File size: 9,654 Bytes
aa9e369
 
6256421
 
 
 
 
 
 
 
 
 
 
aa9e369
6256421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9e369
 
 
 
 
 
 
 
 
 
 
fd7bceb
aa9e369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cce15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9e369
 
 
 
 
 
 
 
 
 
 
 
 
fee5714
aa9e369
 
 
 
fee5714
aa9e369
 
 
 
 
 
 
cad7511
ddd376a
aa9e369
cad7511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9e369
 
 
ddd376a
aa9e369
ddd376a
 
 
 
 
 
aa9e369
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
language:
- aar
- ach
- afr
- aka
- amh
- bam
- bas
- bem
- btg
- eng
- ewe
- fon
- fra
- hau
- ibo
- kbp
- lgg
- lug
- mlg
- nyn
- orm
- som
- sot
- swa
- tir
- yor
- teo
- gez
- wal
- fan
- kau
- kin
- kon
- lin
- nya
- pcm
- ssw
- tsn
- tso
- twi
- wol
- xho
- zul
- nnb
- swc
- ara
pipeline_tag: text-generation
tags:
- UBC
- African
- pytorch
- Chaeetah
- DLNLP
---

<div style='text-align: justify;'>
  
This is the repository accompanying our ACL 2024 paper [Toucan: Many-to-Many Translation for 150 African Language Pairs](https://aclanthology.org/2024.findings-acl.781/). 
We address a notable gap in Natural Language Processing (NLP) by introducing a collection of resources designed to improve Machine Translation (MT) for low-resource languages, with a specific focus on African languages. First, We introduce two language models (LMs), Cheetah-1.2B and Cheetah-3.7B, with 1.2 billion and 3.7 billion parameters respectively. Next, we finetune the aforementioned models to create Toucan, an Afrocentric machine translation model designed to support 156 African language pairs. To evaluate Toucan, we carefully develop an extensive machine translation benchmark, dubbed AfroLingu-MT, tailored for evaluating machine translation. Toucan significantly outperforms other models, showcasing its remarkable performance on MT for African languages. Finally, we train a new model, spBLEU_1K, to enhance translation evaluation metrics, covering 1K languages, including 614 African languages. This work aims to advance the field of NLP, fostering cross-cultural understanding and knowledge exchange, particularly in regions with limited language resources such as Africa. 

</div>

## Models

<div style='text-align: justify;'>

  To effectively train a MT language model for African languages, it is crucial to start with a powerful, Afrocentric pretrained language model. For this purpose, we select Cheetah (Adebara et al.,
2024), a recently introduced SoTA model with extensive coverage encompassing 517 African languages. One limitation of Cheetah, however, is that it is available only in a base architecture, featuring
580M parameters. Given our objective to develop a large-scale language model for machine translation capabale of serving 156 directions, this base model does not fully meet our requirements. To address this limitation, we embark on training larger and more expansive Afrocentric sequence-to-sequence models. We focus on two sizes: one model with 1.2B parameters and another with 3.7B parameters. We refer to the new models “Cheetah-1.2B” and “Cheetah-3.7B”, respectively, to reflect their enhanced capabilities and parameter scale. These models represent a significant advancement in our efforts to improve machine
translation for African languages, offering greater capacities in handling the rich linguistic nuances of African languages. Cheetah Pertaining. To train the new Cheetah models, we utilize the same pre-training dataset employed in training the original Cheetah-base model (Adebara et al., 2024). This strategic choice ensures consistency in the foundational data across models, enabling the advanced Cheetah-1.2B and Cheetah-3.7B versions to build upon the rich linguistic diversity captured in the original dataset. We refer to (Adebara et al., 2024) for more information about the pretraining data of Cheetah models. We employ a learning rate of 0.01, a batch size of 1, 024 sequences, and a maximum sequence length of 1, 024. Each model undergoes pretraining for 1 million steps. The training process is conducted on Google Cloud TPU with 128 cores (v3 − 128) provided by the TensorFlow Research Cloud (TFRC). We provide additional details on pretraining in Section B in the Appendix.

</div>

- Please refer to [**supported-languages**]("https://github.com/UBC-NLP/Cheetah/blob/main/supported-languages.txt")
- More details about Cheetah's pretraning data, visit Cheetah's GitHub [**Cheetah paper GitHub**]("https://github.com/UBC-NLP/Cheetah")
- More details about Toucan's pretraning data, visit Toucan's GitHub [**Toucan paper GitHub**]("https://github.com/UBC-NLP/Toucan")


| **Cheetah Models**   | **Link** | 
|---------|:------------------:|    
| 🔥**Cheetah-base**🔥|     [https://huggingface.co/UBC-NLP/cheetah-base](https://huggingface.co/UBC-NLP/cheetah-base) 
| 🔥**Cheetah-1.2B**🔥|     [https://huggingface.co/UBC-NLP/cheetah-1.2B](https://huggingface.co/UBC-NLP/cheetah-1.2B)   


| **Tocan Models**   | **Link** | 
|---------|:------------------:|    
| 🔥**Toucan-base**🔥|     [https://huggingface.co/UBC-NLP/toucan-base](https://huggingface.co/UBC-NLP/toucan-base) 
| 🔥**Toucan-1.2B**🔥|     [https://huggingface.co/UBC-NLP/toucan-1.2B](https://huggingface.co/UBC-NLP/toucan-1.2B)   

#  3. How to use Cheetah-1.2B model

Below is an example for using **Cheetah-1.2B** predict masked tokens. 
``` bash
from transformers import T5Tokenizer, AutoModelForSeq2SeqLM

tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/cheetah-1.2B")
model = AutoModelForSeq2SeqLM.from_pretrained("UBC-NLP/cheetah-1.2B")

yor_prompt="ìròyìn kan nípa owó ìjọba <extra_id_0> kan"

input_ids = tokenizer(yor_prompt, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print("Cheetah-1.2B - Tokenized input:", tokenizer.tokenize(yor_prompt))
print("Cheetah-1.2B - Decoded output:", tokenizer.decode(outputs[0], skip_special_tokens=True))

```
Output:
```bash
Cheetah-1.2B - Tokenized input: ['▁ìròyìn', '▁kan', '▁nípa', '▁owó', '▁ìjọba', '<extra_id_0>', '▁kan']
Cheetah-1.2B - Decoded output: Nàìjíríà
```

#  3. How to use Toucan model
To translate using Toucan models, use the target language ISO-3 code as preix. Below the supported langauges
```
lang_names={
    "aar": "Afar",
    "ach": "Acholi",
    "afr": "Afrikaans",
    "aka": "Akan",
    "amh": "Amharic",
    "bam": "Bambara",
    "bas": "Basaa",
    "bem": "Bemba",
    "btg": "Bete Gagnoa",
    "eng": "English",
    "ewe": "Ewe",
    "fon": "Fon",
    "fra": "French",
    "hau": "Hausa",
    "ibo": "Igbo",
    "kbp": "Kabiye",
    "lgg": "Lugbara",
    "lug": "Luganda",
    "mlg": "Malagasy",
    "nyn": "Nyakore",
    "orm": "Oromo",
    "som": "Somali",
    "sot": "Sesotho",
    "swa": "Swahili",
    "tir": "Tigrinya",
    "yor": "Yoruba",
    "teo": "Ateso",
    "gez": "Geez",
    "wal": "Wolaytta",
    "fan": "Fang",
    "kau": "Kanuri",
    "kin": "Kinyawanda",
    "kon": "Kongo",
    "lin": "Lingala",
    "nya": "Chichewa",
    "pcm": "Nigerian Pidgin",
    "ssw": "Siswati",
    "tsn": "Setswana",
    "tso": "Tsonga",
    "twi": "Twi",
    "wol": "Wolof",
    "xho": "Xhosa",
    "zul": "Zulu",
    "nnb": "Nande",
    "swc": "Swahili Congo",
    "ara": "Arabic"
}
```
Below is an example for translating using **Toucan-base**. 
``` bash
from transformers import AutoTokenizer, MT5ForConditionalGeneration
import torch
tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/toucan-base")
model = MT5ForConditionalGeneration.from_pretrained("UBC-NLP/toucan-base", torch_dtype=torch.float16, device_map="auto")
model.eval()

#Translate from Enlglish to Zulu
text="zul: Clear all items from the recent documents list"
input_ids = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True).to("cuda:0")
with torch.no_grad():
    generated_ids = model.generate(**input_ids, num_beams=5, max_new_tokens=len(text), do_sample=True, temperature=0.6, top_p=0.9)
print("Toucan-base - translation:", tokenizer.batch_decode(generated_ids, skip_special_tokens=True,  skip_prompt=True)[0])

```
Output:
```bash
Toucan-base - translation: Vala zonke izinto kusuka kwihlu lamadokhumende elidlule
```



## Citation
If you use the pre-trained model (Cheetah-1.2B) for your scientific publication, or if you find the resources in this repository useful, please cite our papers as follows (to be updated):


**Cheetah's Paper**
```
@inproceedings{adebara-etal-2024-cheetah,
    title = "Cheetah: Natural Language Generation for 517 {A}frican Languages",
    author = "Adebara, Ife  and
      Elmadany, AbdelRahim  and
      Abdul-Mageed, Muhammad",
    editor = "Ku, Lun-Wei  and
      Martins, Andre  and
      Srikumar, Vivek",
    booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand and virtual meeting",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.acl-long.691",
    pages = "12798--12823",
}
```

**Toucan's Paper**
```
@inproceedings{elmadany2024toucan,
  title={Toucan: Many-to-Many Translation for 150 African Language Pairs},
  author={Elmadany, Abdelrahim and Adebara, Ife and Abdul-Mageed, Muhammad},
  booktitle={Findings of the Association for Computational Linguistics ACL 2024},
  pages={13189--13206},
  year={2024}
}
```

## Acknowledgments
We gratefully acknowledges support from Canada Research Chairs (CRC), the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2018-04267), the Social Sciences and Humanities Research Council of Canada (SSHRC; 435-2018-0576; 895-2020-1004; 895-2021-1008), Canadian Foundation for Innovation (CFI; 37771), [Digital Research Alliance of Canada](https://alliancecan.ca), [UBC ARC-Sockeye](https://arc.ubc.ca/ubc-arc-sockeye), Advanced Micro Devices, Inc. (AMD), and Google. Any opinions, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of CRC, NSERC, SSHRC, CFI, the Alliance, AMD, Google, or UBC ARC-Sockeye.