Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +31 -31
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 255.80 +/- 42.91
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e1ee0c66f20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e1ee0c66fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e1ee0c67060>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e1ee0c67100>", "_build": "<function ActorCriticPolicy._build at 0x7e1ee0c671a0>", "forward": "<function ActorCriticPolicy.forward at 0x7e1ee0c67240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e1ee0c672e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e1ee0c67380>", "_predict": "<function ActorCriticPolicy._predict at 0x7e1ee0c67420>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e1ee0c674c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e1ee0c67560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e1ee0c67600>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1ee0dd2c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738263759683669394, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBAET1CabQ/macTP//onr1lNoe8i0FhPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9+4oZydWhiMAWyUS72MAXSUR0CdNFKyv9tNdX2UKGgGR0BwQZqM3qA0aAdNCwFoCEdAnTXhHXmNi3V9lChoBkdAblTd9Dx9X2gHTT0BaAhHQJ046W1MM7V1fZQoaAZHQFDaoGIKtxNoB00KAWgIR0CdOmU6gdwOdX2UKGgGR0BuQhQ3xWkraAdNUwFoCEdAnTxcc6vJR3V9lChoBkdAYF6X40uUU2gHTegDaAhHQJ1DFRiw0O51fZQoaAZHQGS7yoXKr7xoB03oA2gIR0CdSeR2r4nGdX2UKGgGR0BtRpJ7LMcIaAdNQAFoCEdAnUvJzo2XLXV9lChoBkdAbn7Ms6JZXGgHTT4BaAhHQJ1OyXmeUY91fZQoaAZHQG/DUeMhouhoB009AWgIR0CdUNTbnHNpdX2UKGgGR0BGFuSntOVPaAdL3mgIR0CdUmxpcophdX2UKGgGR0BvQvUMG5c1aAdNQgFoCEdAnVY4IOYplXV9lChoBkdASGwgzP8htGgHS+BoCEdAnVgIMWoFV3V9lChoBkdAcN5gXuVopWgHTToBaAhHQJ1ap9jPOY91fZQoaAZHQHH6hS1maphoB01HAWgIR0CdXWJJGvwFdX2UKGgGR0BH+2FFlTWHaAdL5GgIR0CdYAFglWwNdX2UKGgGR0BybjziCJ40aAdNEwFoCEdAnWGeeOGTLXV9lChoBkdAckBupS75EmgHTVoBaAhHQJ1jk9A5aNd1fZQoaAZHQBUhj4HoouxoB0vxaAhHQJ1mQoBq9Gt1fZQoaAZHQG+tvpY9xIdoB03LAWgIR0CdaPlZHNHIdX2UKGgGR0BwFXwMH8jzaAdNIwFoCEdAnWqwYcebNXV9lChoBkdAcq8iD/VAiWgHTXUBaAhHQJ1uMkmhM8J1fZQoaAZHQExPPVNHpbFoB0vlaAhHQJ1vgnpjc211fZQoaAZHQG7w+X7cfvFoB00VAWgIR0CdcRk3juKGdX2UKGgGR0BGCsmnfl6raAdL3GgIR0CdcmK6WgOCdX2UKGgGR0A0BY5T6zmfaAdL5GgIR0CddQgv114gdX2UKGgGR0BNCnNPgvUSaAdNBQFoCEdAnXapYT0xunV9lChoBkdAY4OB8x9G7WgHTegDaAhHQJ1+CpuMuOF1fZQoaAZHQEAubwz+FURoB00BAWgIR0Cdf4RYRujzdX2UKGgGR0BxT+O938oAaAdNIAFoCEdAnYExDXvphXV9lChoBkdAb9XYlpoK2WgHTUcBaAhHQJ2Eg9SuQp51fZQoaAZHQHE0rR8c+7loB00wAWgIR0CdhrSqlxffdX2UKGgGR0BBTM3hn8KpaAdL6WgIR0CdiHZElVtGdX2UKGgGR0Bt7e4iHIp6aAdNQAFoCEdAnYyS0BwMpnV9lChoBkdAcZe6PsAvMGgHTUoBaAhHQJ2PhsKsuFp1fZQoaAZHQHAHO0CzTndoB00ZAWgIR0CdkcwMYuTSdX2UKGgGR0BJ8FrM1TBJaAdL62gIR0Cdk1EVnEl3dX2UKGgGR0BxdKhK15SnaAdNMAFoCEdAnZZ7N0NjLHV9lChoBkdAbZvGoaUA1mgHTS8BaAhHQJ2YYwIt16p1fZQoaAZHQEh2DEFW4mVoB0vfaAhHQJ2ZutCAtnR1fZQoaAZHQHE/cJdB0IVoB00yAWgIR0Cdm59Vmz0IdX2UKGgGR0BwCZbhWHUMaAdN/QFoCEdAnaAUwztTk3V9lChoBkdAcEf6ZYxL02gHTXgBaAhHQJ2iVLg4wRJ1fZQoaAZHQGLj58jRlYloB03oA2gIR0CdqbB5HEuQdX2UKGgGR0Bwrz6k690zaAdNSQFoCEdAnazs01qFiHV9lChoBkdAPbFj3Ehq02gHS9RoCEdAna4yrPt2LnV9lChoBkdAX9Fh1DBuXWgHTegDaAhHQJ21b/6wdKd1fZQoaAZHQGG+43m3fANoB03oA2gIR0CdvdU+9rXUdX2UKGgGR0By5fIwM6RyaAdNOwFoCEdAncA9SAH3UXV9lChoBkdAcBCGC7K7qmgHTQoBaAhHQJ3Ccuwosqd1fZQoaAZHQG8kJrcj7hxoB00wAWgIR0CdxkbiZOSGdX2UKGgGR0Bx2ZtcfNiZaAdN1wFoCEdAnckg7DEWI3V9lChoBkdAcVvhn8Koh2gHTREBaAhHQJ3KvJ+2E011fZQoaAZHQHLpjLOiWVxoB02JAWgIR0Cdzjzu4PPLdX2UKGgGR0BxeusA/9pAaAdNNgFoCEdAnc/8lXzUZ3V9lChoBkdASciFoL5RCWgHS/toCEdAndFnm7rcCnV9lChoBkdAbQAVSn+AE2gHTSQBaAhHQJ3UVRpDeCV1fZQoaAZHQG/G8NpdrwhoB00dAWgIR0Cd1gEnLJS0dX2UKGgGR0BxQ9gMMI/raAdNLAFoCEdAndfHuZ1FIHV9lChoBkdAci/HxSYPXmgHTScBaAhHQJ3Zf4fwI+p1fZQoaAZHQG/dMA/9pAVoB00lAWgIR0Cd3HbBXS0CdX2UKGgGR0Av5PznRsuWaAdLzmgIR0Cd3arkKeCkdX2UKGgGR0Bwv0n0Cih4aAdNegFoCEdAnd/XO8kD6nV9lChoBkdAcHN19v0h/2gHTUEBaAhHQJ3i4na37UJ1fZQoaAZHQHHFpHI6r/9oB01LAWgIR0Cd5Lcqe9SNdX2UKGgGR0Bw3qMhouf3aAdNLAFoCEdAneZmjfvWpnV9lChoBkdAbDxpD/lyR2gHTRYBaAhHQJ3n7ryDqW11fZQoaAZHQG/Z1h9b5dpoB01wAWgIR0Cd60E4ecQRdX2UKGgGR0Bs36+cpb2UaAdNRQFoCEdAne2V7IDHO3V9lChoBkdAbRX6Mzdk8WgHTUgBaAhHQJ3wBocrAgx1fZQoaAZHQEnF7VrhzeZoB0viaAhHQJ3zaJ3xFy91fZQoaAZHQHCvvRArxy5oB00uAWgIR0Cd9dytmthedX2UKGgGR0BwzlHWjGkvaAdNDQFoCEdAnfgNEgGKRHV9lChoBkdAcEi35eqrBGgHTTEBaAhHQJ37sRe1KGt1fZQoaAZHQG4bhEroW59oB01FAWgIR0Cd/ZGaQV9GdX2UKGgGR0BwAgCRwIdEaAdN5gFoCEdAngB0QTVUdnV9lChoBkdAb1Q12q1gIGgHTSgBaAhHQJ4DgiJO32F1fZQoaAZHQHEXbf1pTMtoB01zAWgIR0CeBahq0tyxdX2UKGgGR0BtbC8nNPgvaAdNLwFoCEdAngd2OuJUHnV9lChoBkdAcb+WAf+0gWgHTT8BaAhHQJ4KpGwzLwF1fZQoaAZHQG6eLRa5f+loB00bAWgIR0CeDEUADJU6dX2UKGgGR0Bxwepm29csaAdNLgFoCEdAng39RrJr+HV9lChoBkdAcuxIzFdcB2gHTR8BaAhHQJ4PqDujRD11fZQoaAZHQHGDSW7e2uxoB01ZAWgIR0CeEt/RVp9JdX2UKGgGR0BwnxbX6InCaAdNDAFoCEdAnhRgow22onV9lChoBkdAcb2JCBwuNGgHTSsBaAhHQJ4WCthd+od1fZQoaAZHQHGzONDMNc5oB02fAWgIR0CeGa8PFvQ4dX2UKGgGR0BvYns5XEIgaAdNGgFoCEdAnhtIP9UCJXV9lChoBkdAT4ffIjnmrGgHTQUBaAhHQJ4cwJWvKU51fZQoaAZHQHAiPwNLDhtoB00tAWgIR0CeH9UnG828dX2UKGgGR0BwWXFERaouaAdNIAFoCEdAniFo150KZ3V9lChoBkdAcWzIYm9g4WgHTS8BaAhHQJ4jm3iJfpl1fZQoaAZHQHKnOHvc8DBoB02fAWgIR0CeKFx/ustDdX2UKGgGR0BwZb3Gn4wiaAdNCAFoCEdAniqD6vaDf3V9lChoBkdAUIHslb/wRWgHS9RoCEdAnixOTq0MPXV9lChoBkdAcWQD9Oymh2gHTUkBaAhHQJ4u62d/axp1fZQoaAZHQG2cRhc7hehoB00gAWgIR0CeMjN8VpK0dX2UKGgGR0BwoeKJl8PXaAdNLgFoCEdAnjPqLwWnCXV9lChoBkdAcG81m8M/hWgHTVQBaAhHQJ4149gWrOt1fZQoaAZHQEptqnFYMfBoB0vwaAhHQJ43QbJfYz11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6155199940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b61551999e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6155199a80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6155199b20>", "_build": "<function