-
inner_dim,
|
| 412 |
-
enc_depth,
|
| 413 |
-
dec_depth,
|
| 414 |
-
n_head=8,
|
| 415 |
-
dec_voc_size=32768,
|
| 416 |
-
enc_ff_swiglu=False,
|
| 417 |
-
dec_ff_swiglu=False,
|
| 418 |
-
):
|
| 419 |
-
super().__init__()
|
| 420 |
-
self.preprocessor = AudioPreprocessor(dim)
|
| 421 |
-
self.encoder = Encoder(
|
| 422 |
-
dim, inner_dim, n_head, enc_depth, ff_swiglu=enc_ff_swiglu
|
| 423 |
-
)
|
| 424 |
-
self.decoder_initial = DecoderInitial(
|
| 425 |
-
dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
|
| 426 |
-
)
|
| 427 |
-
self.decoder = Decoder(
|
| 428 |
-
dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
|
| 429 |
-
)
|
| 430 |
-
self.dec_depth = dec_depth
|
| 431 |
-
self.n_head = n_head
|
| 432 |
-
self.d_head = inner_dim // n_head
|
| 433 |
-
|
| 434 |
-
def generate(self, src, mask):
|
| 435 |
-
preprocessed = self.preprocessor(src)
|
| 436 |
-
batch_size = preprocessed.shape[0]
|
| 437 |
-
|
| 438 |
-
# Get max sequence length based on number of unmasked inputs for each sample in batch.
|
| 439 |
-
token_limit_factor = 6.5 / 16000.0 # Maximum of 6.5 tokens per second.
|
| 440 |
-
if mask is not None:
|
| 441 |
-
seq_lens = torch.sum(mask, dim=-1, keepdim=True) * token_limit_factor
|
| 442 |
-
else:
|
| 443 |
-
token_limit = torch.tensor([src.shape[-1] * token_limit_factor])
|
| 444 |
-
seq_lens = torch.stack([token_limit for _ in range(batch_size)])
|
| 445 |
-
seq_lens = seq_lens.to(torch.int32).to(src.device).squeeze()
|
| 446 |
-
|
| 447 |
-
# Preprocess mask so that it matches preprocessed audio.
|
| 448 |
-
if mask is not None:
|
| 449 |
-
mask = mask[..., :-127:64][..., :-7:3][..., :-3:2].to(torch.bool)
|
| 450 |
-
mask = ~mask.reshape((batch_size, 1, 1, -1))
|
| 451 |
-
mask = torch.nn.functional.pad(mask, (0, preprocessed.shape[-2] - mask.shape[-1]))
|
| 452 |
-
|
| 453 |
-
enc = self.encoder(preprocessed, mask)
|
| 454 |
-
|
| 455 |
-
sot_token = 1
|
| 456 |
-
eot_token = 2
|
| 457 |
-
|
| 458 |
-
sot_array = [[sot_token] for _ in range(batch_size)]
|
| 459 |
-
seq = torch.as_tensor(sot_array).to(src.device)
|
| 460 |
-
|
| 461 |
-
vals = self.decoder_initial(x=seq, enc_src=enc, input_mask=mask)
|
| 462 |
-
logits = vals[0]
|
| 463 |
-
k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
|
| 464 |
-
vals[i : i + self.dec_depth]
|
| 465 |
-
for i in range(1, 1 + self.dec_depth * 4, self.dec_depth)
|
| 466 |
-
]
|
| 467 |
-
|
| 468 |
-
sample = logits[:, -1].argmax(dim=-1, keepdim=True)
|
| 469 |
-
seq = torch.cat((seq, sample), dim=-1)
|
| 470 |
-
|
| 471 |
-
eot_mask = torch.zeros((batch_size), dtype=torch.bool).to(src.device)
|
| 472 |
-
while not torch.all(eot_mask):
|
| 473 |
-
vals = self.decoder(
|
| 474 |
-
seq,
|
| 475 |
-
mask,
|
| 476 |
-
*k_cache,
|
| 477 |
-
*v_cache,
|
| 478 |
-
*x_attn_k_cache,
|
| 479 |
-
*x_attn_v_cache,
|
| 480 |
-
)
|
| 481 |
-
logits = vals[0]
|
| 482 |
-
k_cache = vals[1 : self.dec_depth + 1]
|
| 483 |
-
v_cache = vals[self.dec_depth + 1 :]
|
| 484 |
-
logits = logits[:, -1] # get last token
|
| 485 |
-
sample = logits.argmax(dim=-1, keepdim=True)
|
| 486 |
-
# For each sample in batch detect EOT or token limit reached.
|
| 487 |
-
eot_mask = eot_mask | (sample.squeeze() == eot_token)
|
| 488 |
-
eot_mask = eot_mask | (seq.shape[-1] >= seq_lens)
|
| 489 |
-
sample = sample.masked_fill(eot_mask.reshape((-1, 1)), eot_token)
|
| 490 |
-
seq = torch.cat((seq, sample), dim=-1)
|
| 491 |
-
|
| 492 |
-
return seq
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
class MoonshineModel(PreTrainedModel):
|
| 496 |
-
config_class = MoonshineConfig
|
| 497 |
-
|
| 498 |
-
def __init__(self, config):
|
| 499 |
-
super().__init__(config)
|
| 500 |
-
self.model = MoonshineModelTorch(
|
| 501 |
-
dim = config.dim,
|
| 502 |
-
inner_dim = config.inner_dim,
|
| 503 |
-
enc_depth = config.enc_depth,
|
| 504 |
-
dec_depth = config.dec_depth,
|
| 505 |
-
n_head = config.n_head,
|
| 506 |
-
dec_voc_size = config.dec_voc_size,
|
| 507 |
-
enc_ff_swiglu = config.enc_ff_swiglu,
|
| 508 |
-
dec_ff_swiglu = config.dec_ff_swiglu,
|
| 509 |
-
)
|
| 510 |
-
|
| 511 |
-
def forward(self, tensor, input_mask=None):
|
| 512 |
-
return self.model.generate(tensor, input_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": false,
|
| 3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
+
"feature_size": 1,
|
| 5 |
+
"padding_side": "right",
|
| 6 |
+
"padding_value": 0.0,
|
| 7 |
+
"return_attention_mask": true,
|
| 8 |
+
"sampling_rate": 16000
|
| 9 |
+
}
|
special_tokens_map.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{}
|
|
|
|
|
|
tokenizer.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|