--- library_name: peft tags: - generated_from_trainer datasets: - Undi95/QwQ-dataset base_model: Qwen/QwQ-32B model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: ./Qwen_QwQ-32B/ # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name trust_remote_code: true load_in_8bit: true load_in_4bit: false strict: false chat_template: tokenizer_default datasets: - path: Undi95/QwQ-dataset type: chat_template chat_template: tokenizer_default field_messages: conversations message_field_role: from message_field_content: value roles: user: ["human", "user"] assistant: ["gpt", "assistant"] system: ["system"] tool: ["tool"] dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./out sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 256 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: qwq-rp wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: unsloth gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 saves_per_epoch: 2 debug: deepspeed: weight_decay: 0.1 ```

# out This model was trained from scratch on the Undi95/QwQ-dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.0077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7216 | 1.0 | 649 | 1.0138 | | 0.6349 | 1.9977 | 1296 | 1.0077 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0