ActorCriticPolicy._build at 0x7b6155199bc0>", "forward": "<function ActorCriticPolicy.forward at 0x7b6155199c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6155199d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6155199da0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b6155199e40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6155199ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6155199f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b615519a020>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b61577b8f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738263759683669394, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBAET1CabQ/macTP//onr1lNoe8i0FhPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9+4oZydWhiMAWyUS72MAXSUR0CdNFKyv9tNdX2UKGgGR0BwQZqM3qA0aAdNCwFoCEdAnTXhHXmNi3V9lChoBkdAblTd9Dx9X2gHTT0BaAhHQJ046W1MM7V1fZQoaAZHQFDaoGIKtxNoB00KAWgIR0CdOmU6gdwOdX2UKGgGR0BuQhQ3xWkraAdNUwFoCEdAnTxcc6vJR3V9lChoBkdAYF6X40uUU2gHTegDaAhHQJ1DFRiw0O51fZQoaAZHQGS7yoXKr7xoB03oA2gIR0CdSeR2r4nGdX2UKGgGR0BtRpJ7LMcIaAdNQAFoCEdAnUvJzo2XLXV9lChoBkdAbn7Ms6JZXGgHTT4BaAhHQJ1OyXmeUY91fZQoaAZHQG/DUeMhouhoB009AWgIR0CdUNTbnHNpdX2UKGgGR0BGFuSntOVPaAdL3mgIR0CdUmxpcophdX2UKGgGR0BvQvUMG5c1aAdNQgFoCEdAnVY4IOYplXV9lChoBkdASGwgzP8htGgHS+BoCEdAnVgIMWoFV3V9lChoBkdAcN5gXuVopWgHTToBaAhHQJ1ap9jPOY91fZQoaAZHQHH6hS1maphoB01HAWgIR0CdXWJJGvwFdX2UKGgGR0BH+2FFlTWHaAdL5GgIR0CdYAFglWwNdX2UKGgGR0BybjziCJ40aAdNEwFoCEdAnWGeeOGTLXV9lChoBkdAckBupS75EmgHTVoBaAhHQJ1jk9A5aNd1fZQoaAZHQBUhj4HoouxoB0vxaAhHQJ1mQoBq9Gt1fZQoaAZHQG+tvpY9xIdoB03LAWgIR0CdaPlZHNHIdX2UKGgGR0BwFXwMH8jzaAdNIwFoCEdAnWqwYcebNXV9lChoBkdAcq8iD/VAiWgHTXUBaAhHQJ1uMkmhM8J1fZQoaAZHQExPPVNHpbFoB0vlaAhHQJ1vgnpjc211fZQoaAZHQG7w+X7cfvFoB00VAWgIR0CdcRk3juKGdX2UKGgGR0BGCsmnfl6raAdL3GgIR0CdcmK6WgOCdX2UKGgGR0A0BY5T6zmfaAdL5GgIR0CddQgv114gdX2UKGgGR0BNCnNPgvUSaAdNBQFoCEdAnXapYT0xunV9lChoBkdAY4OB8x9G7WgHTegDaAhHQJ1+CpuMuOF1fZQoaAZHQEAubwz+FURoB00BAWgIR0Cdf4RYRujzdX2UKGgGR0BxT+O938oAaAdNIAFoCEdAnYExDXvphXV9lChoBkdAb9XYlpoK2WgHTUcBaAhHQJ2Eg9SuQp51fZQoaAZHQHE0rR8c+7loB00wAWgIR0CdhrSqlxffdX2UKGgGR0BBTM3hn8KpaAdL6WgIR0CdiHZElVtGdX2UKGgGR0Bt7e4iHIp6aAdNQAFoCEdAnYyS0BwMpnV9lChoBkdAcZe6PsAvMGgHTUoBaAhHQJ2PhsKsuFp1fZQoaAZHQHAHO0CzTndoB00ZAWgIR0CdkcwMYuTSdX2UKGgGR0BJ8FrM1TBJaAdL62gIR0Cdk1EVnEl3dX2UKGgGR0BxdKhK15SnaAdNMAFoCEdAnZZ7N0NjLHV9lChoBkdAbZvGoaUA1mgHTS8BaAhHQJ2YYwIt16p1fZQoaAZHQEh2DEFW4mVoB0vfaAhHQJ2ZutCAtnR1fZQoaAZHQHE/cJdB0IVoB00yAWgIR0Cdm59Vmz0IdX2UKGgGR0BwCZbhWHUMaAdN/QFoCEdAnaAUwztTk3V9lChoBkdAcEf6ZYxL02gHTXgBaAhHQJ2iVLg4wRJ1fZQoaAZHQGLj58jRlYloB03oA2gIR0CdqbB5HEuQdX2UKGgGR0Bwrz6k690zaAdNSQFoCEdAnazs01qFiHV9lChoBkdAPbFj3Ehq02gHS9RoCEdAna4yrPt2LnV9lChoBkdAX9Fh1DBuXWgHTegDaAhHQJ21b/6wdKd1fZQoaAZHQGG+43m3fANoB03oA2gIR0CdvdU+9rXUdX2UKGgGR0By5fIwM6RyaAdNOwFoCEdAncA9SAH3UXV9lChoBkdAcBCGC7K7qmgHTQoBaAhHQJ3Ccuwosqd1fZQoaAZHQG8kJrcj7hxoB00wAWgIR0CdxkbiZOSGdX2UKGgGR0Bx2ZtcfNiZaAdN1wFoCEdAnckg7DEWI3V9lChoBkdAcVvhn8Koh2gHTREBaAhHQJ3KvJ+2E011fZQoaAZHQHLpjLOiWVxoB02JAWgIR0Cdzjzu4PPLdX2UKGgGR0BxeusA/9pAaAdNNgFoCEdAnc/8lXzUZ3V9lChoBkdASciFoL5RCWgHS/toCEdAndFnm7rcCnV9lChoBkdAbQAVSn+AE2gHTSQBaAhHQJ3UVRpDeCV1fZQoaAZHQG/G8NpdrwhoB00dAWgIR0Cd1gEnLJS0dX2UKGgGR0BxQ9gMMI/raAdNLAFoCEdAndfHuZ1FIHV9lChoBkdAci/HxSYPXmgHTScBaAhHQJ3Zf4fwI+p1fZQoaAZHQG/dMA/9pAVoB00lAWgIR0Cd3HbBXS0CdX2UKGgGR0Av5PznRsuWaAdLzmgIR0Cd3arkKeCkdX2UKGgGR0Bwv0n0Cih4aAdNegFoCEdAnd/XO8kD6nV9lChoBkdAcHN19v0h/2gHTUEBaAhHQJ3i4na37UJ1fZQoaAZHQHHFpHI6r/9oB01LAWgIR0Cd5Lcqe9SNdX2UKGgGR0Bw3qMhouf3aAdNLAFoCEdAneZmjfvWpnV9lChoBkdAbDxpD/lyR2gHTRYBaAhHQJ3n7ryDqW11fZQoaAZHQG/Z1h9b5dpoB01wAWgIR0Cd60E4ecQRdX2UKGgGR0Bs36+cpb2UaAdNRQFoCEdAne2V7IDHO3V9lChoBkdAbRX6Mzdk8WgHTUgBaAhHQJ3wBocrAgx1fZQoaAZHQEnF7VrhzeZoB0viaAhHQJ3zaJ3xFy91fZQoaAZHQHCvvRArxy5oB00uAWgIR0Cd9dytmthedX2UKGgGR0BwzlHWjGkvaAdNDQFoCEdAnfgNEgGKRHV9lChoBkdAcEi35eqrBGgHTTEBaAhHQJ37sRe1KGt1fZQoaAZHQG4bhEroW59oB01FAWgIR0Cd/ZGaQV9GdX2UKGgGR0BwAgCRwIdEaAdN5gFoCEdAngB0QTVUdnV9lChoBkdAb1Q12q1gIGgHTSgBaAhHQJ4DgiJO32F1fZQoaAZHQHEXbf1pTMtoB01zAWgIR0CeBahq0tyxdX2UKGgGR0BtbC8nNPgvaAdNLwFoCEdAngd2OuJUHnV9lChoBkdAcb+WAf+0gWgHTT8BaAhHQJ4KpGwzLwF1fZQoaAZHQG6eLRa5f+loB00bAWgIR0CeDEUADJU6dX2UKGgGR0Bxwepm29csaAdNLgFoCEdAng39RrJr+HV9lChoBkdAcuxIzFdcB2gHTR8BaAhHQJ4PqDujRD11fZQoaAZHQHGDSW7e2uxoB01ZAWgIR0CeEt/RVp9JdX2UKGgGR0BwnxbX6InCaAdNDAFoCEdAnhRgow22onV9lChoBkdAcb2JCBwuNGgHTSsBaAhHQJ4WCthd+od1fZQoaAZHQHGzONDMNc5oB02fAWgIR0CeGa8PFvQ4dX2UKGgGR0BvYns5XEIgaAdNGgFoCEdAnhtIP9UCJXV9lChoBkdAT4ffIjnmrGgHTQUBaAhHQJ4cwJWvKU51fZQoaAZHQHAiPwNLDhtoB00tAWgIR0CeH9UnG828dX2UKGgGR0BwWXFERaouaAdNIAFoCEdAniFo150KZ3V9lChoBkdAcWzIYm9g4WgHTS8BaAhHQJ4jm3iJfpl1fZQoaAZHQHKnOHvc8DBoB02fAWgIR0CeKFx/ustDdX2UKGgGR0BwZb3Gn4wiaAdNCAFoCEdAniqD6vaDf3V9lChoBkdAUIHslb/wRWgHS9RoCEdAnixOTq0MPXV9lChoBkdAcWQD9Oymh2gHTUkBaAhHQJ4u62d/axp1fZQoaAZHQG2cRhc7hehoB00gAWgIR0CeMjN8VpK0dX2UKGgGR0BwoeKJl8PXaAdNLgFoCEdAnjPqLwWnCXV9lChoBkdAcG81m8M/hWgHTVQBaAhHQJ4149gWrOt1fZQoaAZHQEptqnFYMfBoB0vwaAhHQJ43QbJfYz11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwfPGlweXRob24taW5wdXQtNDEtZTU0OGI1Y2FhMjY5PpSMCDxsYW1iZGE+lIwIPGxhbWJkYT6USxRDBoAAmEOAAJRDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgVjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMCDxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a751f32a698e28662bfb69b7ae619c758bce976456cb1772eb6e5904441d2b7
