File size: 2,186 Bytes
97320f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: peft
license: other
base_model: Qwen/Qwen2.5-32B-Instruct
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: MATH_training_QwQ_32B_Preview
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MATH_training_QwQ_32B_Preview
This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) on the MATH_training_Qwen_QwQ_32B_Preview dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1193
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2322 | 0.1564 | 200 | 0.2143 |
| 0.1419 | 0.3127 | 400 | 0.1674 |
| 0.1137 | 0.4691 | 600 | 0.1510 |
| 0.1457 | 0.6255 | 800 | 0.1406 |
| 0.0953 | 0.7819 | 1000 | 0.1333 |
| 0.1201 | 0.9382 | 1200 | 0.1268 |
| 0.0899 | 1.0946 | 1400 | 0.1289 |
| 0.0548 | 1.2510 | 1600 | 0.1269 |
| 0.0323 | 1.4073 | 1800 | 0.1240 |
| 0.0414 | 1.5637 | 2000 | 0.1207 |
| 0.0375 | 1.7201 | 2200 | 0.1202 |
| 0.0512 | 1.8765 | 2400 | 0.1201 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |