MisAlBERT_LSTM / model.py
UNCANNY69's picture
Update model.py
edfc00c verified
from abc import ABCMeta
import torch
from transformers.pytorch_utils import nn
import torch.nn.functional as F
from transformers import AlbertModel, AlbertForSequenceClassification, PreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers import AlbertConfig
from transformers import PretrainedConfig
class AlbertLSTMConfig(PretrainedConfig):
model_type = "albertLSTMForSequenceClassification"
def __init__(self,
num_classes=2,
embed_dim=768,
num_layers=12,
hidden_dim_lstm=256, # New parameter for LSTM
dropout_rate=0.1,
**kwargs):
super().__init__(**kwargs)
self.num_classes = num_classes
self.embed_dim = embed_dim
self.num_layers = num_layers
self.hidden_dim_lstm = hidden_dim_lstm # Assign LSTM hidden dimension
self.dropout_rate = dropout_rate
self.id2label = {
0: "fake",
1: "true",
}
self.label2id = {
"fake": 0,
"true": 1,
}
class AlbertLSTMForSequenceClassification(PreTrainedModel, metaclass=ABCMeta):
config_class = AlbertLSTMConfig
def __init__(self, config):
super(AlbertLSTMForSequenceClassification, self).__init__(config)
self.num_classes = config.num_classes
self.embed_dim = config.embed_dim
self.num_layers = config.num_layers
self.hidden_dim_lstm = config.hidden_dim_lstm
self.dropout = nn.Dropout(config.dropout_rate)
self.albert = AlbertModel.from_pretrained('albert-base-v2',
output_hidden_states=True,
output_attentions=False)
print("ALBERT Model Loaded")
self.lstm = nn.LSTM(self.embed_dim, self.hidden_dim_lstm, batch_first=True, num_layers=3) # noqa
self.fc = nn.Linear(self.hidden_dim_lstm, self.num_classes)
def forward(self, input_ids, attention_mask, token_type_ids, labels=None):
albert_output = self.albert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
hidden_states = albert_output["hidden_states"]
hidden_states = torch.stack([hidden_states[layer_i][:, 0].squeeze()
for layer_i in range(0, self.num_layers)], dim=-1) # noqa
hidden_states = hidden_states.view(-1, self.num_layers, self.embed_dim)
out, _ = self.lstm(hidden_states, None)
out = self.dropout(out[:, -1, :])
logits = self.fc(out)
loss = None
if labels is not None:
loss = F.cross_entropy(logits, labels)
out = SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=albert_output.hidden_states,
attentions=albert_output.attentions,
)
return out