|
3 |
+
size 147271
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -27,7 +27,7 @@
|
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
"start_time": 1738263759683669394,
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -52,6 +52,21 @@
|
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
"_n_updates": 3908,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -77,23 +92,8 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 1,
|
80 |
-
"n_steps": 1024,
|
81 |
-
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.01,
|
84 |
-
"vf_coef": 0.5,
|
85 |
-
"max_grad_norm": 0.5,
|
86 |
-
"batch_size": 64,
|
87 |
-
"n_epochs": 4,
|
88 |
-
"clip_range": {
|
89 |
-
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
-
},
|
92 |
-
"clip_range_vf": null,
|
93 |
-
"normalize_advantage": true,
|
94 |
-
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b6155199940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b61551999e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6155199a80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6155199b20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b6155199bc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b6155199c60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6155199d00>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6155199da0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b6155199e40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6155199ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6155199f80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b615519a020>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b61577b8f80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
"start_time": 1738263759683669394,
|
30 |
+
"learning_rate": 0.0,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
"_n_updates": 3908,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVzwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwfPGlweXRob24taW5wdXQtNDEtZTU0OGI1Y2FhMjY5PpSMCDxsYW1iZGE+lIwIPGxhbWJkYT6USxRDBoAAmEOAAJRDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgVjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMCDxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997bf9e629c3cd0b5a630954a66a17d4e26fd6df46674f9895bd225f638e121b
|
3 |
+
size 88490
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 255.80041786768956, "std_reward": 42.911722844710624, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-03T13:16:05.488677"}
|